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A Meshless Method Using Radial Basis Functions for the
Numerical Solution of Two–Dimensional Complex

Ginzburg–Landau Equation
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Abstract: The Ginzburg–Landau equation has been used as a mathematical
model for various pattern formation systems in mechanics, physics and chemistry.
In this paper, we study the complex Ginzburg–Landau equation in two spatial di-
mensions with periodical boundary conditions. The method numerically approxi-
mates the solution by collocation method based on radial basis functions (RBFs).
To improve the numerical results we use a predictor-corrector scheme. The results
of numerical experiments are presented, and are compared with analytical solutions
to confirm the accuracy and efficiency of the presented method.
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1 Introduction

1.1 An introduction about Ginzburg-Landau equation

In this article, we study the following two-dimensional complex Ginzburg-Landau
(GL) equation with periodical boundary condition in two dimensions,

ut − (ν + iα)(uxx +uyy)+(κ + iβ )|u|2u− γu = 0, (x,y) ∈Ω, 0 < t ≤ T, (1)

u(xL,y, t) = u(xR,y, t), u(x,yL, t) = u(x,yR, t), 0 < t ≤ T, (2)

ux(xL,y, t) = ux(xR,y, t), uy(x,yL, t) = uy(x,yR, t), 0 < t ≤ T, (3)

u(x,y,0) = u0(x,y), (x,y) ∈Ω, (4)
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where u is a function from Ω×R+ in to C and Ω is a bounded domain of R2. The
parameters α, β and γ are real numbers and ν > 0, κ > 0. The parameter γ is the
coefficient of the linear deriving term. When γ ≤ 0 all solutions would decay to
zero.

Originally this equation was developed by Ginzburg and Landau (Ginzburg and
Landau, 1950; Wazwaz, 2009) to phenomenologically describe phase transitions
in superconductors near their critical temperature and are widely used in studying
the dynamics of electromagnetic behavior of a superconductor in an external mag-
netic field. The GL theory is also irreplaceable in investigating the dynamics of
Abrikosov vortices in type II superconductors (Askerzade, 2010).

The phenomenological GL theory is one of the most elegant and powerful concepts
in physics, which was applied not only to superconductivity but also to other phase
transitions, to nonlinear dynamics, to dissipative systems with self-organizing pat-
tern formation, and even to cosmology (Milošević and Geurts, 2010). It also de-
scribes the amplitude evolution of instability waves in a large variety of dissipative
systems in fluid mechanics, which are close to criticality (Xu and Chang, 2011).
Furthermore, it is used to model some types of chemical reactions, like the famous
Belousov-Zhabotinsky reaction, to model boundary layers in multi-phase systems,
to describe the development of patterns and shocks in non-equilibrium systems
(Borzi, Grossauer, and Scherzer, 2005), and the theory of the origin of wind waves
on a water surface (Kolesov and Rosov, 2000).

As is said in Kolesov and Rosov (2000), Equation (1) is also called the Kuramoto-
Tsuzuki equation after two Japanese physicists, who, based on the physical ideas
developed by Landau and Ginzburg, assumed that this equation with diffusion co-
efficients of the order unity and under the von Neumann boundary conditions de-
scribes the dynamics of a system of parabolic equations of the reaction-diffusion
type when oscillations make its spatially homogeneous equilibrium state unstable
(Kolesov and Rosov, 2000).

The existence of time-periodic solutions to the GL equations have been studied by
many authors. In (Wang, 1999) Wang proved the existence of at least one time-
periodic solution to the GL equations in the space dimension n = 2. The result was
extended to the case when the space dimension is n = 3 in (Zhan, 2000). However,
in both works the authors failed to address the uniqueness and stability of the time-
periodic solution under the given boundary conditions. Zhan (Zhan, 2008) showed
that the GL equations admit at least three time-periodic solutions. One of the time-
periodic solutions describes the non-superconductive (or normal) state and the other
one describes the superconductivity state. He also showed that the time-periodic
solutions are exponentially stable.



The RBF–Meshless Method for Two–Dimensional Ginzburg–Landau Equation 335

Lega (Lega, 2001) reviewed recent works on localized solutions of the one-dimensional
complex GL equation known as traveling holes. Such coherent structures seem to
play an important role in the disordered dynamics displayed by GL equation at a
finite distance past the Benjamin-Feir instability threshold (Lega, 2001).

Chang et al. (Chang, Ankiewicz, and Akhmediev, 2007) studied creeping soli-
tons of the GL equation using numerical simulations and analyzed them with a
low-dimensional model using the method of moments. They found the regions
of existence of creeping solitons in the parameter space of this equation. Fu and
Dai (H. Fu, 2010) obtained a new type of exact solitary wave solutions including
chirped bright solitary-wave and chirped dark solitary-wave solutions by applying
specially envelope transform and direct ansatz approach to GL equation. In (Liu,
Li, and Tian, 2009) Liu and Tian presented several families of exact dark and bright
soliton like solutions to the modified GL equation with variable coefficient.

Wang (Wang, 2010) proposed an efficient time-splitting Chebyshev-Tau spectral
method for the Ginzburg-Landau-Schrödinger equation with zero/nonzero far-field
boundary conditions. He split the Ginzburg-Landau-Schrödinger equation into lin-
ear and nonlinear parts. The nonlinear equation is solved exactly; while the linear
equation is solved with Chebyshev-Tau spectral discretization in space and Crank-
Nicolson method in time. In (Chen, 1997) Chen proposed a semi-implicit finite
element scheme to the numerical solution of the GL model which is based on a lin-
ear finite element approximation of the order parameter and a mixed finite element
discretization for the equation involving the magnetic potential.

In (Wang and Guo, 2010) Wang and Guo studied the rate of convergence of some
finite difference schemes to solve the two-dimensional GL equation. Avoiding the
difficulty in estimating the numerical solutions in uniform norm, they proved that
all the schemes had the second-order convergence in L2 norm by an induction ar-
gument. Xu and Chang (Xu and Chang, 2011) proposed three linearized difference
schemes for solving the two dimensional GL equation with a periodic boundary
condition and proved the convergence of the three schemes by an induction argu-
ment or a linearized analysis method.

1.2 An introduction about meshless methods

In the last 20 years, many researchers have shown interest in mesh-free radial basis
functions (RBFs) methods. RBFs have been used for interpolation problems as
well as for numerically solving partial differential equations (PDEs) (see (Brown,
Ling, Kansa, and Levesley, 2005) and refs. therein).

The RBF based method is attractive not only because of its spectral accuracy when
using Gaussians or multiquadrics (Brown, Ling, Kansa, and Levesley, 2005) but
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it’s ability to work on scattered data without using any mesh. Compared with the
classical numerical method like finite element method (FEM), the meshless meth-
ods can save much time because that we have to spend much time on the mesh-
generation for FEM (Duan and Tan, 2006). The price for this increased accuracy is
usually ill-conditioning of the associated linear systems that need to be solved: the
"uncertainty relation" shown by Schaback (Schaback, 1995a,b, 1997) is that better
conditioning is associated with poorer accuracy and worse conditioning is associ-
ated with improved accuracy. Cheng et al. (Cheng, Golberg, Kansa, and Zammito,
2003) and Fedoseyev et al. (Fedoseyev, Friedman, and Kansa, 2002) demonstrated
that the solutions of elliptic PDEs converge exponentially requiring orders of mag-
nitude less discretization and operations than the traditional schemes.

The initial development of using RBFs to solving PDEs was due to the pioneering
work of Kansa (Kansa, 1990a,b) who modified Hardy’s multiquadric (MQ) method
(Hardy, 1990) to solve partial differential equations (PDEs). Since then, solving
PDEs using radial basis functions (RBFs) collocation method becomes an attrac-
tive alternative to these traditional methods because no tedious mesh generation is
required.

Many positive properties of radial basis function (RBF) methods have been identi-
fied in connection with PDEs. They are grid-free numerical schemes very suitable
for problems in irregular geometries. They can exploit accurate and smooth repre-
sentations of the boundary, very easy to implement, and can be spectrally accurate
(Platte and Driscoll, 2004). Fedoseyev et al. (Fedoseyev, Friedman, and Kansa,
2000), extended the Kansa’s method to numerical solution and detection of bifur-
cations in 1D and 2D parameterized nonlinear elliptic PDEs. In (Demirkaya, Soh,
and Ilegbusi, 2008) the pressure-velocity formulation of the Navier-Stokes equation
is solved using the RBFs collocation method and the nonlinear collocated equations
are solved using the Levenberg-Marquardt method. La Rocca et al. (Rocca, Ros-
ales, and Power, 2005) proposed a meshless numerical approach for the solution of
time dependent convection-diffusion problems with variable coefficients in terms
of a Hermite RBF interpolation numerical scheme.

Collocation method is more successful in numerical experiments of RBF based
methods than Galerkin approximation in spite of lack of theoretical analysis. Though
it is very popular to use the Galerkin method in the literature of FEM, the Galerkin
method is seldom used in the meshless RBFs society. One reason is that the usual
Galerkin method is not so efficient as it is in FEM, because the computation of the
integrals would be complicated (Zhang, 2007). For collocation method, we can not
ensure that the linear system arising in this method is solvable. Actually, there are
counter examples which indicate that the matrix of the linear system is singular
(Hon and Schaback, 2001).
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More recently Fasshauer (Fasshauer, 1996) suggested an alternative approach based
on Hermite interpolation technique using RBFs, which allows not only the interpo-
lation of a given function but also its derivatives. The convergence proof for RBF
Hermite-Brikhoff interpolation was given by Wu (Wu, 1992) who also recently
proved the convergence of this approach when solving PDEs (see Wu (Wu, 1998)
and Schaback and Franke (Schaback and Franke, 1998)).

On the other hand, the condition number of the matrix arising in collocation method
is extremely large. Accuracy and stability are other important issues to consider
when employing RBFs. However, it should be pointed out that the accuracy and
stability of the solution depend strongly on the type of RBF employed (Demirkaya,
Soh, and Ilegbusi, 2008).

The traditional RBFs are globally defined functions which result in a full resultant
coefficient matrix. To tackle this problem, a new class of compactly supported (CS)
RBFs were constructed by Wendland (Wendland, 1995). In this case the result-
ing interpolation matrices are sparse and positive definite, which tends to improve
the conditioning. Sparsity is particularly important, hence CS-RBFs are a natural
choice for solving three-dimensional (3D) problems (Golberg, Chen, and Ganesh,
2000).

In most of the RBFs cases, such as multiquadrc (MQ), inverse multiquadrics (IMQ)
and Gaussian (GA), the accuracy of the RBFs solution, however, depends (De-
hghan and Shokri, 2009) heavily on the choice of a shape parameter c. In general,
for a fixed number of centers N, smaller shape parameters produce the more accu-
rate approximations, but also are associated with a poorly conditioned interpolation
matrix. Sarra and Sturgill (Sarra and Sturgill, 2009) compared four shape param-
eter strategies and applied them to a battery of test problems. One strategy uses a
constant shape while the other three use a different value of the shape parameter at
each center. They found that the use of a constant shape parameter produces the
least accurate result compare with other shape parameter strategies.

The condition number also grows (Sarra, 2005) with N for fixed values of the shape
parameter c. In practice, the shape parameter must be adjusted with the number
of centers in order to produce an interpolation matrix which is well conditioned
enough to be inverted in finite precision arithmetic. Many researchers (e.g., (Carl-
son and Foley, 1991; Rippa, 1999)) have attempted to develop algorithms for se-
lecting optimal values of the shape parameter. However, the optimal choice of the
shape parameter is still an open question.

A domain decomposition procedure (or the artificial sub-sectioning method) along
with a region-by-region iteration algorithm particularly tailored for parallel compu-
tation is designed in (Divo and Kassab, 2005) to address the numerical issues aris-
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ing due to the nature of the coefficient matrix in radial-basis function-based mesh-
less techniques. Overlapping domain decomposition and multilevel RBFs tech-
niques are proposed in (Adibi and Es’haghi, 2007) for solving the two-dimensional
bi-harmonic equation. In (Duan, Tang, Huang, and Lai, 2009) the project domain
decomposition method is coupled with the asymmetric collocation method based
on radial basis functions to solve the electrostatic problems. Authors of (Brown,
Ling, Kansa, and Levesley, 2005) investigated different approximate cardinal ba-
sis function (ACBF) approaches to precondition RBFs-PDE systems. The four
schemes studied in (Brown, Ling, Kansa, and Levesley, 2005) are based on solving
square problems, on decay elements, solving least-square problems and both sided
preconditioning. They found that the best preconditioning procedure is problem-
dependent.

In (Fedoseyev, Friedman, and Kansa, 2002) Fedoseyev et al. formulated an im-
proved Kansa’s method with PDE collocation on the boundary: they added an ad-
ditional set of nodes (which can lie inside or outside of the domain) adjacent to
the boundary and, correspondingly, added an additional set of collocation equa-
tions obtained via collocation of the PDE on the boundary. We refer the interested
reader to (Atluri and Zhu, 1998; Atluri, 2005; Atluri and Shen, 2002a,b, 2005;
Dehghan and Mirzaei, 2009; Mirzaei and Dehghan, 2010; Dehghan and Ghesmati,
2010; Dehghan and Salehi, 2011; Sladek, Sladek, and Atluri, 2004; Sladek, Sladek,
Hellmich, and Eberhardsteiner, 2007; Sladek, Sladek, Krivacek, and Zhang, 2003;
Sladek, Sladek, Tan, and Atluri, 2008; Sladek, Sladek, and Zhang, 2004; Tatari
and Dehghan, 2009; Zhu, Zhang, and Atluri, 1998) for more research works on
meshless techniques.

This article is organized as follows: In Section 2, we will review using of radial
basis functions to approximate the solution. An implementation of the numerical
method to the problem is presented in Section 3. The numerical results are given
in Section 4. In Section 5, we briefly discuss about appearance of the Ginzburg-
Landau equation and one of the most important applications of this equation. We
present some conclusions in Section 6. Finally some references are introduced at
the end.

2 Radial basis function approximation

The following basic RBF approximation in any dimension can be defined.

Definition 2.1 Given a function φ(r), r ≥ 0, and distinct centers ξ1,ξ2, . . . ,ξNc ,
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the basic RBF approximation of a distribution u(x) is

u(x)'
Nc

∑
j=1

λ jφ(‖x−ξ j‖2)+ψ(x) for x ∈Ω⊆ Rd , (5)

where d is the dimension of the problem, and λ ’s are coefficients to be determined.
Some well-known RBFs are listed in Table 1.

Table 1. Some well-known RBFs.

Name of function Definition

Piecewise Smooth:

Conical splines φ(r) = r2k+1

Thin Plate (polyharmonic) Splines (TPS) φ(r) = (−1)m+1r2m log(r)
Wendland functions, where p is a polynomial. φ(r) = (1− r)m

+ p(r)
Infinitely Smooth:

Multiquadrics (MQ) φ(r) =
√

1+(cr)2

Inverse Multiquadrics (IMQ) φ(r) =
(√

1+(cr)2
)−1

Gaussian (GA) φ(r) = exp(−cr2)

Equation (5) can be written without the additional polynomial ψ . In that case φ

must be unconditionally positive definite to guarantee the solvability of the resulting
system (e.g. Gaussian or inverse multiquadrics). However, ψ is usually required
when φ is conditionally positive definite, i.e., when φ has a polynomial growth
towards infinity. Examples are thin plate splines and multiquadrics.

In our numerical method, we have used the multiquadric (MQ) RBF with constant
shape parameter c = 2 and Thin Plate (polyharmonic) Splines (TPS) which are
defined in Table 1. Since MQ is C∞ continuous but the TPS is C2m−1 continuous,
so higher-order thin plate splines must be used for higher-order partial differential
operators. For the GL equation, m = 3 is used for the thin plate splines.

If Pd
q denotes the space of d-variate polynomials of order not exceeding q, and

letting the polynomials P1, . . . ,Pm be the basis of Pd
q in Rd , then the polynomial

ψ(x), in Equation (5), is usually written in the following form:

ψ(x) =
m

∑
i=1

ζiPi(x), (6)

where m = (q−1+d)!/(d!(q−1)!).
To determine the coefficients (λ1, . . . ,λNc) and (ζ1, . . . ,ζm), the collocation method
is used. However, in addition to the Nd equations resulting from collocating (5)
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at the Nd data points, an extra m equations are required. This is insured by the
following m conditions for (5),

Nc

∑
j=1

λ jPi(x j) = 0, i = 1, . . . ,m. (7)

In a similar representation as (5), for any linear partial differential operator L , L u
can be approximated by

L u(x)'
Nc

∑
j=1

λ jL φ(‖x−ξ j‖2)+L ψ(x). (8)

3 The numerical method

3.1 Time discretization

Consider the Ginzburg-Landau equation

ut − (ν + iα)(uxx +uyy)+(κ + iβ )|u|2u− γu = 0, (x,y) ∈Ω, t > 0, (9)

with periodical boundary conditions (2)-(3) and initial condition (4). For the nu-
merical method, first we discretize the equation (9) according to the following θ -
weighted scheme:

un+1−un

dt
− (ν + iα)

[
θ
(
un+1

xx +un+1
yy
)
+(1−θ)

(
un

xx +un
yy
)]

+(κ + iβ ) |un|2 un− γ
(
θun+1 +(1−θ)un)= 0, (10)

where 0 ≤ θ ≤ 1, dt is the time step size, un = u(x,y, tn) denotes the solution at
time tn = ndt. Rearranging (10), using the linear operator ∆ = (∂ 2/∂x2 +∂ 2/∂y2),
we obtain

un+1−θdt
[
(ν + iα)∆un+1 + γun+1

]
=

un +(1−θ)dt
[
(ν + iα)∆un + γun

]
−dt(κ + iβ ) |un|2 un. (11)

Now we want to apply the radial basis functions for equation (11). Before this, we
express that how can use the RBFs to the numerical solution of PDEs.
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3.2 Applying the Radial Basis Functions

Assume that there are a total of (Nc− 3) interpolation points (centers), the radial
basis function expansion of un(x,y) can be written as

un(x,y)'
Nc−3

∑
j=1

λ
n
j φ(r j)+λ

n
Nc−2x+λ

n
Nc−1y+λ

n
Nc

, (x,y) ∈Ω. (12)

To determine the coefficients λ n
j , j = 1,2, . . . ,Nc, the collocation method is used by

applying (12) at every data points (xi,yi), i = 1,2, . . . ,Nd . Therefore we have

un(xi,yi)'
Nc−3

∑
j=1

λ
n
j φ(ri j)+λ

n
Nc−2xi +λ

n
Nc−1yi +λ

n
Nc

, i = 1,2, . . . ,Nd , (13)

where ri j =
√

(xi− x j)2 +(yi− y j)2. The additional solvability conditions of the
system for conditionally positive definite RBFs due to (7) are written as

Nc−3

∑
j=1

λ
n
j =

Nc−3

∑
j=1

λ
n
j x j =

Nc−3

∑
j=1

λ
n
j y j = 0. (14)

The matrix form of the linear system arises from (13) together with (14) is

[u]n = A[λ ]n, (15)

where

A =
[

Φ H
T 0

]
(Nd+3)×Nc

, Φ =
[
φ(ri j)

]
Nd×(Nc−3), (16)

and sub-matrices H and T are obtained from the additional polynomial in (13) and
additional conditions (14), respectively.

Since all applied RBFs φ(r) have global support, so the produced matrices are
dense. The coefficients matrix A can be shown to be positive definite (and therefore
nonsingular) for distinct centers for Gaussian, inverse multiquadrics and inverse
quadric (Dehghan and Shokri, 2007). Also Micchelli (Micchelli, 1986) showed that
A is invertible for distinct sets of the scattered points in the case of multiquadrics.

Assume that there are p < Nd internal (domain) points and (Nd − p) boundary
points, then the matrix A can be split into: A = Ad +Ab +Ae (for more explanation
see (Dehghan and Tatari, 2006)). Using the notation L A (L is a linear differential
operator) to designate the matrix of the same dimension as A and containing the
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elements ãi j = L ai j, then from equation (11) together with boundary conditions
(2)-(3) and additional conditions (14) we have

ML[λ ]n+1 = MR[λ ]n− [G]n, (17)

where

ML = (1−θγdt)Ad−θdt(ν + iα)∆Ad +LAb +Ae,

MR = (1+(1−θ)γdt)Ad +(1−θ)dt(ν + iα)∆Ad ,

[G]n = dt(κ + iβ ) |Un|2Un , Un = Ad [λ ]n,

(18)

and LAb and Ae are resulting matrices from imposing boundary conditions and
additional conditions, respectively.

Since the solution of Ginzburg-Landau equation is complex, so assume that [λ ]n =
[λr]n + i[λi]n, where r and i indexes mean that real part and imaginary part of com-
plex vector, respectively. Using this notation (17) can be written as

B[λr]n+1 +D[λi]n+1 + i
(
B[λi]n+1−D[λr]n+1)=
C[λr]n−E[λi]n− [Gr]n + i(C[λi]n +E[λr]n− [Gi]n) , (19)

where

B = (1−θγdt)Ad−θdtν∆Ad , D = θdtα∆Ad ,

C = (1+(1−θ)γdt)Ad +(1−θ)dtν∆Ad , E = (1−θ)dtα∆Ad .
(20)

The complex equation (19) can be rewritten in the following real variable matrix
form:[

B D
−D B

][
λr

λi

]n+1

=
[

C −E
E C

][
λr

λi

]n

−
[

Gr

Gi

]n

. (21)

Note that (21) is obtained by equalizing the real and imaginary parts of right and
left sides. Thus, the solution of the complex system has been reduced to solving
the real variable system.

We performed our computations using Matlab R2010a software. Since the coeffi-
cient matrix in (21) is unchanged in time steps and non-square (number of data and
interpolation points may be not equal), so we use Moore-Penrose pseudo-inverse
routine in Matlab (i.e. pinv) to calculate pseudo-inverse of A only once and use that
to find the solutions in each time step of our algorithm.
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3.3 The predictor-corrector scheme

To avoid solving the nonlinear system in our method, we moved the non-linear term
of the Ginzburg-Landau equation (i.e. (κ + iβ )|u|2u) to the right-hand side and then
we carried out the RBF based method. To improve the accuracy of the numerical
results, the following predictor-corrector scheme is proposed.

After the first time level (i.e. [λ ]0, [λ ]1 are determined by using the initial condition
and the previous section’s method), for dealing with the non-linearity at time step
(n+1), we propose the following (iterative) algorithm

• Step 1: Set Un = A[λ ]n and calculate an ’intermediate’ value [λ ]n+1
(0) (predic-

tor) from (17) as follows:

[λ ]n+1
(0) = M−1

L

(
MR[λ ]n−dt(κ + iβ ) |Un|2Un

)
. (22)

Now set Un+1
(0) = A[λ ]n+1

(0) and U(0) = (Un+1
(0) +Un)/2. By using these values

we get the approximation

[λ ]n+1
(1) = M−1

L

(
MR[λ ]n−dt(κ + iβ )

∣∣U(0)
∣∣2U(0)

)
. (23)

• Step 2: The general iteration is given by

[λ ]n+1
(k+1) = M−1

L

(
MR[λ ]n−dt(κ + iβ )

∣∣U(k)
∣∣2U(k)

)
, (24)

where U(k) = (Un+1
(k) +Un)/2, Un+1

(k) = A[λ ]n+1
(k) .

• Step 3: We iterate the (24) until∥∥Un+1
(k+1)−Un+1

(k)

∥∥
∞∥∥Un+1

(k)

∥∥
∞

≤ ε for prescribed tolerance ε. (25)

or the maximum number of iterations N ≤ 50.

Once the prescribed convergence is achieved, we can move on to the following time
level. This process is iterated, until reaching to the desirable time t.

3.4 The boundary treatment

A common feature in all RBF approximations is how relatively inaccurate they are
at boundaries (Fornberg, Driscoll, Wright, and Charles, 2002). When approximat-
ing wave-type PDEs, large boundary-induced errors of this type can contaminate
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the solution everywhere across the domain. Thus, it is necessary to understand
how RBFs behave near boundaries and whether there is a way to improve accuracy
there. In (Fornberg, Driscoll, Wright, and Charles, 2002) authors suggested some
remedies for this problem such as adding polynomial terms to the RBF distribu-
tion, Not-a-Knot method, super Not-a-Knot method and clustering of nodes in the
boundary.

In our numerical method, to tackle this problem, we choose centers different from
data points and add some centers out of the boundary. The centers in contrast with
data points in 2D are illustrated in Figure 1. The approximation in the interior is

Figure 1: Data points vs. interpolation points (centers).

independent of how far the centers are moved outside of the boundary.

4 Numerical results

In this section, we present some numerical results of our scheme for the Ginzburg-
Landau equation. Accuracy of the estimated solutions can be worked out by mea-
suring the L2 and L∞ error norms which are defined by

L2 =
∥∥uexact −unumerical

∥∥
2 =

(
N

∑
i=1

∣∣uexact
i −unumerical

i

∣∣)1/2

,

L∞ =
∥∥uexact −unumerical

∥∥
∞

= max
i

∣∣uexact
i −unumerical

i

∣∣ .
Example 1. The plane wave solution
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The Ginzburg-Landau equation (1) has the following plane wave solution (Xu and
Chang, 2011)

u(x,y, t) = aei[ξ (x+y)−ωt], (26)

where a, ξ , ω are real constants. By substituting (26) in to (1), we will have the
following equalities:

{
νξ 2 +κa2− γ = 0
−ω +2αξ 2 +βa2 = 0

, (27)

from which we have

ξ =±
√

γ−κa2

2ν
, ω = 2αξ

2 +βa2. (28)

Now, we consider the Ginzburg-Landau equation (1) on Ω = [0,6]× [0,6] and we
take a = 1.0, ν = 1.0, ξ = π

3 , T = 2.0 and γ = νξ 2 + κa2, ω = 2αξ 2 + βa2

from (27). First, we take β = 2.0 and α = 0.2, 0.4, 0.6, 0.8, 1.0. The results are
tabulated in Table 2 for the thin plate splines (TPS) and the multiquadrics (MQ)
with Nd = Nc = 31, θ = 0.5 and dt = 0.01. The results of our method in com-
parison with the methods given in (Wang and Guo, 2010) are more accurate. For
example, the L∞ error of scheme 4 (best scheme in (Wang and Guo, 2010)) for
α = 0.2, h = 0.2 is 4.2166(−2), but this error for our method is 1.6359(−4) for
TPS and 2.3073(−3) for MQ.

Now, we take α = 0.2 and β = −2, −1, 0, 1, 2. The results for TPS and MQ
with Nd = Nc = 31, θ = 0.5 and dt = 0.01 are given in Table 3. As we know
from equation (26), |U | is constant. In Figure 2, we plot the |U | for α = ±1 with
Nd = Nc = 31, dt = 0.01, and β = 2 at T = 2. These figures show that the difference
of numerical results from constant is lower than 1 percent.

In Figure 3 we plot the L2 and L∞ errors of numerical solution for Nd = 31 vs. cen-
ters’ number at T = 2. This figure indicates that when number of centers increases
then the error of solution decreases. The best choice for centers number is near the
data number.
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Table 2. L2, L∞ and maximum absolute errors of the method for Example 1 at T = 2.

Maximum absolute error

Real part Imaginary part L2 L∞

α = 0.2 7.9725(−3) 1.2435(−2) 2.3986(−1) 1.6359(−4)
4.5367(−2) 3.0379(−2) 6.5392(−1) 2.3073(−3)

α = 0.4 1.5446(−2) 1.4848(−2) 3.1239(−1) 3.3488(−4)
4.3722(−2) 3.3483(−2) 7.0306(−1) 2.4932(−3)

α = 0.6 8.6173(−3) 1.1717(−2) 2.2796(−1) 1.4165(−4)
3.8083(−2) 3.6015(−2) 7.5281(−1) 2.2437(−3)

α = 0.8 1.1588(−2) 1.1014(−2) 2.6954(−1) 1.7748(−4)
3.3697(−2) 3.6404(−2) 7.9276(−1) 1.8215(−3)

α = 1.0 8.3671(−3) 7.8929(−3) 1.6569(−1) 7.0951(−5)
3.3236(−2) 3.2914(−2) 8.1201(−1) 1.4789(−3)

For every value of α , the first and second rows of data correspond to the using of TPS

(m = 3) and MQ (c = 2) as radial basis function in the method, respectively.

Table 3. L2, L∞ and maximum absolute errors of the method for Example 1 at T = 2.

Maximum absolute error

Real part Imaginary part L2 L∞

β =−2 9.8533(−3) 1.1954(−2) 2.3592(−1) 1.4899(−4)
3.6143(−2) 3.2630(−2) 5.8452(−1) 1.5756(−3)

β =−1 6.9036(−3) 6.5710(−3) 1.4180(−1) 4.8942(−5)
3.3905(−2) 1.4138(−2) 4.7362(−1) 1.1779(−3)

β = 0 5.7760(−3) 5.1283(−3) 1.4211(−1) 4.0050(−5)
2.9742(−2) 9.0504(−3) 4.6109(−1) 9.2918(−4)

β = 1 6.7859(−3) 7.6311(−3) 1.6755(−1) 7.0883(−5)
3.3819(−2) 1.6740(−2) 5.2367(−1) 1.2886(−3)

β = 2 7.9725(−3) 1.2435(−2) 2.3986(−1) 1.6359(−4)
4.5367(−2) 3.0379(−2) 6.5392(−1) 2.3073(−3)

For every value of α , the first and second rows of data correspond to the using of TPS

(m = 3) and MQ (c = 2) as radial basis function in the method, respectively.

In the following two examples, we choose the initial condition in the following
form same as (Xu and Chang, 2011)

u(x,y, t = 0) = u0(x,y) = A0(x,y)eiS0(x,y), (x,y) ∈Ω, (29)

where A0(x,y) and S0(x,y) are known real functions.

Example 2. Zero initial phase data

A0(x,y) = e−2x2−2y2
, S0(x,y) = 0. (30)
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Figure 2: Plot of |U | for Example 1. β = 2.0, dt = 0.01, Nd = Nc = 31 and T = 2.

Figure 3: L2 and L∞ error of numerical solution for Nd = 31 vs. centers’ number. α = 0.2, β =
2.0, dt = 0.01 and T = 2.
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Figure 4: Max |U |2 for Example 2. γ =−0.2, −2, −6.

We take the parameters as ν = 1.0, α = 0.2, κ = 1.0, β = 1.0, dt = 0.01, Nd =
Nc = 31 and we use TPS radial basis function in our computations. With this initial
data when γ < 0 the ||U ||∞ decays to zero. As we can see in Figure 4, this decrease
is faster when γ is smaller. In Figure 5, the position density |U |2 at T = 5, 10 with
γ =−0.2 is plotted.

Example 3. Symmetric initial data with nonzero phase

A0(x,y) = e−2x2−2y2
, S0(x,y) =

1
ex+y + e−x−y . (31)

Figure 5: Plot of the position density |U |2 for example 2. α = 0.2, β = 1.0, dt = 0.01, Nd = Nc =
31.
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Figure 6: Plot of the position density |U |2 for Example 3. α = 0.5, β = 1.0, γ = 3, dt = 0.01, Nd =
Nc = 31.

In this example we choose the parameters as ν = 1.0, α = 0.5, κ = 1.0, β =
1.0, γ = 3, dt = 0.01, Nd = Nc = 31 and use TPS as radial basis function. Also,
we set the boundary conditions as zero. The plots of results for T = 5, 10 are given
in Figure 6. To see the influence of parameter β in the solution, we choose the
parameter β as −5, −2, 1, 5 and plot the results in Figure 7. The figures are good
comparable with the results of (Xu and Chang, 2011).

Example 4. Variable coefficient problem

Consider the following variable coefficient problem

ut −
i
2

(uxx +uyy)+ i|u|2u+ i(1− sin2(x)sin2(y))u = 0, (32)

where (x,y) ∈ (0,2π)× (0,2π) and 0 < t ≤ T . The exact solution of this problem
is (Wang, 2010)

u(x,y, t) = sin(x)sin(y)e−2ti. (33)

The difference between this problem and Ginzburg-Landau equation is that the
coefficient γ in Ginzburg-Landau equation is constant but in this problem it is a
function of x and y. The L2 and L∞ errors of the numerical solution and CPU time
are given in Table 4 for thin plate splines (TPS) with Nd = 31, Nc = 21, θ = 0.5
and dt = 0.01. The obtained results in this table confirm the good accuracy of
our method. Also, we plot the density of the solution |U | and the L∞ error of the
solution for 0 < t < 10 in Figure 8.
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Figure 7: Plot of the position density |U |2 for Example 3. α = 0.5, γ = 3, dt = 0.01, Nd = Nc = 31
and T = 5.

Table 4. L2, L∞ and maximum absolute error of the method for Example 4.

Maximum absolute error

Real part Imaginary part L2 L∞ CPU time

T = 1 8.9866(−5) 6.0484(−5) 1.7148(−3) 1.1514(−8) 7.3

T = 2 1.9430(−4) 1.3741(−4) 3.3789(−3) 5.6099(−8) 8.3

T = 3 9.0752(−5) 3.2916(−4) 4.9671(−3) 1.1658(−7) 9.2

T = 5 3.1717(−4) 4.3883(−4) 8.0458(−3) 2.9200(−7) 11.1

T = 10 9.5434(−4) 4.6216(−4) 1.5000(−2) 1.1165(−6) 16.0

5 The complex Ginzburg-Landau equation

In this section we will give a brief discussion about impression of the Ginzburg-
Landau equation and one of the most important applications of this equation.

The Ginzburg-Landau equation is obtained by minimization of the Ginzburg-Landau
free energy functional F{ψ,

−→
A } with respect to ψ and

−→
A

F{ψ,
−→
A }=

H2
c

4π

∫ [
−|ψ|2 +

1
2
|ψ|4 +

1
2
|(−i∇−−→A )ψ|2 +κ

2(
−→
h −−→H 0)2

]
dV, (34)
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Figure 8: (Left) The position density |U |, (Right) L∞ error of the solution for 0 < t < 10 for
Example 4.

where κ is the Ginzburg-Landau parameter given as a ratio of magnetic penetration
depth λ and the coherence length ξ , and H0 denotes the applied magnetic field(for
more information about parameters see (Milošević and Geurts, 2010)).

Every part of Equation (34) describes some physical property. The first part of
equation (34) is the expansion of the energy difference between the supercon-
ducting and the normal state for a homogeneous superconductor in the absence
of an applied magnetic field near the zero-field critical temperature Tc0. While,
the last term in Equation (34) describes the energy of the magnetic field of the
supercurrents, which measures the response of the superconductor to an external
field and is nothing else than the difference between the local and applied magnetic
fields (Milošević and Geurts, 2010).

The phenomenological Ginzburg-Landau theory is one of the most elegant and
powerful concepts in physics. Grossauer and Scherzer (Grossauer and Scherzer,
2003) proposed the Ginzburg-Landau equation for digital inpainting purposes.

Solutions of the real valued Ginzburg-Landau equation develop areas with values
±1, which are separated by phase transition regions. This property makes the real
valued Ginzburg-Landau equation a reasonable method for high quality inpainting
of binary images, i.e., level sets (Borzi, Grossauer, and Scherzer, 2005). In (Borzi,
Grossauer, and Scherzer, 2005; Grossauer and Scherzer, 2003) the authors used the
complex valued Ginzburg-Landau equation for inpainting of gray-valued and color
images.

As is said in (Borzi, Grossauer, and Scherzer, 2005), the solution of the Ginzburg-
Landau equation reveals high contrast in the inpainting domain, which makes it
particularly suited for inpainting purposes. However, the level lines of the solution
of the Ginzburg-Landau equation at the boundary of the inpainting domain might
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Figure 9: The hole in the cheekbone has been filled.

look kinky.

The Ginzburg-Landau equation can be generalized to any number of space di-
mension. Thus in particular it can be applied to inpaint three dimensional grey
valued image intensity functions (Grossauer and Scherzer, 2003). A more real-
istic application is shown in Figure 9 where Grossauer and Scherzer (Grossauer
and Scherzer, 2003) used their inpainting algorithm based on the solutions of the
Ginzburg-Landau equation to fill a hole in the left cheekbone. As is mentioned
in (Grossauer and Scherzer, 2003), using this kind of processing for medical data
is quite dangerous but could be useful for refinement of data obtained in heritage
recording projects.

6 Conclusion

In this article we presented a numerical simulation of the nonlinear 2D complex
Ginzburg-Landau equation using collocation and approximating the solution by
MQ and TPS radial basis functions (RBFs). To improve the accuracy on the bound-
ary we chose centers different from data points and added some centers out of the
boundary. Also, to avoid solving nonlinear system, the predictor-corrector scheme
is used. In the simulation of the plane wave solution and variable coefficient prob-
lem, high accuracy has been achieved by comparing the numerical solutions with
the exact ones in terms of the L2 and L∞ error norms. In the zero initial phase data
and symmetric initial data with nonzero phase cases results are good comparable
with the results of other researchers. The numerical results given in the previous
section demonstrate the efficiency and good accuracy of the new method.
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