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Quantitative Identification of Multiple Cracks in a Rotor
Utilizing Wavelet Finite Element Method

Bing Li1,2 and Hongbo Dong1

Abstract: Different from single crack identification method, the number of cracks
should be firstly identified, and then the location and depth of each crack can be
predicted for multiple cracks identification technology. This paper presents a mul-
tiple crack identification algorithm for rotor using wavelet finite element method.
Firstly, the changes in natural frequency of a structure with various crack locations
and depths are accurately obtained by means of wavelet finite element method; and
then the damage coefficient method is used to determine the number and region
of cracks. Finally, by finding the points of intersection of three frequency contour
lines in the small region containing crack, the crack location and depth can be pre-
dicted. Multiple cracks diagnostic examples in rotor under two working conditions
have shown the effectiveness of current method: with a maximum error of crack
location identification 0.6% and of crack depth identification 0.7%.
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1 Introduction

Rotating machines are extensively used in diverse engineering applications, such
as power station, marine propulsion systems, aircraft engines, etc. The operating
speed, power, and load of rotating machinery will increase if weight and dimen-
sional tolerance decrease for operation at higher mechanical efficiency. Conse-
quently, many practical rotor dynamic systems contained rotor elements are highly
susceptible to transverse cracks due to fatigue [Green and Casey (2005)]. A crack
not detected in time can result in catastrophic failure and cause injuries and severe
damage to machinery. Many investigators have studied the crack identification
problems in structures [Morassi (2001); Lele and Maiti (2002); Gasch (1993); Di-
marogonas (1996); Salawu (1997)]. Morassi proposed a detect method for shaft
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with an open crack, which is based on the changes in a pair of natural frequencies
and closed-form solutions of the structures [Morassi (2001)]. Lele and Maiti inves-
tigated crack identification techniques by using eight-node iso-parametric elements
to make an efficient calculation for single crack identification in structures [Lele
and Maiti (2002)]. Sekhar proposed a model-based method which replaced the
fault-induced change of the shaft by equivalent loads in the finite element method
(FEM) [Sekhar (2004)]. Anjan using an adaptive h-version FEM for structure dam-
age detection in order to control the discretization error because the traditional finite
elements are impotent to describe the singular behavior of cracks and numerous el-
ements are needed for numerical computation [Anjan and Talukdar (2004)]. Gasch
[Gasch (1993)], Dimarogonas [Dimarogonas (1996)], Salawu [Salawu (1997)], and
Sekhar [Sekhar (2011)] reviewed crack identification methods based on the dy-
namic behavior changes. And many new methods have also been introduced at
the 7th vibration engineering meeting in 2011 (VETOMAC 2011). However, most
methods concerning crack identification deal with single crack, the case of multiple
cracks has not received the same degree of attention.

In the structural damage, there is often more than one type of crack occurring in
more than one region, actually. If the damage identification is dealt blindly with the
single crack detection method when the damage situation is still unknown, it will
probably lead to miss report or give false information about the fault. Therefore, it
is of great importance to accurately diagnose the specific location and depth of each
crack. Quantitative identification of multiple cracks is much more complicated than
that of single crack mainly because of the following two aspects:

The cracks will destroy the continuity of the entire structure and with the occur-
rence of each crack, four boundary condition equations will be introduced which
will undoubtedly increase the difficulty of crack analysis;

In the multiple cracks diagnosis, the number of cracks should be firstly identified,
and then the location and depth of each crack can be predicted, obviously it is more
complex than the single crack diagnosis.

Some investigators have studied the quantitative identification of multiple cracks in
structures in recent years [Patil and Maiti (2003); Xiang and Liang (2011); Chen,
Li, Zi and He (2005); Bao and Wang (2011); He and Lu (2010); Zhang, Han and
Li (2010)]. The first idea of multiple cracks identification came from the damage
coefficient method present by Hu and Liang [Liang, Hu and Choy (1992); Hu and
Liang (1993)]. They divided a beam containing an arbitrary number of cracks into
several finite segments and each segment might contain cracks. From the energy
point of view, they considered that the natural frequency of the beam had a linear
correlation with the crack parameters (crack position and depth). And by means
of symbolic computation method, they worked out the specific relation expression:
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∆ω∆ω∆ω/ωωω = 2HS, where ∆ω∆ω∆ω/ωωω is the column matrix representing the change rate of
the natural frequency, matrix H is the influence matrix and matrix S is the damage
coefficient matrix. The damage coefficient S will be obtained by solving the above
equation. And if the coefficient of the unit is greater than zero, this unit would be
diagnosed as a cracked unit and the magnitude of the coefficient reflected the crack
depth.

Based on the damage coefficient method, Sekhar considered the difference of dif-
ferent crack depths and crack locations on rotor dynamic characteristics, analyzed
a rotor containing two open cracks with FEM and calculated its characteristic fre-
quency and main vibration mode [Sekhar (2008)]. Ruotolo and Surace investigated
the bending vibration of bars with a random number of open cracks and proposed
the smooth function method and transfer matrix method to calculate the vibration of
a bar with multiple cracks and the solution agreed well with the experimental results
[Ruotolo and Surace (2004)]. Moreover, Hollander [Hollander, Wunsche, Henkel
and Theilig (2012)], Lee [Lee (2009)], Lin [Lin and Cheng (2008)], and Lam [Lam
and Yin (2010)] also have explored the analytic and finite element methods for the
multiple cracks problem.

However the analytic method is difficult to be used to calculate the dynamic behav-
iors for cracked structures with complex geometry. In additionally, because of the
fact that the crack tip field displacement and stress have 1/

√
τ singularity ( τ de-

notes crack tip field radius in polar coordinates) and the traditional FEM piecewise
polynomial cannot approximate them accurately on a local area [Kardestuncer and
Norrie (1987)], a fine mesh and great amount of computational work is required
when the traditional finite elements are used to describe the singular behavior of
cracks. To overcome these difficulties, wavelets have been applied to finite element
analysis because wavelet multiresolution theory provides a powerful mathemati-
cal tool for function approximation and multiscale representations. Since B-Spline
wavelet on the interval (BSWI) has explicit expressions, which allows us to con-
veniently calculate the element stiffness matrix. Furthermore, B-spline wavelets
have the best approximation properties among all known wavelets of a given or-
der and wavelets on the interval have good characteristic of localization, which
can overcome some numerical instability phenomena [Goswami, Chan and Chui
(1995)]. Therefore, Scaling functions of BSWI at a certain scale are adopted to
form the shape functions and construct wavelet-based elements. Xiang [Xiang,
Zhong, Chen and He (2008)], Li [Li, Dong, Xiang, Qi and He (2011)], and Dong
[Dong, Chen, Li, Qi and He (2009)] constructed wavelet-based crack elements of
BSWI to build FEM models of a cracked rotor and clamped beam with a rectangu-
lar cross-section, and then identified the crack location and size by using the first
three simulative frequencies of single cracked structures.
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In this paper, we introduced wavelet finite element method (WFEM) to multiple
cracks identification problems, and present a quantitative algorithm for the detec-
tion of each crack in rotor. Firstly, the changes in natural frequency of a struc-
ture with various crack locations and depths are accurately obtained by means of
wavelet finite element method; and then the damage coefficient method is used to
determine the number and region of cracks. Finally, by finding the points of in-
tersection of three frequency contour lines in the small unit containing crack, the
crack location and depth can be identified. To verify the effectiveness of the pre-
sented method, we have performed simulations in rotor with multiple cracks. The
results of the multiple cracks diagnosis tests under two working condition cases are
as follows: with a maximum error of crack location detection 0.6% and of crack
depth detection 0.7%.

2 Theoretical basis

2.1 The basic principle of crack identification

The crack will introduce local flexibility to the structure which changes dynamic
characteristics of the whole structure. In vibration diagnosis, structure frequency
change is regarded as the basis of structure crack identification [Naniwadekar, Naik
and Maiti (2008)]. Usually, the frequency-based crack detection method includes
two procedures [Li, Chen and He (2005)]. The forward problem is to determine
the first three natural frequencies of the cracked structure given the location and
depth of the crack. The inverse problem is to determine the location and depth of
the crack given the first three natural frequencies of the cracked beam.

As for a structure, its natural frequency is changed with the appearance of cracks.
Let ωn (n = 1,2,3, . . .) be the nth order natural frequency, the relationship among
crack location, depth and natural frequency of the beam are as follows£º

ωn = g(a,b) , (n = 1,2,3, . . .) (1)

Where a and b are the position and depth of the crack respectively, shown in Fig. 1.
The forward problem of crack identification can be viewed as to solve the natural
frequency of the structure with the known function g(a,b) and crack parameters a
and b.

If the measured natural frequency is known, the inverse problem, that is to de-
termine the location and depth of the cracks, can be described with the following
function:

(a,b) = g−1 (ωn) , (n = 1,2,3, . . .) (2)
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Therefore, if the function g−1 (ωn) is known, the crack location and depth can be
obtained with the measured natural frequency values. The process of crack iden-
tification is showed in Fig.2. The identification procedure is briefly described as
following.

• The crack on the structure is equivalent as a rotational spring and the equiv-
alent stiffness is evaluated by linear fracture mechanics approach;

• By solving local crack stiffness matrix and adding the local crack stiffness
matrix into the global stiffness matrix, the high performance wavelet-based
model for cracked structure is built up;

• Solve the first three natural frequencies under different normalized crack
location and depth, and then the crack detection database are obtained by
means of surface-fitting techniques.

The first three measured natural frequencies through test in physical model are
employed as the inputs of the inverse problem and the crack parameters can be
identified by frequency contour method.

 

 

(a) (b) 

Shaft 
Crack

a 
d 0

y 

z

b

Figure 1: Crack parameters (a) Crack location (b) Crack depth.

2.2 Forward problem: modal analysis using WFEM

The basic idea of WFEM, which is similar to the traditional FEM, is to discretize
a body into an assemble of discrete finite elements which are interconnected at the
nodal points on element boundaries. The displacement field is approximated over
each wavelet-based finite element, in terms of the nodal displacements. Li et al.
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Figure 2: The process of crack identification

have constructed wavelet-based beam elements for the vibration problems of the
beam with an open crack [Li, Chen and He (2005)]. Dong et al. have presented
wavelet finite elements based on BSWI and applied them to the single crack iden-
tification problems [Dong, Chen, Li, Qi and He (2009)]. For completeness, the
forms of the derivation of wavelet-based element equations are given here.

A shaft model with crack is shown in Fig. 1. The rotor is modeled by a Rayleigh–
Euler beam considering the effects of the cross-section inertia, the elemental po-
tential energy Ue can be written as

Ue =
∫ le

0

EIz

2
(
d2w
dx2 )2dx (3)

Where E is the Young’s modulus, Iz is the moment of inertia, w(x, t) is the trans-
verse displacement, and le is the elemental length. The elemental kinetic energy T e

of the Rayleigh–Euler beam allowing for the rotatory inertia effect can be expressed
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as

T e =
∫ le

0

ρA
2

(
∂w
∂ t

)2dx+
∫ le

0

ρIz

2
(
∂θ

∂ t
)2dx (4)

Where ρ is the density, A is the area of the cross-section, θ(x, t) is the rotation of
the shaft section due to bending and can be given by θ = dw(x,t)

dx = 1
le

dw(ξ ,t)
dξ

. The
layout of elemental nodes is shown in Fig. 3.
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Figure 3: Layout of elemental nodes and the corresponding degree of freedom.

The element is abbreviated to BSWI m j Rayleigh–Euler beam element. Then ele-
mental displacement and slope can be represented by

we = {w1θ1w2w3 · · ·wrwr+1θr+1}T (5)

Where θ1 = 1
le

dw1
dξ

and θr+1 = 1
le

dwr+1
dξ

denote rotation on each elemental endpoint.

The unknown field function w(ξ , t) can be expressed as

w(ξ , t) = ΦΦΦmathb f T e
b we (6)

Where ΦΦΦ =
{

φ
j

m,−m+1(ξ ) φ
j

m,−m+2(ξ ) . . .φ j
m,2 j−1(ξ )

}
is the column vector com-

bined by the BSWI scaling functions for order m at the scale j (the explicit expres-
sion of the functions can be seen in [Dong, Chen, Li, Qi and He (2009)]), and the
C1 type transformation matrix T e

b is given by

Te
b = ([ΦΦΦ(ξ1)

1
le

dΦΦΦ(ξ1)
dξ

ΦΦΦ(ξ2) . . .ΦΦΦ(ξr)ΦΦΦ(ξr+1)
1
le

dΦΦΦ(ξr+1)
dξ

]T )−1 (7)

Substituting displacement function Eq. (6) into Eqs. (3) and (4), respectively, we
can obtain{

Ue = 1
2(we)T Ke

b(w
e)

T e = 1
2( ∂we

∂ t )T Me
b(

∂we

∂ t )+ 1
2( ∂we

∂ t )T Me
r(

∂we

∂ t )
(8)
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Where Ke
b, Me

b, Me
r are the bending stiffness matrixes, translational mass matrix and

rotatory inertia mass matrix of the structure respectively, their explicit expression
of the functions can be seen in [Dong, Chen, Li, Qi and He (2009)].

The elemental Lagrangian function La is

La = Ue−T e =
1
2
(we)T Ke

b(w
e)− 1

2
(
∂we

∂ t
)T Me

b(
∂we

∂ t
)− 1

2
(
∂we

∂ t
)T Me

r(
∂we

∂ t
) (9)

Applying Hamilton’s principle to the elemental Lagrangian function La, we can
obtain the elemental free vibration equation

(Me
b +Me

r)(
∂ 2we

∂ t2 )+Ke
bwe = 0 (10)

and the corresponding elemental free vibration frequency equations is∣∣Ke
b−ω

2
n (Me

b +Me
r)
∣∣= 0 (11)

Where ωn is the natural frequency.

A transverse crack of depth b is considered on a shaft of diameter d ( the corre-
sponding radius is R) as shown in Fig. 4. The crack introduces a local flexibility
that is a function of crack depth, and the flexibility changes the stiffness of rotor.
Suppose the crack is located between wavelet-based elements and the numbers of
two nodes are j and j+1 respectively (See Fig. 5). The continuity condition at
crack position indicates that the left node and right node have the same vertical
deflection, w j = w j+1, while their rotations θ j and θ j+1 are connected through the
stiffness matrix Ks [Dimarogonas and Papadopoulos (1983)]

Ks =
[

kt −kt

−kt kt

]
(12)

kt =
πER8

32(1−µ)
× 1∫√R2−(R−b)2

−
√

R2−(R−b)2
(R2−b2)[

∫ a(ξ )
0 ηF2(η/H)dη ]dξ

(13)

Where kt is the local stiffness due to the crack, µ is the Poisson’s ratio, a(ξ ) =√
R2−ξ 2−R+b, H = 2

√
R2−ξ 2 and the function F(η/H) can be given by the

experimental formula [Tada, Paris and Irwin (2000)].

F(η/H) = 1.122−1.40(η/H)+7.33(η/H)2−13.08(η/H)3 +14.0(η/H)4 (14)

Eq. (13) is a function of normalized crack size only and can be computed by nu-
merical integration.
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Hence, we can assemble cracked stiffness submatrix Ks into the global stiffness
matrix easily. The position of Ks in the global stiffness matrix is determined by
crack location a. The global mass matrix of cracked rotor system is equal to the
uncracked one. From now on, the cracked rotor system finite element model is
constructed by using BSWI beam element. The solution of the eigenvalue problem
can then proceed as usual.
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Figure 4: Geometry of a cracked section in rotor.
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 Figure 5: Layout of the corresponding nodes around crack with stiffness coefficient
kt .

2.3 Inverse problem: multiple crack identification

2.3.1 Damage coefficient method

According to Castigliano’s theorem, the local displacement µ̄ due to the crack can
be expressed as

µ̄ =
∂W̄
∂ p

(15)
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Where W̄ is local strain energy due to crack, p is the force or moment of structure,
as shown in Fig. 6. For crack element, W̄ =

∫ b
0 J(α)dα , α is crack normalized

depth, α = b/d, and J(α) is energy density function.

 

  u   

p   p   
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Figure 6: Crack element

The local flexibility c due to the crack can be defined as

c =
∂ µ̄

∂ p
(16)

and the local stiffness kt due to the crack is kt=1/c, we put Eq. (15) into Eq. (16),
and obtain

1
kt

=
∂ 2W̄
∂ p2 (17)

It is an effective method to treat the crack as a rotating spring model. When the
structure is intact, the spring stiffness kt is infinite. kt increases as the crack depth
enlarges. Gudmundson given the relation of natural frequencies between the dam-
age structures and intact ones [Gudmudson (1982)]:

ω̄2
n

ω2
n

= 1− W̄n

Wn
(18)

Where, ω̄n and ωn are the natural frequencies for damage structure and intact one
respectively. W̄n is n the order strain energy due to crack, Wn is strain energy for the
n order model of intact structure.

According to Eq. (18), we have ω2
n−ω̄2

n
ω2

n
= W̄n

Wn
⇒ (ωn+ω̄n)(ωn−ω̄n)

ω2
n

= W̄n
Wn

. Because
(ωn + ω̄n)≈ 2ωn, so the Eq. (18) can be written as

∆ωn

ωn
=

1
2
· W̄n

Wn
(19)

Where ∆ωn = ωn− ω̄n. By integral transformation, the Eq. (17) is

W̄n =
p2

n

2kt
(20)
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Where pn is the inner force of structure for the n order model. When the pure bend-
ing vibration is considered, p2

n is direct proportion with the n order strain energy
density function Ψ̄n, Ψ̄n = p2

n/2EIz. So the Eq. (20) can be written:

W̄n =
Ψ̄n(β ) ·EIz

kt
(21)

Where β is crack normalized location. For the intact structure, Wn can be obtained
through integral transformation for Ψn(β ),

Wn = L
∫ 1

0
Ψn(β )dβ (22)

Because the crack has little effectiveness for modal shape of structure, the energy
density function of damage structure Ψ̄n is same as intact one Ψn. Combining Eqs.
(19), (21) and (22) , we can obtain,

∆ωn

ωn
= 2gn(β )

1
K

(23)

Where,

gn(β ) =
Ψn(β )

4
∫ 1

0 Ψn(β )dβ
(24)

where K = kt L
EIz

, K indicts the depth of crack. The strain energy density function for
the n order model of intact structure is

Ψn(β ) = E(β )I(β )
[
φ
′′
n (β )

]2 (25)

Where φ ′′n (β ) is second derivative of n order model shape. For the structure with
multiple crack, we expand Eq. (23), and obtain

∆ω∆ω∆ωn

ωωωn
= 2

m

∑
i=1

gn(βi)·
1
ki

(26)

Where βi is the normalized crack location of the i crack, and the m is crack number.

In the damage mechanics theory, the damage caused by crack can be calibrated by
damage coefficient S. And if the coefficient of the unit is greater than zero, this unit
would be diagnosed as a cracked unit and the magnitude of the coefficient reflected
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the crack depth. Hu and Liang [Hu and Liang (1993)] introduced the theory into
multiple crack identification, and obtained:

∆ωn

ωn
= 2

m

∑
i=1

∫ Ψ[φn(β )]

4
∫Ψ[φn(β )]
v

ei

dV · si (27)

Where ei stands for the i element solve domain. The Eq. (26) can be written as

∆ω∆ω∆ωn

ωωωn
= 2

m

∑
i=1

∫ gn(β )

ei

dβ · si (28)

In practice, we divide the shaft into m elements. If the n order model of shaft is
known, the Eq. (28) can be expanded as

∆ω∆ω∆ω

ωωω n×1
= 2Hn×m ·Sm×1 (29)

Where, the matrix H includes the element hi j =
∫ gi(β )

ei
dβ .

2.3.2 WFEM based multiple crack identification method

To identify the structural multiple cracks parameters accurately and efficiently; we
meshed different regions with the WFEM, and proposed an algorithm for the identi-
fication of multiple cracks in rotor. And we have the block diagram of the algorithm
shown in Fig.7, the identification procedure is as following:

• By practical measurement, we can obtain the change rate of natural frequency
∆ω∆ω∆ω/ωωω . Then divide the entire structure into m wavelet finite elements;

• Input structural material and geometry parameters, we can calculate the in-
fluence matrix H with integral operation;

• Substitute matrix ∆ω∆ω∆ω/ωωω and H into Eq. (29), obtain the damage influential
matrix S. Moreover, the number of non-zero elements in matrix S represents
the number of the predicted cracks. Corresponding to the non-zero elements
is the damaged unit containing cracks. A positive value s j is to represent the
decrease of the section modulus. Conversely, a negative value s j means the
increase of the section modulus. However, it is impossible for the section
modulus to increase. Therefore, we consider the unit represented by s j<0
is in good condition. That is, we set s j to zero and re-calculate the damage
influential matrix till only the non-negative values are included in matrix S.
The number of elements contained in matrix S is corresponding to the num-
ber of cracks, and the element position reflects the region of the structural
crack;
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• To detect the depth of the crack, we need to calculate the change rate of the
first three orders of natural frequency corresponding by the damage coeffi-
cient in each cracked element;

• We take the change rate as input parameter of the three-line intersection in
a single crack detection method [Li, Chen and He (2005)] and plot the fre-
quency contour line of each mode. The intersection of the three contour lines
predicts the specific position and depth of the crack.

3 Example verification

The validity of the proposed method is testified by a simulation of rotor system
with two cracks, as shown in Fig. 8. Dimensions of the rotor are total length
L = 300mm, diameter d = 10mm. The corresponding material properties are: E =
2.06e11N / m2, ρ = 7860kg / m3 and µ = 0.3. The positional dimensions of the
two cracks are: a1 and a2, relative position β1 and β2are defined as: β1 = a1/L and
β2 = a2/L.

30 BSWI Rayleigh-Timoshenko beam elements are used to discrete the rotor. The
model database of crack diagnosis forward problem is established according to the
different location and depth of crack, as shown in Fig. 9. Fig. 10 shows how
first three natural frequency rate changes with different depths of the two cracks at
different locations.

As can be seen from Fig. 10 (a), when β1 and β2 get close to 1/2, crack depth has
the most obvious influence on the first natural frequency of rotor. From Fig. 10 (b),
crack depth has the most significant influence on the second natural frequency of
rotor when β1 and β2 get close to 1/4. Similar to the above, in Fig. 10 (c), when
β1 and β2 get close to 1/6, crack depth has the most obvious influence on the third
natural frequency of rotor.

According to Euler beam theory, i order modal shape of the simply supported rotor
shown in Fig. 8 is

φi(β ) = sin(iπβ ) (30)

Where β = x/L ∈ [0,1], x is showed in Fig. 8. From Eq. 24:

gi(β ) =
1
4

[φ ′′i (β )]2∫ 1
0 [φ ′′i (β )]2 dβ

=
1
2

sin2(iπβ ) (31)

Then the element hi j of influence matrix H is:

hi j =
∫

ei

gi(β )dβ =
1
2
·
∫

ei

sin2(iπβ )dβ (32)
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Figure 7: The block of algorithm for multiple cracks in rotor using WFEM
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Figure 8: A rotor with two cracks

(i=1,2, . . . , n, j =1,2, . . . , m)

The first three function gi(β )(i = 1,2,3) of the simply supported rotor is shown in
Fig. 11.

Based on the assumption that the first five natural frequencies of the two-crack rotor
are known, when the rotor is divided into 10 elements, hi j could be calculated by
Eq. 32; the results are shown in Tab.1.

Table 1: The index hi j(n=5, m=10) for simple supported rotor

j 

i 
1 2 3 4 5 6 7 8 9 10 

1 0.0016128 0.010546 0.025 0.039454 0.048387 0.048387 0.039454 0.025 0.010546 0.0016128

2 0.0060793 0.032227 0.048387 0.032227 0.0060793 0.0060793 0.032227 0.048387 0.032227 0.0060793

3 0.012386 0.04541 0.025 0.0045905 0.037614 0.037614 0.0045905 0.025 0.04541 0.012386

4 0.019153 0.040307 0.0060793 0.040307 0.019153 0.019153 0.040307 0.0060793 0.040307 0.019153

5 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 

 

 

Then we verify the precision and reliability of BSWI finite element model used in
quantitative diagnosis of multi-crack rotor. We still use 900 Rayleigh-Timoshenko
Beam Elements to solve natural frequencies of the cracked rotor under different
working conditions, and the obtained natural frequencies are regarded as “testing”
frequencies (crack conditions and their corresponding frequencies are shown in
Tab.2). By substitution of the “testing” frequencies into Eq. 29, the inverse problem
is solved. Because of the symmetric structure, we assume that two cracks are both
located in the left part of rotor.

The two-crack rotor shown in Fig. 8 is divided into 10 elements of same length.
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图 3-25 光轴转子裂纹定量诊断正问题模型数据库 

 

(a) Natural frequency of the first order (b) Natural frequency of the second order 

(c) Natural frequency of the third order 
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Figure 9: The relation between frequency ωn(n=1, 2, 3) and crack normalized
location β (β = a/L),normalized depth α (α = b/d)

Table 2: The cases for two crack rotor

Result of 900 traditional elements 
Case 1β  1α  2β  2α  

1ω /Hz 2ω /Hz 3ω /Hz 4ω /Hz 5ω /Hz 

0 Intact rotor 223.301 892.294 2004.295 3554.986 5538.641
Ⅰ 0.35 0.5 0.45 0.5 217.537 882.688 1980.867 3492.084 5461.624
Ⅱ 0.25 0.4 0.35 0.4 220.794 879.641 1995.396 3527.633 5491.750
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图 3-26 两裂纹相对深度对固有频率的影响 
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Figure 10: Variance rations for the first three order natural frequencies

In case ¢ñ, two cracks are separately located in the fourth and fifth element. We
substituted the coefficient hi j and the first five frequencies into Eq. 29 and we get
the equation:

∆ω∆ω∆ω

ωωω 5×1
= 2H5×10 ·S10×1 (33)

Damage coefficients ({s1,s2, . . . ,s10}T ) are obtained by solving the equation above.

S = {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10}T

= {- 0.0074962,0.0015769, - 0.0056386,0.078146,0.072466,0,0,0,0,0}T (34)
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Figure 11: Simple supported rotor gi(β ) (1: The first order; 2: The second order;
3: The third order)

Because the structure is symmetric, only the left part should be taken into consid-
eration. As a result, s6,s7, . . . ,s10 are set zero. Damage coefficients s1 and s3 are
less than zero which means that the stiffness of Element 1 and Element 3 increase,
which is not correspondent with practice. So s1 and s3 are also set zero, which
means there is no crack in Element 1 and Element 3. After recalculating Eq. 33,
the newest damage coefficients are obtained.

S = {s2,s4,s5}
T

= { - 0.0064824,0.15125,0.14404}
T

(35)

Because s2 is less than zero, it is set zero. Repeat the process above, we got the
final S:

S = {s4,s5}
T

= {0.14812,0.14128}
T

(36)

All elements in damage coefficients matrix are nonnegative, we could predict that
Element 4 and Element 5 are crack elements, which agrees with case ¢ñ.

By substitution of s4 into Eq. 33 and other damage coefficients set zero, we get
natural frequency change rate of cracked rotor caused by the crack in Element 4,
∆ω1/ω1 = 1.1688%, ∆ω2/ω2 = 0.9547%, ∆ω3/ω3 = 0.1360%, then with the first
three natural frequencies and single crack quantitative diagnosis database (shown
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(a) 裂纹 1 频率等高线 

图 3-28 工况 1 多裂纹定量诊断频率等高线图 (m=10) 
（1：一阶频率等高线；2：二阶频率等高线；3：三阶频率等高线） 

(b) 裂纹 2 频率等高线 
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(a) Frequency contour for crack 1 
 

(b) Frequency contour for crack 2 
 

 
Figure 12: Frequency contours for case I (m = 10) (1: The first order frequency
contour; 2: The second order frequency contour; 3: The third order frequency
contour)

in Fig. 9), we use contour method to diagnose cracks. Contour lines of frequency
are shown in Fig. 12. Diagnosis results are listed in Tab. 3.

Table 3: Prediction results for case ¢ñ (m=10)

Cases 1β  1α  *
1β  

（Error）

*
1α  

（Error）

2β  2α *
2β  

（Error） 

*
2α  

（Error）

Ⅰ 0.35 0.5 0.36 (1%) 0.51 (1%) 0.45 0.5 0.445 (0.5%) 0.51 (1%)

* The predicted results. 

 

Identification accuracy of multiple cracks is not very ideal (maximum error being
1%), it is mainly because that element number (m=10) of the rotor is not enough.
In order to improve identification accuracy, the rotor is divided into 30 elements. In
case ¢ñ, two cracks are separately located in the eleventh and fourteenth element.
The identification process is the same as the process above. The final damage
coefficient matrix is:

S = {s11,s13,s14}T

= { 0.41752,0.026592,0.41901}T (37)
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Obviously, Element 11, 13, 14 are cracked elements. The first three natural fre-
quency change rates of cracked rotor caused by the crack in Element 13 are∆ω1/ω1 =
0.0772%, ∆ω2/ω2 = 0.0397%, ∆ω3/ω3 = 0.0187%. The frequency change rates
are very small, which can be neglected. Actually there is no crack in this element.

We use contour method to diagnose cracks. Frequency contour lines are shown in
Fig. 13. The diagnosis results of the cracks separately located in Element 11 and
Element 14 are listed in Tab 4.

In case I, the frequency contour lines are shown in Fig. 14. Diagnosis results are
listed in Tab. 5.

From Tab.4 and Tab. 5 we can conclude that high identification accuracy of multiple
cracks has been achieved using BSWI finite element model. The maximum relative
error of crack location identification is 0.6%, while the maximum relative error of
crack location identification is 0.7%. So the precision and reliability of this method
has been verified.

Table 4: Prediction results for case I (m=30)

Case 1β  1α  *
1β  

（Error）

*
1α  

（Error）

2β  2α *
2β  

（Error） 

*
2α  

（Error）

Ⅰ 0.35 0.5 0.349 
(0.1%) 

0.493 
(0.7%) 

0.45 0.5 0.452 (0.2%) 0.498 
(0.2%) 

* The predicted results. 

 

Table 5: Prediction results for case II (m=30)

Case 1β  1α  *
1β  

（Error）

*
1α  

（Error）

2β  2α *
2β  

（Error） 

*
2α  

（Error）

Π 0.25 0.4 0.244 
(0.6%) 

0.404 
(0.4%) 

0.35 0.4 0.353 (0.3%) 0.402 
(0.2%) 

* The predicted results. 
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图 3-29 工况 1 多裂纹定量诊断频率等高线图（m=30） 
（1：一阶频率等高线；2：二阶频率等高线；3：三阶频率等高线） 
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(c) 裂纹 1 频率等高线局部放大图 (d) 裂纹 2 频率等高线局部放大图
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(a) crack 1     (b) crack 2 

(c) Zoom in of frequency contour for crack 1 (d) Zoom in of frequency contour for crack 2 

 

Figure 13: Frequency contours for case I (m = 30) (1: The first order frequency
contour; 2: The second order frequency contour; 3: The third order frequency
contour)

4 Conclusions

The changes of structural natural frequency caused by multiple cracks are consis-
tent with the linear superposition relation. That is, the changes of natural frequency
caused by multiple cracks are equivalent to the sum of that caused by single crack
under the same working conditions. As a result, each damage coefficient is cor-
responding to each crack. In this paper, a novel method of multiple cracks rotor
identification based on WFEM was proposed. The key to successful impletion of
multiple cracks quantitative diagnosis in the engineering practice was addressed:
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(a) 裂纹 1 频率等高线 

图 3-30 工况 2 多裂纹定量诊断频率等高线图 (m=30) 
（1：一阶频率等高线；2：二阶频率等高线；3：三阶频率等高线） 

(b) 裂纹 2 频率等高线 

 

(a) crack 1 (b) crack 2 

Figure 14: Frequency contours for case II (m = 30) (1: The first order frequency
contour; 2: The second order frequency contour; 3: The third order frequency
contour)

1. Establishing an accurate and reasonable finite element structural modal to
make the calculated values of natural frequency agree well with the measured
values;

2. Firstly determine the number of the structural cracks, then perform quantita-
tive diagnosis on each crack.
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