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An hp Adaptive Strategy to Compute the Vibration Modes
of a Fluid-Solid Coupled System

M.G. Armentano1, C. Padra2, R. Rodríguez3, and M. Scheble2

Abstract: In this paper we propose an hp finite element method to solve a two-
dimensional fluid-structure vibration problem. This problem arises from the com-
putation of the vibration modes of a bundle of parallel tubes immersed in an in-
compressible fluid. We use a residual-type a posteriori error indicator to guide an
hp adaptive algorithm. Since the tubes are allowed to be different, the weak formu-
lation is a non-standard generalized eigenvalue problem. This feature is inherited
by the algebraic system obtained by the discretization process. We introduce an
algebraic technique to solve this particular spectral problem. We report several
numerical tests which allow us to assess the performance of the scheme.

Keywords: fluid structure interaction, vibration problem, hp finite element adap-
tive method

1 Introduction

In this work we consider an hp finite element adaptive scheme for solving a fluid-
structure interaction problem, which corresponds to computing the vibrations of a
bundle of parallel tubes immersed in an incompressible fluid contained in a rigid
cavity.

The numerical solution of spectral problems arising in fluid mechanics is a subject
of permanent interest; see, for instance, [Morand and Ohayon (1995); Conca, Plan-
chard, and Vanninathan (1995); Bermúdez, Durán, and Rodríguez (1997); Conca,
Osses, and Planchard (1998); Bermúdez, Rodríguez, and Santamarina (2000); Ar-
mentano, Padra, Rodríguez, and Scheble (2011)] and the references therein. In
particular, the topic considered in this paper has its roots in nuclear engineering
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problems such as fluid interaction in vapor generator and nuclear reactor cores and
has been studied by several authors [Planchard (1983); Planchard and Ibnou-Zahir
(1983); Conca, Osses, and Planchard (1998)]. These problems are related to pro-
tecting people and the environment. For instance, according to IAEA Safety Stan-
dards [IAEA (2005)], for the operational state, the fuel assembly in nuclear plants
should be designed so that they cannot be unacceptably affected by damage due to
vibration or fretting.

It is well known that adaptive procedures based on a posteriori error indicators play
nowadays a relevant role in the numerical solution of partial differential equations
and, in particular, in eigenvalue problems. There are several papers for the classical
h version of finite element methods concerning the development of efficient adap-
tive schemes for different eigenvalue problems, for example, [Durán, Gastaldi, and
Padra (1999); Larson (2000); Durán, Padra, and Rodríguez (2003); Armentano and
Padra (2008); Lovadina, Lyly, and Stenberg (2009)], and a few recent references
regarding the hp finite element solution of this kind of problems [Boffi, Costabel,
Dauge, and Demkowicz (2006); Boffi (2007); Azaiez, Deville, Gruber, and Mund
(2008)]. However, the bibliography about hp-adaptive schemes for spectral prob-
lems is scarce. One of the main difficulties in hp-adaptivity arises from the fact
that the accuracy can be improved in two different ways, either by subdividing ele-
ments or by increasing the polynomial degree. Thus, at each refinement step, it is
necessary to decide which of these two options must be chosen.

In a recent paper [Armentano, Padra, Rodríguez, and Scheble (2011)], we have
introduced and analyzed an hp finite element solver for the spectral problem de-
scribed above. We have proposed an adaptive scheme and applied it to different
cavities and shapes of tubes. However, in our error analysis and in all the exam-
ples considered in that article, the tubes have been assumed to be geometrically and
physically identical, namely, with the same shape, mass and stiffness. The reason
for this is that when the tubes are not all identical, the resulting spectral problem is
not any longer a standard generalized eigenvalue problem and it is not clear how it
could be efficiently solved.

In this paper we propose a strategy to solve this particular algebraic spectral prob-
lem. It consists in transforming it into an equivalent standard generalized eigen-
value problem which can be solved with classical eigensolvers. Moreover, such a
strategy allows us to extend the results from [Armentano, Padra, Rodríguez, and
Scheble (2011)] to derive an hp finite element adaptive method which can be ap-
plied to bundles of tubes with different shapes, rigidities and masses. Therefore,
we are able to perform a more complete numerical experimentation, which allows
us to assess the performance of the proposed adaptive scheme.

The rest of the paper is organized as follows. In Section 2 we recall the fluid-solid
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vibration problem and introduce the hp finite element method, the a posteriori error
estimator and the adaptive refinement strategy. In Section 3 we propose an algo-
rithm to solve the algebraic spectral problem. The algorithm can be efficiently com-
bined with the refinement scheme in such a way that it allows driving the adaptive
process by considering the actual singularities of the vibration modes. In Section 4
we report some numerical examples which allow assessing the performance of the
adaptive scheme. Finally, we end the paper drawing some conclusions in Section 5.

2 The spectral problem and the hp finite element adaptive scheme

We consider a coupled system composed of K elastically mounted parallel tubes
immersed in an incompressible fluid inside a rigid cavity. The tubes are assumed to
be rigid and only small oscillations of the fluid around the state of rest are allowed.
The problem is to determine the free vibration modes of the system.

Under reasonable assumptions [Conca, Planchard, and Vanninathan (1995)], this
problem can be posed in a two-dimensional (2D) framework, a planar transverse
section of the cavity being its domain. Tube number i is modeled as a harmonic
oscillator with stiffness ki and mass mi (both per unit length), whereas the fluid is
taken as perfectly incompressible with constant density ρ . Assuming an irrotational
flow, the velocity field V can be derived from a potential U : V (x, t) = ∇xU(x, t).
We call Ω the bounded 2D domain occupied by the fluid, Γ0 its outer boundary and
Γi the interfaces between tube number i and the fluid. (See Fig. 1.)
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Figure 1: Sketch of the 2D domain
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As is usual in vibration models, we seek harmonic solutions of the form U(x, t) =
u(x)eiωt . Then, the problem of computing the vibration modes of the coupled sys-
tem consists in finding the free vibration frequencies ω and the corresponding am-
plitudes u of the velocity potential, which has to satisfy the following equations (see
Section II.1 from [Conca, Planchard, and Vanninathan (1995)] for its derivation):

∆u = 0 in Ω, (1)
∂u
∂n

= 0 on Γ0, (2)(
ki−miω

2) ∂u
∂n

= ρω
2
(∫

Γi

un
)
·n on Γi, i = 1, . . . ,K, (3)

where n denotes the unit outer normal to the boundary of Ω.

Let V :=
{

v : Ω→ R :
∫

Ω

(
|v|2 + |∇v|2

)
< ∞

}
(i.e., the Sobolev space H1(Ω)).

Multiplying Eq. 1 by a test function v ∈ V , integrating by parts and using the
boundary conditions given by Eq. 2 and Eq. 3, we obtain the following variational
formulation of this problem, which holds true as long as ω2 6= ki

mi
for all i = 1, . . . ,K:

Find ω > 0 and a non-vanishing u ∈ V such that∫
Ω

∇u ·∇v =
K

∑
i=1

ρω2

ki−miω
2

(∫
Γi

un
)
·
(∫

Γi

vn
)

∀v ∈ V . (4)

We note that Eq. 4 is not a standard generalized eigenvalue problem, because there
is not a unique eigenvalue multiplying a bilinear form on the right-hand side, but
different rational functions of ω multiplying different bilinear forms for each tube.

The existence of solution to this problem has been analyzed in Section II.2.1 from
[Conca, Planchard, and Vanninathan (1995)]. It was proved in this reference that
Eq. 1 – Eq. 3 attains 2K vibration frequencies with corresponding linearly indepen-
dent eigenfunctions (recall that K is the number of tubes). Let us remark that this
finite number of modes is easy to predict, since each rigid tube is perfectly rigid and
has only two degrees of freedom, whereas the fluid, being incompressible, cannot
have vibration modes. We further assume that the 2K free vibration frequencies
satisfy ω2 6= ki

mi
for all i = 1, . . . ,K, so that the solutions to Eq. 1 – Eq. 3 are also

solutions to Eq. 4, which is the one we are going to discretize.

2.1 The hp finite element method

We introduce an hp finite element method to compute a solution of Eq. 4. Let Th
be a triangular mesh in Ω such that any two triangles share at most a vertex or an
edge. Let h stand for the mesh-size; namely, h := maxT∈Th hT , with hT being the
length of the largest edge of the triangle T . We assume that Th satisfies a minimum



An hp Adaptive Strategy for Fluid-Solid Interactions 363

angle condition or, equivalently, that there exists a constant σ > 0 such that hT
ρT
≤ σ ,

where ρT is the diameter of the largest circle contained in T . Further, we assume
for all meshes, that there is no triangle with vertices lying on two different Γi (this
will be useful for the procedure that we will propose in Section 3 to solve the
generalized eigenvalue problem).

We associate with each element T ∈ Th a (maximal) polynomial degree pT ∈ N.
We assume that the polynomial degrees of neighboring elements are comparable,
i.e., there exists a constant γ > 0 such that

γ
−1 pT ≤ pT ′ ≤ γ pT ∀T, T ′ ∈Th with T ∩T ′ 6= /0. (5)

We call p := {pT}T∈Th
the family of polynomial degrees for each triangle.

Throughout the paper, we will denote by C a generic positive constant, not neces-
sarily the same at each occurrence, which may depend on the mesh and the degree
of the polynomials only through the minimal angle and the parameter γ , respec-
tively.

We define the finite element space as follows:

V p
h := {v : Ω→ R continuous : v|T ∈PpT ∀T ∈Th} ⊂ V ,

where PpT denotes the set of polynomials of degree at most pT . Notice that the
definition of V p

h allows for different polynomial degrees on each edge of any tri-
angle. Therefore, the space

{
v|T : v ∈ V p

h

}
does not necessarily contain all the

polynomials of degree pT . However, there exists p′T ≤ pT such that

Pp′T ⊂
{

v|T : v ∈ V p
h

}
⊂PpT (6)

and pT /p′T ≤ γ because of the assumption settled by Eq. 5.

The discrete eigenvalue problem associated with Eq. 4 is the following:

Find ωh and a non-vanishing uh ∈ V p
h such that∫

Ω

∇uh ·∇vh =
K

∑
i=1

ρω2
h

ki−miω
2
h

(∫
Γi

uhn
)
·
(∫

Γi

vhn
)

∀vh ∈ V p
h . (7)

Note that we are implicitly assuming that ω2
h 6=

ki
mi

for all i = 1, . . . ,K.

For the same reasons as above, this is a non-standard algebraic eigenvalue problem,
too. We will show in Section 3 that this particular spectral problem can be reduced
to an equivalent well-posed generalized matrix eigenvalue problem, which can be
solved with standard techniques.

We have obtained in [Armentano, Padra, Rodríguez, and Scheble (2011)] the fol-
lowing a priori error estimates for the computed vibration frequencies ωh and the
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associated eigenfunctions uh (which correspond to the velocity potential), in the
case that all the tubes have the same mass and stiffness.

Theorem 2.1 There hold

|ω−ωh| ≤C
(

max
T∈Th

hT

pT

)2r

and
∫

Ω

|∇u−∇uh|2 ≤C
(

max
T∈Th

hT

pT

)2r

for all r < π

θ
, with θ being the largest reentrant angle of Ω.

2.2 A posteriori error estimates

In what follows we introduce an a posteriori indicator for the error of the proposed
hp finite element method.

For each inner edge `, we choose a unit normal vector n` and denote the two trian-
gles sharing this edge Tin and Tout, with n` pointing outwards Tin. We set[[

∂uh

∂n

]]
`

:= ∇
(

uh|Tout

)
·n`−∇

(
uh|Tin

)
·n`,

which corresponds to the jump of the normal derivative of uh across the edge `.
Notice that this value is independent of the chosen direction of the normal vector
n`.

Let us define, for each edge `,

J` :=



1
2

[[
∂uh

∂n

]]
`

, if ` is an inner edge,

∂uh

∂n
, if `⊂ Γ0,

∂uh

∂n
−

ρω2
h

ki−miω
2
h

(∫
Γi

uhn
)
·n, if `⊂ Γi, i = 1, . . . ,K.

For each element T ∈Th, we define the local error indicator ηT by

η
2
T :=

h2
T

p2
T
‖∆uh‖2

L2(T ) + ∑
` edge of T

|`|
p`
‖J`‖2

L2(`) , (8)

with p` := max{pT : T ⊃ `}, and the global error estimator ηΩ by

η
2
Ω := ∑

T∈Th

η
2
T .

The arguments used in [Armentano, Padra, Rodríguez, and Scheble (2011)] for a
similar problem, but with all the tubes having the same mass and stiffness, can be
adapted to our case leading to the following a posteriori error estimates.
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Theorem 2.2 i) There exists a positive constant C such that∫
Ω

|∇(u−uh)|2 ≤C
(
η

2
Ω +Λ1

)
,

where

Λ1 :=
K

∑
i=1

∣∣∣∣ ρω2

ki−miω
2

∫
Γi

un−
ρω2

h

ki−miω
2
h

∫
Γi

uhn
∣∣∣∣ ∣∣∣∣∫

Γi

(un−uhn)
∣∣∣∣ .

ii) For all δ > 0, there exists a positive constant Cδ such that for all T ∈ Th, if T
has only inner edges or edges on Γ0, then

η
2
T ≤Cδ p2+δ

T

∫
OT

|∇(u−uh)|2

whereas, if T has an edge lying on Γi, i = 1, . . . ,K, then

η
2
T ≤Cδ p2+δ

T

(∫
OT

|∇(u−uh)|2 +Λ2

)
,

where OT :=
⋃
{T ′ ∈Th : T ′ and T share an edge} and

Λ2 :=
h2

T

p2
T

∣∣∣∣ ρω2

ki−miω
2

(∫
Γi

un
)
−

ρω2
h

ki−miω
2
h

(∫
Γi

uhn
)∣∣∣∣2 .

This theorem yields the reliability of the error estimator ηΩ (up to the term Λ1)
and the efficiency of the error indicator ηT (up to the term Λ2, for edges lying on
the tubes). These two terms, Λ1 and Λ2, are very likely higher order. In fact, this
is proved in [Armentano, Padra, Rodríguez, and Scheble (2011)] in the case of
identical tubes. The proof relies on an a priori error estimate for

∣∣∫
Γi

(un−uhn)
∣∣,

which for identical tubes has been proved in Proposition 3.1 from that reference.
To the best of the authors’ knowledge, it is still an open question to prove it for
tubes with different physical parameters.

2.3 Adaptive refinement strategy

There are several strategies to determine which elements should be refined in an
h-finite element adaptive scheme. A usual one is the so-called mean value strategy
in which all the triangles T with ηT ≥ θηM are marked to be refined, where

η
2
M :=

1
#Th

∑
T∈Th

η
2
T
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(#Th denotes the number of elements of Th) and θ > 0 is a parameter which can
be arbitrarily chosen.

Our hp adaptive algorithm uses this strategy to mark the triangles to be refined,
with the additional consideration that, at each step, for each marked triangle, it has
to be decided whether to perform a p-refinement or an h-refinement. In the case
of p-refinement, the degree pT of the marked element is increased by one and the
triangle is kept fixed. On the other hand, in the case of h-refinement, the marked
element T is subdivided into four triangles, T =

⋃4
j=1 T ′j , and the degree is kept

fixed in the new elements, i.e., pT ′j = pT . Moreover, the conformity of the mesh is
preserved by means of a longest edge subdivision strategy on the unrefined neigh-
boring triangles [Verfürth (1996)]. Because of this, it happens that some elements
not marked for h-refinement, are subdivided anyway into two or three triangles.
Thus, in general, we will have that T =

⋃k
j=1 T ′j with k = 2, 3 or 4.

In order to decide whether to apply a p or an h refinement to a particular marked tri-
angle, we follow the approach proposed in [Melenk and Wohlmuth (2001)], which
is based on the comparison of the current local estimated error with a prediction
of this error obtained from the preceding step. If at the preceding step there was
an h refinement leading to T =

⋃k
j=1 T ′j , k = 2,3,4, then the prediction indicator is

defined as follows:

(
η

pred
T ′j

)2
:= γh

(∣∣Tj
∣∣

|T |

)pT +1

η
2
T ,

where γh is a control parameter that must be determined in advance. On the other
hand, if at the preceding step there was a p refinement on the element T , then the
prediction indicator is defined by(

η
pred
T

)2
:= γpη

2
T ,

where γp ∈ (0,1) is a reduction factor also chosen in advance. Finally, for those
elements neither p nor h refined at the preceding step,(

η
pred
T

)2
:= γn

(
η

pred
T

)2
,

where γn is another parameter chosen in advance, too. In all cases, once η
pred
T

is computed, we proceed to an h refinement of the marked triangle T when the
error indicator ηT is larger than the prediction indicator η

pred
T and to a p refinement

otherwise.

Altogether, we arrive at the algorithm shown in Tab. 1.
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Table 1: Refinement algorithm

If η2
T ≥ θη2

M then

if η2
T ≥

(
η

pred
T

)2
then

subdivide T into 4 triangles T ′j , 1≤ j ≤ 4
longest edge strategy to maintain mesh conformity
pTj := pT(

η
pred
T ′j

)2

:= γh

(
|Tj|
|T |

)pT +1

η2
T

else
pT := pT +1(

η
pred
T

)2
:= γpη2

T

end
else (

η
pred
T

)2
:= γn

(
η

pred
T

)2

end

We set η
pred
T := 0 for all elements T on the initial triangulation, so that the first step

is a purely h-refinement on all marked elements.

3 Solution of the non standard matrix eigenvalue problem

In this section we analyze some numerical aspects concerning the solution of the
non-standard eigenvalue problem given by Eq. 7.

First notice that the solutions of both, the continuous problem (Eq. 4) and the dis-
crete one (Eq. 7), are determined up to an additive constant. In fact, it is simple
to check that if u is a solution of Eq. 4, then u + c is also a solution of the same
problem for any constant c and the same vibration frequency ω . This is quite rea-
sonable, since the physical quantity is not u but ∇u. Exactly the same happens with
Eq. 7.

To fix uniquely a solution of Eq. 7, it is enough to set its value to zero at a given
node of the mesh. With this aim, we choose an arbitrary fixed node P0 ∈ Γ0 (the
same for all meshes in the adaptive process) and restrict the finite element space to
the functions in V p

h which vanish at that node P0.

We denote by N the set of nodes of the finite element space excluding P0 and
decompose it as follows: N = N1∪N2, with N1 =

⋃K
i=1 N (i), where N (i) is the

subset of nodes lying on Γi, 1≤ i≤ K, and N2 is the subset of the remaining ones
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(i.e., the nodes lying either in Ω or on Γ0).

We denote by Mi the number of nodes of N (i) (i = 1, . . . ,K) and by N j the number
of nodes on N j ( j = 1,2). Notice that N1 = M1 + · · ·+ MK is the total number of
nodes lying on all the interfaces Γi, whereas N2 is the number of the remaining
nodes minus one (P0). Consequently, for a fine mesh, N1 should be significantly
smaller than N2.

Let

u1 :=
(
u(Pi)

)
Pi∈N1

∈ RN1 and u2 :=
(
u(Pi)

)
Pi∈N2

∈ RN2 .

The matrix form of the discrete problem given by Eq. 7 reads as follows:(
A11 A12
A21 A22

)(
u1
u2

)
=
(

ΛB11 0
0 0

)(
u1
u2

)
, (9)

where

Ars :=
(∫

Ω

∇βi ·∇β j

)
Pi∈Nr,Pj∈Ns

, r,s = 1,2,

with {βi}Pi∈N being the nodal basis (i.e., βi(Pj) = δi j), Λ is a diagonal matrix given
by

Λ :=

λ1IM1×M1

. . .
λKIMK×MK

 , with λi :=
ρω2

h

ki−miω
2
h
, i = 1, . . . ,K,

(10)

(IMi×Mi denotes the Mi×Mi identity matrix), and

B11 :=

B(1)

. . .
B(K)

 ,

with B(l) ∈ RMl×Ml defined by

B(l) :=
((∫

Γl

βin
)
·
(∫

Γl

β jn
))

Pi,Pj∈N (l)
, l = 1, · · · ,K.

Our goal is to transform Eq. 9 into a standard symmetric generalized eigenvalue
problem of size 2K (which is known to be the number of solutions of this problem).
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We observe that the matrix on the left hand side of Eq. 9 is symmetric and positive
definite. Then, since the submatrix A22 is invertible (indeed, symmetric and positive
definite, too), by eliminating u2 from Eq. 9 we arrive at

Cu1 = ΛB11u1, (11)

with C := A11−A12A−1
22 A21.

This problem is equivalent to Eq. 9. Notice that although the matrix C is not sparse,
its dimension is N1 and, hence, as stated above, significantly smaller than the size
N1 +N2 of Eq. 9. Moreover, in actual computations, the matrix A−1

22 is not explicitly
computed. In fact, the columns of A−1

22 A21 are obtained by solving N1 linear sys-
tems with the same matrix A22 ∈ RN2×N2 , which is sparse, symmetric and positive
definite.

As a second step, we compute a complete diagonalization of the matrix B11. As
far as the mesh has no triangles with vertices lying on two different Γi, this matrix
is block diagonal with K full diagonal blocks, the dimension of each one being
Mi. Thus, any standard eigensolver for symmetric matrices (QR, for instance) can
be conveniently used for each diagonal block B(i) and provide us with orthogonal
matrices Q(i) such that

Q(i)t
B(i)Q(i) = D(i) := diag

{
µ

(i)
1 ,µ

(i)
2 ,0, . . . ,0

}
,

with µ
(i)
1 6= 0 and µ

(i)
2 6= 0, 1≤ i≤ K.

Thus, if we define

Q :=

Q(1)

. . .
Q(K)

 ,

we have that

QtB11Q = D,

with

D =

D(1)

. . .
D(K)

 .

Let v := Qtu1 and S := QtCQ. Since Qt
ΛQ = Λ (because Q(i)t

(λiI)Q(i) = λiI),
Eq. 11 is equivalent to the following one:

Sv = ΛDv. (12)
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Matrix D is diagonal with only 2K non-zero diagonal entries:

µ
(1)
1 ,µ

(1)
2 , . . . ,µ

(K)
1 ,µ

(K)
2 .

Let P be a permutation matrix such that

D̃ := PtDP =
(

D̃11 0
0 0

)
, with D̃11 := diag

{
µ

(1)
1 ,µ

(1)
2 , . . . ,µ

(K)
1 ,µ

(K)
2

}
.

Then, Eq. 12 is equivalent to

S̃ṽ = Λ̃D̃ṽ, (13)

where S̃ := PtSP, ṽ := Ptv, Λ̃ := Pt
ΛP and D̃ is as defined above.

Since Λ is diagonal, Λ̃ is diagonal too and it can be decomposed in blocks as fol-
lows:

Λ̃ =
(

Λ̃11 0
0 Λ̃22

)
, with Λ̃11 := diag{λ1,λ1, . . . ,λK ,λK} .

This leads to the following block decomposition of Eq. 13:(
S̃11 S̃12
S̃21 S̃22

)(
ṽ1
ṽ2

)
=
(

Λ̃11 0
0 Λ̃22

)(
D̃11 0
0 0

)(
ṽ1
ṽ2

)
=
(

Λ̃11D̃11 0
0 0

)(
ṽ1
ṽ2

)
.

Now, by eliminating ṽ2 we arrive at(
S̃11− S̃12S̃−1

22 S̃21

)
ṽ1 = Λ̃11D̃11ṽ1. (14)

Let T := S̃11 − S̃12S̃−1
22 S̃21 (notice that T is a symmetric matrix). Since Λ̃

−1
11 =

1
ρω2

h
K− 1

ρ
M, with

K := diag{k1,k1, . . . ,kK ,kK} and M := diag{m1,m1, . . . ,mK ,mK} ,

an easy calculation shows that Eq. 14 is equivalent to the following one:

KT ṽ1 = ω
2
h
(
ρD̃11 +MT

)
ṽ1. (15)

Finally, defining w := T ṽ1, we can rewrite Eq. 15 as follows:

D̃−1
11 Kw = ω

2
h

(
ρT−1 + D̃−1

11 M
)

w,

which is a generalized eigenvalue problem of size 2K, with both matrices symmet-
ric and positive definite (moreover, the matrix in the left hand side is diagonal).
Thus, this is a well posed (and very small) problem that can be efficiently solved
by any standard eigensolver.
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4 Numerical experiments

In this section we present some numerical results which allow us to assess the
performance of the proposed hp adaptive refinement strategy.

First of all, let us remark that the optimal meshes for computing different eigenpairs
do not necessarily coincide. In fact, the refinement level of these optimal meshes
on different parts of the domain depend on the localization and strength of the
singularities of the corresponding eigenfunctions, which is not the same for all of
them. Thus, the adaptive scheme has to be used separately for each eigenpair.

The color palette, used in the figures, indicates the polynomial degree of each ele-
ment.

4.1 Test 1: L-shaped cavity with different shape tubes

In this first test we have considered two octagonal tubes and a quadrilateral one
within an L-shaped cavity. The domain, the position of the tubes and the initial
mesh, with quadratic finite elements in all triangles, is shown in Fig. 2. The fluid
density ρ is set to one, whereas the physical parameters mi and ki are the same
for all tubes and also equal to one. Note that, with these parameters, λi = λ for
i = 1,2,3 (cf. Eq. 10). The second vibration mode is selected to perform the
adaptive process.
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Figure 2: Test 1. Domain and initial mesh for the L-shaped cavity with different
shape tubes.

In this numerical example the control parameters appearing in the algorithm, have
been chosen as follows: θ = 0.5, γh = 20, γp = 0.4 and γn = 2.5. In this case, the
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fluid domain has reentrant angles at the vertices of the tubes, and at the reentrant
vertex of the external boundary, producing singularities which compete against
each other in the refinement process.

Fig. 3 shows the meshes obtained with the adaptive hp algorithm corresponding to
step 12 and 24 of the refinement procedure.
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Figure 3: Test 1. Refined meshes: step 12 (left) and 24 (right)

The behavior of the adaptive algorithm in the neighborhood of the different singu-
larities appearing in this example can be appreciated from Fig. 4 to Fig. 6. These
figures show sequences of zooms of the mesh at step 24 around different singular
points: one of the reentrant angles of the bottom octagon in Fig. 4, the top right
corner of the square in Fig. 5 and the reentrant vertex of the rigid cavity in Fig. 6.
The last zoom enlarges the original one 104 times in Fig. 4, 106 times in Fig. 5
and 105 times in Fig. 6. Therefore, we observe from these figures that the smallest
elements near the vertex in Fig. 6 are approximately ten times larger than those in
Fig. 5, but ten times smaller than those in Fig. 4. This indicates that, in this case,
the dominant singularity appears at the vertex of the square. Moreover, in all cases
we observe the typical hp adaptive behavior: the closer to the singularity the more
dominant the h-refinement is and in the elements nearest the singularity there is no
p-refinement at all.
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Figure 4: Test 1. Angle at a corner of an octagonal tube. Refined mesh: step 24.
Successive zooms
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Figure 5: Test 1. Angle at a corner of the square tube. Refined mesh: step 24.
Successive zooms
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Figure 6: Test 1. Reentrant angle of the L-shaped cavity. Refined mesh: step 24.
Successive zooms

Fig. 7 shows the velocity potential obtained at the last step and the fluid velocity
field computed from this potential. The arrows at the center of each tube show the
tubes velocities.

−0.107912

−0.0935236

−0.0791354

−0.0647471

−0.0503589

−0.0359706

−0.0215824

−0.00719413

0.00719413

0.0215824

0.0359706

0.0503589

0.0647471

0.0791354

0.0935236

0.107912

Figure 7: Test 1. Velocity potential (left) and fluid velocity field (right)
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It is known that a proper combination of h and p refinement allows to obtain an
exponential rate of convergence in terms of a fractional power of the number N
of degrees of freedom in the finite element approximation. Fig. 8 shows a plot of
log(ηΩ) versus 3

√
N, which shows that the estimated error behaves asymptotically

in this test as follows:

ηΩ ≈ κ1e−α
3√N .
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Figure 8: Test 1. ηΩ (logarithmic scale) versus 3
√

N

No analytical solution is available in this case to check if the actual error also
attains an exponential rate of convergence. To provide some numerical evidence of
such a behavior, we have estimated the error of the computed eigenvalues by using
as ‘exact’ a more accurate approximation obtained by an extrapolation procedure.
To do this, we have used the fact that the computed eigenvalues are expected to
converge with a double order and we have determined the parameters λ , κ2 and α

in the model

λh = λ +κ2e−2α
3√N ,

by means of a weighted least-squares fitting. The weights have been chosen so that
the more accurate the computed values λh (i.e., the larger the number of degrees
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of freedom of the used mesh), the more significant the role in the fitting. Since we
found that the residuals of these meshes are approximately proportional to e−2α

3√N ,
we chose the weights equal to e4α

3√N . Thus, we have obtained a fitted value λ =
0.136286733762653, which we have used to plot log(λh−λ ) versus 3

√
N. This plot

is shown in Fig. 9, where a linear dependence can be clearly seen for sufficiently
large values of N.
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Figure 9: Test 1. λh−λ (logarithmic scale) versus 3
√

N

Note that the computed values of α in both fittings are quite close: α = 0.2405
in the former (cf. Fig. 8) and α = 0.2399 in the latter (cf. Fig. 9). This excellent
agreement provides a sound numerical evidence of the fact that the error estimate
behaves asymptotically as the actual error.

On the other hand, the convergence behavior shown in Fig. 9 is coherent with the
theoretically expected exponential decay of the error with respect to the number of
degrees of freedom. In fact, the obtained convergence rate exp(−α

3
√

N) is typical
for the hp version of the finite element method for source elliptic problems with
piecewise analytic data in the presence of corner singularities [Babuška and Guo
(1988)]. Let us remark that this convergence rate does not agree with what was re-
ported in our previous paper [Armentano, Padra, Rodríguez, and Scheble (2011)],
where an apparently improved rate exp(−α

√
N)was observed for a similar experi-

ment with identical tubes.
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4.2 Test 2: Bundle of circular tubes with different physical parameters within
a quadrilateral cavity

As a second test, we have computed all the vibration modes of a system closer
to the actual applications: four circular tubes with different physical parameters
immersed in a fluid occupying a quadrilateral cavity. The position of the tubes and
the initial mesh, with quadratic finite element in all triangles, is shown in Fig. 10.

 4  

 5  

 2  

 3  

Figure 10: Test 2. Domain and initial mesh of the square cavity with four tubes.

In this case, the fluid density has been taken ρ = 1 and the physical parameters of
the tubes as follows: mass mi = 1, i = 1, . . . ,4 and stiffness k1 = k4 = 1.05 and
k2 = k3 = 1. The control parameters appearing in the algorithm, have been chosen
as follows: θ = 0.75, γh = 8, γp = 0.2 and γn = 1.

We report in Tab. 2 the eight frequencies obtained after 8 steps of refinement.

Table 2: Test 2. Angular vibration frequencies

Mode ω

1 0.9619
2 0.9627
3 0.9653
4 0.9661
5 0.9895
6 0.9921
7 0.9930
8 1.0026
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The sequence of meshes obtained during the adaptive process not only depends on
the geometry, but also on the physical parameters of the tubes. This is clear from
the fact that different rigidities and masses can significantly change the motion of
tubes, and therefore, the type of singularities present at their boundaries.

Fig. 11 shows the meshes obtained after 8 steps of the hp-adaptive scheme for
a couple of vibration modes. Let us recall that each vibration mode has to be
computed separately. It can be seen from this figure that the corresponding optimal
hp meshes actually do not coincide.
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Figure 11: Test 2. Refined meshes at step 8: first mode (left) and sixth mode (right)

Fig. 12 shows the velocity potential computed with the final mesh of the adaptive
process for the same vibrations modes. Fig. 13 shows the corresponding fluid ve-
locity fields. The arrows at the center of each tube show the velocities of the tubes
motion.
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Figure 12: Test 2. Velocity potential for the first mode (left) and the sixth mode
(right)
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Figure 13: Test 2. Fluid velocity field for the first mode (left) and the sixth mode
(right)

5 Conclusions

An hp finite element method has been proposed to compute the free vibration
modes of a bundle of different tubes immersed in an incompressible fluid contained
in a rigid cavity. This leads to a non-standard eigenvalue problem, when the tubes
are not all identical.

We have introduced an algebraic procedure to transform the resulting eigenvalue
problem into a small-size standard one, which can be solved with classical eigen-
solvers.

We have proposed an a posteriori error indicator and an adaptive algorithm based
on this indicator, which allows refining some of the elements and increasing the
polynomial degree in others at each step.

The reported numerical experiments for different cavities and different shape, mass
and stiffness of tubes show the good performance of the error indicator and of the
adaptive scheme. The sequence of meshes obtained during the adaptive process
not only depends on the geometry, but also on the physical parameters of the tubes.
Numerical evidence of the theoretically expected exponential convergence is also
reported.
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