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A Globally Optimal Iterative Algorithm to Solve an
Ill-Posed Linear System

Chein-Shan Liu1

Abstract: An iterative algorithm based on the critical descent vector is pro-
posed to solve an ill-posed linear system: Bx = b. We define a future cone in the
Minkowski space as an invariant manifold, wherein the discrete dynamics evolves.
A critical value αc in the critical descent vector u = αcr + BTr is derived, which
renders the largest convergence rate as to be the globally optimal iterative al-
gorithm (GOIA) among all the numerically iterative algorithms with the descent
vector having the form u = αr+BTr to solve the ill-posed linear problems. Some
numerical examples are used to reveal the superior performance of the GOIA.

Keywords: Ill-posed linear system, Globally optimal iterative algorithm (GOIA),
Future cone, Invariant-manifold

1 Introduction

In this paper we numerically solve

Bx = b, (1)

where x ∈ Rn is an unknown vector, to be determined from a given coefficient ma-
trix B ∈ Rn×n and the input b ∈ Rn. Eq. (1) might be an ill-posed system if the
condition number cond(B) of B is quite large. We transform Eq. (1) to a system
of nonlinear ODEs for x(t) where t is a time-like variable, and then derive a glob-
ally optimal iterative algorithm (GOIA), by solving those nonlinear ODEs for x(t)
using the forward Euler scheme.

Instead of Eq. (1), we can solve a normal linear system:

Cx = b1, (2)
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where

b1 = BTb,

C = BTB > 0. (3)

Liu (2011a, 2012a) has derived the following relaxed steepest descent method
(RSDM) to solve Eq. (2):
(i) Give an initial x0.
(ii) For k = 0,1,2, . . ., we repeat the following computations:

Rk = Cxk−b1, (4)

xk+1 = xk− (1− γ)
‖Rk‖2

RT
k CRk

Rk. (5)

If xk+1 converges according to a given stopping criterion ‖Rk+1‖ < ε , then stop;
otherwise, go to step (ii). A relaxation parameter γ appeared in Eq. (5) can enhance
the convergence speed, of which the relaxation parameter γ is determined by the
user.

There are some methods that converge significantly faster than the steepest de-
scent method (SDM); unlike the conjugate gradient method (CGM), they insist their
search directions to be the gradient vector at each iteration [Barzilai and Borwein
(1988); Friedlander, Martinez, Molina and Raydan (1999); Raydan and Svaiter
(2002); Dai and Yuan (2003); Dai, Hager, Schittkowsky and Zhang (2006); As-
cher, van den Doel, Hunag and Svaiter (2009); Liu (2011a, 2012a)].

The SDM performs poorly, yielding iteration counts that grow linearly with cond(C)
[Akaike (1959); Forsythe (1968); Nocedal, Sartenar and Zhu (2002)]. The slow-
ness of SDM has to do with the choice of the steepest descent direction as well as
the steplength. Liu and Atluri (2011) have explored a variant of the SDM by devel-
oping an optimal iterative algorithm driven by an optimal descent vector to solve
Eq. (1). The resulting scheme [OIA/ODV] is given as follows:
(i) Select 0≤ γ < 1, and give an initial x0.
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(ii) For k = 0,1,2 . . ., we repeat the following computations:

rk = Bxk−b,

vk
1 = Ark,

vk
2 = Brk,

αk =
[vk

1,rk,vk
2] ·vk

1

[vk
2,rk,vk

1] ·vk
2
, (6)

uk = αkrk +BTrk,

vk = vk
1 +αkvk

2,

xk+1 = xk− (1− γ)
rk ·vk

‖vk‖2 uk. (7)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii). In above A := BBT, and the following Jordan algebra for
vectors in n-dimension:

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn (8)

is developed by Liu (2000).

We will modify the descent direction as well as the steplength from a theoretical
foundation of future cone, and the concept of critical descent vector. The remain-
ing parts of this paper are arranged as follows. In Section 2 we start from a future
cone in the Minkowski space to derive a system of nonlinear ODEs for the numeri-
cal solution of Eq. (1). Then, a genuine dynamics on the future cone is constructed
in Section 3, resulting in a globally optimal iterative algorithm. The numerical ex-
amples are given in Section 4 to display some advantages of the newly developed
iterative algorithm of GOIA. Finally, the conclusions are drawn in Section 5.

2 A future cone in the Minkowski space

For system (1), which is expressed in terms of the residual vector:

r = Bx−b (9)

with r = 0 in the final solution, we can formulate a scalar function:

h(x, t) =
1
2

Q(t)‖r(x)‖2− 1
2
‖r0‖2 = 0, (10)

where we let x be a function of a time-like variable t, with initial values x(0) = x0
and r0 = r(x0), and Q(t) > 0 is a monotonically increasing function of t. In terms
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of

X =

[ r
‖r0‖

1√
Q(t)

]
, (11)

Eq. (10) represents a positive cone:

XTgX = 0 (12)

in the Minkowski space Mn+1, endowed with an indefinite Minkowski metric ten-
sor:

g =
[

In 0n×1
01×n −1

]
, (13)

where In is the n×n identity matrix. Because the last component 1/
√

Q(t) of X is
positive, the cone in Eq. (12) is a future cone [Liu (2001)] as shown in Fig. 1.

-

6

�

r

‖r0‖

1√
Q(t)

Figure 1: The construction of cone in the Minkowski space for solving ill-posed
linear system signifies a conceptual breakthrough.

Figure 1: The construction of cone in the Minkowski space for solving ill-posed
linear system signifies a conceptual breakthrough.
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When Q > 0, the manifold defined by Eq. (10) is continuous and differentiable, and
thus as a consequence of the consistency condition, we have

1
2

Q̇(t)‖r(x)‖2 +Q(t)R · ẋ = 0, (14)

which is obtained by taking the differential of Eq. (10) with respect to t and con-
sidering x = x(t) and h(x, t) = 0 for all t. Corresponding to r in Eq. (9),

R := BTr (15)

is the steepest descent vector.

We suppose that the evolution of x is driven by a vector u:

ẋ = λu, (16)

where

u = αr+R (17)

is a suitable combination of the weighted residual vector αr and the steepest de-
scent vector R. Note that u is not a vector along the normal to the hyper-surface
h(x, t) = 0, and instead of it is a non-normal descent vector.

Inserting Eq. (16) into Eq. (14) we can derive a nonlinear ODEs system:

ẋ =−q(t)
‖r‖2

rTv
u, (18)

where

A := BBT, (19)

v := Bu = v1 +αv2 = Ar+αBr, (20)

q(t) :=
Q̇(t)

2Q(t)
. (21)

Hence, in our algorithm, if Q(t) can be guaranteed to be a monotonically increas-
ing function of t, we have an absolutely convergent property in solving the linear
equations system (1):

‖r(x)‖2 =
‖r0‖2

Q(t)
. (22)

Thus, we can observe that the path of X gradually moves down to the vertex point
along the cone defined by Eq. (12) as schematically shown in Fig. 1.
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3 Dynamics on the future cone

3.1 Discretizing and keeping x on the manifold

Now we discretize the continuous dynamics in Eq. (18) into a discrete dynamics by
applying the forward Euler scheme:

x(t +∆t) = x(t)−β
‖r‖2

rTv
u, (23)

where

β = q(t)∆t (24)

is the stepsize. Correspondingly, u is a search direction endowed with a steplength
β‖r‖2/(rTv).
In order to keep x on the manifold (22) we can consider the evolution of r along
the path x(t) by

ṙ = Bẋ =−q(t)
‖r‖2

rTv
v. (25)

Similarly we use the forward Euler scheme to integrate Eq. (25), obtaining

r(t +∆t) = r(t)−β
‖r‖2

rTv
v, (26)

from which by taking the square-norms of both sides and using Eq. (22) we can
obtain

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖r‖2

(rTv)2 ‖v‖
2. (27)

Thus, dividing both sides by C/Q(t) leads to

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (28)

where

a0 :=
‖r‖2‖v‖2

(rTv)2 ≥ 1. (29)

As a result h(x, t) = 0, t ∈ {0,1,2, . . .} remains to be an invariant-manifold in the
Minkowski space for the discrete time dynamical system h(x(t), t) = 0 on the fu-
ture cone.
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3.2 A discrete dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖r(x(t +∆t))‖2

‖r(x(t))‖2 . (30)

From Eqs. (28) and (30) it follows that

a0β
2−2β +1− s = 0. (31)

From Eq. (31), we can take the solution of β to be

β =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (32)

Let

1− (1− s)a0 = γ
2 ≥ 0, (33)

s = 1− 1− γ2

a0
, (34)

such that the condition 1−(1−s)a0≥ 0 in Eq. (32) is automatically satisfied. Thus,
from Eqs. (32) and (33) it follows that

β =
1− γ

a0
, (35)

and from Eqs. (23) and (29) we can further derive

x(t +∆t) = x(t)− (1− γ)
rT(t)v(t)
‖v(t)‖2 u(t), (36)

where

0≤ γ < 1 (37)

is a relaxation parameter chosen by the user.

Under the above conditions (29) and (37), from Eqs. (30) and (34) we can prove
that the new algorithm satisfies

Convergence Rate :=
‖r(t)‖
‖r(t +∆t)‖

=
1√
s

> 1. (38)

The property in Eq. (38) is very important, since it guarantees the new algorithm to
be absolutely convergent to the true solution. Smaller s implies Faster convergence
speed.
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3.3 A critical descent vector u = αcr+R

Up to here we not yet specify how to choose the parameter α in the algorithm (36).
Previously, Liu and Atluri (2011) derived the optimal α by letting ∂ s/∂α = 0 (or
equivalently, ∂a0/∂α = 0). Here, we try another approach and attempt to develop
a more powerful selection of α; however, before that we give a remark about the
best choice of the descent vector u.

Remark 1: The best choice of u would be u = B−1r, which by Eq. (20) leads to
v = r, and by Eq. (29) further leads to the smallest value of a0 = 1. If u = B−1r is
realizable, we have s = γ2 by Eq. (34), and thus from Eq. (38) we have an infinite
convergence rate by letting γ = 0. In this regard B−1r is the best descent vector
for a numerical algorithm used to solve Eq. (1). However, if one has such the best
descent vector u = B−1r at hand, Eq. (1) is already solved, and one no longer needs
any numerical method. Obviously, in order to use u = B−1r we have faced the same
difficulty to find B−1 as that to find the solution of x in Eq. (1) by x = B−1b.

Below, we introduce a new method to approximate the best descent vector accord-
ing to the following equivalent relation:

a0 = 1≡ u = B−1r. (39)

Motivated by the above remark about the best descent vector, which is however
very difficult to be realized in practice, we can slightly relax the requirement of
the value of a0 to be 1, which means that we can relax the choice of u = B−1r by
Eq. (39). Instead of, we can determine a suitable α such that a0 defined by Eq. (29)
is given by

a0 :=
‖r‖2‖v‖2

(rTv)2 = as. (40)

When as is near to 1, the convergence speed is very fast. Liu (2012b) first used the
above idea to develop some effective numerical algorithms to solve the ill-posed
linear problems. Inserting Eq. (20) for v into the above equation, and through some
elementary operations we can derive a quadratic equation to solve α:

e1α
2 + e2α + e3 = 0, (41)

where

e1 := ‖r‖2‖v2‖2−as(r ·v2)2, (42)

e2 := 2‖r‖2v1 ·v2−2asr ·v1r ·v2, (43)

e3 := ‖r‖2‖v1‖2−as(r ·v1)2. (44)
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If the following condition is satisfied

D := e2
2−4e1e3 ≥ 0, (45)

then a real solution of α is found to be

α =
√

D− e2

2e1
. (46)

Inserting Eqs. (42)-(44) into the critical equation:

D = e2
2−4e1e3 = 0, (47)

we can derive an algebraic equation to determine which as is the lowest bound of
Eq. (45). This lowest bound is a critical value denoted by ac, and for all as ≥ ac it
can satisfy Eq. (45). From Eq. (47) through some operations, the critical value of
ac can be solved as:

ac =
‖r‖2[‖v1‖2‖v2‖2− (v1 ·v2)2]

‖[v1,r,v2]‖2 . (48)

Then insert it for as into Eqs. (42) and (43) we can obtain a critical value αc for α

by Eq. (46):

αc =
acr ·v1r ·v2−‖r‖2v1 ·v2

‖r‖2‖v2‖2−ac(r ·v2)2 , (49)

where D = 0 was used in view of Eq. (47). Hence,

u = αcr+R (50)

is a critical descent vector. Due to its criticality, if one attempts to find a better
descent vector than that in Eq. (50), there would be no real solution of α , and
hence no real descent vector of u.

3.4 The globally optimal iterative algorithm

According to the above theory we can derive a globally optimal iterative algorithm
(GOIA) to solve Eq. (1) by
(i) Select 0≤ γ < 1, and give an initial x0.
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(ii) For k = 0,1,2 . . ., we repeat the following computations:

rk = Bxk−b,

vk
1 = Ark,

vk
2 = Brk,

ak
c =
‖vk

1‖2‖vk
2‖2− (vk

1 ·vk
2)

2

‖[vk
1,rk,vk

2]‖2
,

α
k
c =

ak
crk ·vk

1rk ·vk
2−vk

1 ·vk
2

‖vk
2‖2−ak

c(rk ·vk
2)2

,

uk = α
k
c rk +BTrk,

vk = vk
1 +α

k
c vk

2,

xk+1 = xk− (1− γ)
rk ·vk

‖vk‖2 uk. (51)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii). This algorithm is better than the algorithm OIA/ODV
given by Eq. (7). In the above, a common factor ‖rk‖2 in ak

c and αk
c is cancelled

out.

4 Numerical examples

In order to assess the performance of the newly developed method of the globally
optimal iterative algorithm (GOIA), let us investigate the following examples.

4.1 Example 1

When we apply a central difference scheme to the following two-point boundary
value problem:

−u′′(x) = f (x), 0 < x < 1,

u(0) = a, u(1) = b, (52)

we can derive a linear equations system

Bu =



2 −1
−1 2 −1

· · ·
· · ·
· · ·
−1 2




u1
u2
...

un

=


(∆x)2 f (∆x)+a
(∆x)2 f (2∆x)

...
(∆x)2 f ((n−1)∆x)
(∆x)2 f (n∆x)+b

 , (53)
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where ∆x = 1/(n + 1) is the spatial length, and ui = u(i∆x), i = 1, . . . ,n, are un-
known values of u(x) at the grid points xi = i∆x. u0 = a and un+1 = b are the given
boundary conditions.

In this numerical test we fix n = 200 and thus the condition number of B is 16210.7.
Let us consider the boundary value problem in Eq. (52) with f (x) = sinπx. The
exact solution is

u(x) = a+(b−a)x+
1

π2 sinπx, (54)

where we fix a = 1 and b = 2.

A relative random noise with intensity σ = 0.01 is added into the data on the right-
hand side of Eq. (53). Under a moderate convergence criterion with ε = 10−7, we
find that the CGM converges with 1332 iterations as shown in Fig. 2(a) by the solid
line, and the maximum error as shown in Fig. 2(b) is 3.13×10−5. Under the same
convergence criterion we find that the GOIA with γ = 0.25 converges more faster
with 1121 iterations as shown in Fig. 2(a) by the dashed line, and the maximum
error as shown in Fig. 2(b) is 1.15× 10−5. The present GOIA is better than the
CGM for a mildly ill-conditioned system.

4.2 Example 2

In order to compare the GOIA with the OIA/ODV [ Liu and Atluri (2011)], we
solve the following Laplace equation:

uxx +uyy = 0, 0 < x < 1, 0 < y < 1,

u(x,y) = sinxcoshy. (55)

The boundary conditions can be derived from the exact solution. Under a finite-
difference discretization with ∆x = ∆y = 1/16 and under the same convergence cri-
terion ε = 10−6, we compare the residual errors in Fig. 3(a), where the OIA/ODV
with γ = 0.05 is convergent with 68 iterations, and the GOIA with γ = 0.06 is con-
vergent with 66 iterations. The convergence rates are compared in Fig. 3(b). The
above two algorithms provide very accurate solutions with the maximum error be-
ing 2.73×10−5.
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Figure 2: For example 1: comparing (a) the residual errors, and (b) the numerical 

errors obtained by the CGM and GOIA. 

 

 

 

 

Figure 2: For example 1: comparing (a) the residual errors, and (b) the numerical
errors obtained by the CGM and GOIA.

4.3 Example 3

Finding an n-degree polynomial function p(x) = a0 +a1x+ . . .+anxn to best match
a continuous function f (x) in the interval of x ∈ [0,1]:

min
deg(p)≤n

∫ 1

0
[ f (x)− p(x)]2dx, (56)

leads to a problem governed by Eq. (1), where B is the (n + 1)× (n + 1) Hilbert
matrix, defined by

Bi j =
1

i+ j−1
, (57)
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Figure 3: For the Laplace equation: comparing (a) the residual errors, and (b) the 

convergence rates obtained by the OIA/ODV and GOIA. 

 

 

 

Figure 3: For the Laplace equation: comparing (a) the residual errors, and (b) the
convergence rates obtained by the OIA/ODV and GOIA.

x is composed of the n+1 coefficients a0,a1, . . . ,an appeared in p(x), and

b =


∫ 1

0 f (x)dx∫ 1
0 x f (x)dx

...∫ 1
0 xn f (x)dx

 (58)

is uniquely determined by the function f (x).
In this example we consider a highly ill-conditioned linear system (1) with B given
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by Eq. (57). The ill-posedness of Eq. (1) with the above B increases very fast with
an exponential growth with n. 
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Figure 4: For the Hilbert linear problem, comparing (a) the residual errors, and (b) the 

convergence rates obtained by the OIA/ODV and GOIA. 

 

 

Figure 4: For the Hilbert linear problem, comparing (a) the residual errors, and (b)
the convergence rates obtained by the OIA/ODV and GOIA.

Let us consider n = 50. For this problem the condition number is about 1.1748×
1019. We consider a constant solution x1 = x2 = . . . = x50 = 1. The noise being
imposed on the given data is fixed to be σ = 10−8, and the convergence criterion
ε = 10−5 is fixed. We compare the residual errors in Fig. 4(a), where the OIA/ODV
with γ = 0.25 is convergent with 97 iterations, and the GOIA with γ = 0.25 is con-
vergent with 81 iterations. The convergence rates are compared in Fig. 4(b). The
above two algorithms yield very accurate solutions with the maximum error being
1.05×10−2.
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4.4 Example 4

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = αuxx(x, t), 0 < t < T, 0 < x < `, (59)

u(0, t) = u0(t), u(`, t) = u`(t), (60)

we solve u under a final time condition:

u(x,T ) = uT (x). (61)

The fundamental solution to Eq. (59) is given as follows:

K(x, t) =
H(t)

2
√

απt
exp
(
−x2

4αt

)
, (62)

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a broad application in engineering
computations. In the MFS the solution of u at the field point z = (x, t) can be
expressed as a linear combination of the fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j = (η j,τ j) ∈Ω
c, (63)

where n is the number of source points, c j are unknown coefficients, and s j are
source points being located in the complement Ωc of Ω = [0, `]× [0,T ]. For the
heat conduction equation we have

U(z,s j) = K(x−η j, t− τ j). (64)

It is known that the distribution of source points in the MFS has a great influence
on the accuracy and stability. In a practical application of MFS to solve the BHCP,
the source points are uniformly located on two vertical straight lines parallel to the
t-axis and one horizontal line over the final time, which was adopted by Hon and
Li (2009) and Liu (2011b), showing a large improvement than the line location of
source points below the initial time. After imposing the boundary conditions and
the final time condition on Eq. (63) we can obtain a linear equations system:

Bx = b, (65)
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where

Bi j = U(zi,s j), x = (c1, · · · ,cn)T,

b = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T, (66)

and n = 2m1 +m2.

Since the BHCP is highly ill-posed, the ill-condition of the coefficient matrix B in
Eq. (65) is serious. To overcome the ill-posedness of Eq. (65) we can use the new
method to solve this problem. Here we compare the numerical solution with an
exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final time data is in the order of 10−4, which
is much small in a comparison with the value of the initial temperature u0(x) =
cos(πx) to be retrieved, which is O(1). We solve this problem by the OIA/ODV
with γ = 0.25, and the GOIA with γ = 0.1. As shown in Fig. 5(a), both the
OIA/ODV and the GOIA do not converge within 20000 iterations under the conver-
gence criterion ε = 10−2. We have added a relative random noise with an intensity
σ = 10% on the final time data, of which we compare the initial time data com-
puted by the OIA/ODV and the GOIA with the exact one in Fig. 5(b) by showing
the numerical errors, of which the maximum error of OIA/ODV is smaller than
0.017 and that for the GOIA is smaller than 0.00757. It indicates that the present
iterative algorithms are robust against noise, and can provide very accurate numer-
ical results.

4.5 Example 5

We solve the Cauchy problem of the Laplace equation under the incomplete bound-
ary conditions:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, r < ρ, 0≤ θ ≤ 2π, (67)

u(ρ,θ) = h(θ), 0≤ θ ≤ π, (68)

un(ρ,θ) = g(θ), 0≤ θ ≤ π, (69)

where h(θ) and g(θ) are given functions, and ρ = ρ(θ) is a given contour to de-
scribe the boundary shape. The contour in the polar coordinates is specified by
Γ = {(r,θ)|r = ρ(θ), 0≤ θ ≤ 2π}, which is the boundary of the problem domain
Ω, and n denotes the outward normal direction. We need to find the boundary data
on the lower half contour for the completeness of boundary data.
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Figure 5: For the BHCP, comparing (a) the residual errors, and (b) the numerical 
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Figure 5: For the BHCP, comparing (a) the residual errors, and (b) the numerical
errors obtained by the OIA/ODV and GOIA.

In the MFS the trial solution of u at the field point z = (r cosθ ,r sinθ) can be
expressed as a linear combination of the fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j ∈Ω
c, (70)

where n is the number of source points, c j are the unknown coefficients, s j are the
source points, and Ωc is the complementary set of Ω. For the Laplace equation (67)
we have the fundamental solutions:

U(z,s j) = lnr j, r j = ‖z− s j‖. (71)

In the practical application of MFS, usually the source points are distributed uni-
formly on a circle with a radius R, such that after imposing the boundary conditions
(68) and (69) on Eq. (70) we can obtain a linear equations system:

Bx = b, (72)
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Figure 6: For the Cauchy problem, (a) comparing the numerical solutions obtained
by the OIA/ODV and GOIA with the exact one, and (b) showing the numerical
errors.

where

zi = (z1
i ,z

2
i ) = (ρ(θi)cosθi,ρ(θi)sinθi),

s j = (s1
j ,s

2
j) = (Rcosθ j,Rsinθ j),

Bi j = ln‖zi− s j‖, if i is odd,

Bi j =
η(θi)
‖zi− s j‖2

(
ρ(θi)− s1

j cosθi− s2
j sinθi

− ρ ′(θi)
ρ(θi)

[s1
j sinθi− s2

j cosθi]
)

, if i is even,

x = (c1, . . . ,cn)T, b = (h(θ1),g(θ1), . . . ,h(θm),g(θm))T, (73)
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in which n = 2m, and

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (74)

This example poses a great challenge to test the efficiency of linear equations solver,
because the Cauchy problem is highly ill-posed. We fix n = 60 and take a circle
with a constant radius R = 15 to distribute the source points. We apply both the
OIA/ODV and the GOIA to solve Eq. (72) within 5000 iterations, where a noise
with intensity σ = 10% is imposed on the given data. While in Fig. 6(a) we com-
pare the numerical solutions obtained by the OIA/ODV and the GOIA with the
exact data given by u = ρ2 cos(2θ), π ≤ θ < 2π , where ρ =

√
10−6cos(2θ), the

numerical errors are plotted in Fig. 6(b). It can be seen that both the OIA/ODV and
the GOIA provide very accurate solutions.

5 Conclusions

In the present paper we were based on a critical descent vector to derive a globally
optimal iterative algorithm (GOIA), which can largely accelerate the convergence
speed in the numerical solution of ill-posed linear system Bx = b. It was demon-
strated that the critical value αc in the critical descent vector leads to the largest
convergence rate among all the descent vectors specified by u = αr + BTr. Due
to its criticality, if one attempts to find a better descent vector than u = αcr+BTr,
there would be no real descent vector of u. Hence, in the present framework of the
future cone and giving the descent vector by u = αr + BTr, the present GOIA is
the globally optimal iterative algorithm to solve Eq. (1).
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