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Meshless Local Integral Equations Formulation for the 2D
Convection-Diffusion Equations with a Nonlocal Boundary

Condition

Ahmad Shirzadi 1

Abstract: This paper presents a meshless method based on the meshless lo-
cal integral equation (LIE) method for solving the two-dimensional diffusion and
diffusion-convection equations subject to a non-local condition. Suitable finite dif-
ference scheme is used to eliminate the time dependence of the problem. A weak
formulation on local subdomains with employing the fundamental solution of the
Laplace equation as test function transforms the resultant elliptic type equations
into local integral equations. Then, the Moving Least Squares (MLS) approxima-
tion is employed for discretizing spatial variables. Two illustrative examples with
exact solutions being used as benchmark solutions are presented to show the effi-
ciency of the proposed method.

Keywords: Meshless methods; Local integral equations; Nonlocal integral con-
dition; Time dependent problems; Finite differences.

1 Introduction

The number of publications in the field of meshless methods reveals that these
methods have become very popular in recent years. A relatively large number of
the existing meshless methods are based on the use of strong form equation such
as the meshless collocation method based on radial basis functions which was orig-
inated by Kansa [Kansa (1986)]. Focusing on the points and using strong form
equation make these kinds of methods unstable and special attention is needed in
choosing points [Ling and Schaback (2008); Ling and Hon (2005)]. In the mesh-
less methods which use the weak form equation such as the element free Galerkin
(EFG) method [Belytschko, Lu, and Gu (1994); Zhang, Liew, Cheng, and Lee
(2008)] the evaluation of integrals on the whole domain is necessary. However,
subject to precise evaluation of integrals, the results are of high accuracy and stabil-

1 Department of Mathematics, Persian Gulf University, Bushehr, Iran, email: shirzadi@pgu.ac.ir,
shirzadi.a@gmail.com



46 Copyright © 2012 Tech Science Press CMES, vol.85, no.1, pp.45-63, 2012

ity. The meshless local Petrov-Galerkin (MLPG) method [Atluri and Zhu (1998a);
Atluri and Zhu (1998b); Atluri (2004); Atluri and Shen (2002)] and the meshless
LIE method [Sladek, Sladek, and Atluri (2000); Zhu, Zhang, and Atluri (1998);
Long and Zhang (2002); Tulong, Jindong, and Atluri (1999)] have the advantage
of easy implementation, stability and accuracy, because the method uses the weak
form equation on the local nodal based subdomains. These methods have been suc-
cessfully applied in various branches of science and engineering, [Ching and Batra
(2001); Qian, Batra, and Chen (2004); Mirzaei and Dehghan (2010); Sellountos,
Sequeira, and Polyzos (2011); Dehghan and Mirzaei (2009); Shirzadi, Ling, and
Abbasbandy (2012)] being among them.
In the mathematical modeling of various processes, an integral term appears over
the spatial domain or in the boundary conditions. Such problems are known as
non-local problems. For some application of these kinds of problems see [Can-
non and van der Hoek (1986); Cannon and Lin (1990); Capasso and Kunisch
(1988)]. There exist also many paper investigating the numerical solutions of these
kind of problems, for example see [Abbasbandy and Shirzadi (2010); Abbasbandy
and Shirzadi (2011)] for MLPG formulation, [Ang (2001)] for boundary integral
equation method, [Dehghan (2002)] for finite differences, [Dehghan and ShamSi
(2006)] for pseudospectral Legendre method and many others [Ang (2008); De-
hghan (2005a); Noye and Dehghan (1994); Dehghan (2003);Dehghan (2006);De-
hghan (2007);Dehghan (2005b)]. The purpose of this article is to present a mesh-
less method for solution of following two-dimensional diffusion and convection-
diffusion equations in two spatial dimensions:

∂u(x,y, t)
∂ t

= ∇
2u(x,y, t)+ω·∇u(x,y, t)+ f (x,y, t) (1)

with initial and boundary conditions:

u(x,y,0) = u0(x,y), 0≤ x,y≤ 1, (2)
∂u(x,y, t)

∂x

∣∣∣
x=0

= g0(y, t), 0≤ t ≤ T, 0≤ y≤ 1, (3)

∂u(x,y, t)
∂x

∣∣∣
x=1

= g1(y, t), 0≤ t ≤ T, 0≤ y≤ 1, (4)

u(x,1, t) = h1(x, t), 0≤ t ≤ T, 0≤ x≤ 1, (5)

u(x,0, t) = h0(x)µ(t), 0≤ t ≤ T, 0≤ x≤ 1, (6)

and the nonlocal boundary condition∫ 1

0

∫ 1

0
u(x,y, t)dxdy = m(t), 0≤ x≤ 1, (7)
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where f , u0, g0, g1,h0, h1 and m are known functions, while the functions u and µ

are unknown. ω = (ω1,ω2) is the convection coefficient. The boundary condition
(Eq. 6) is variable separable, with spatial dependence given by h0(x) and time de-
pendence given by µ(t).
The presented method in this paper eliminates the time dependence of the problem
by using a finite difference scheme. Then, the original parabolic PDE is converted
into elliptic ones for the field variables at discrete time instants. A weak formula-
tion on local subdomains with employing the fundamental solution of the Laplace
equation as test function transforms the elliptic PDEs into local integral equations.
The MLS approximation is employed for spatial variations of the field variables at
discrete time instants. In the case of using a fundamental solution as test function, it
is important that how evaluate the integrals. For evaluating the regular local bound-
ary integrals Gauss-Legendre quadrature rule is used in this paper and certain ap-
proximations are presented for the evaluation of the domain and singular integrals
occurring in the weak formulation. As first test example the governing equations
are given by diffusion equation and the last test problem is a convection-diffusion
equations.

2 Finite difference approximations

Suppose the time interval [0,T ] is discretized uniformly into K subintervals; define
tk = k4t, k = 0,1, ...,K, where 4t = T/K is the time step. Let uk = uk(x) :=
u(x, tk) be the exact solution u restricted to time tk. Then, the finite-difference
approximation of the time derivatives in the θ method is given as follows

θ u̇k+1 +(1−θ)u̇k =
uk+1−uk

∆t
+O(∆t), 0≤ θ ≤ 1. (8)

Considering (Eq. 1) at the time instants k∆t and (k+1)∆t, one obtains, respectively

(1−θ)θ u̇k = (1−θ)∇2uk +(1−θ)ω·∇uk +(1−θ) f (x,y,k∆t),
θ u̇k+1 = θ∇

2uk+1 +θω·∇uk+1 +θ f (x,y,(k +1)∆t),

Hence and from (Eq. 8), we have

uk+1−uk

∆t
= ∇

2uk +θ

(
∇

2uk+1−∇
2uk
)

+ω·∇uk (9)

+θ

(
ω·∇uk+1−ω·∇uk

)
+θ f (x,y,(k +1)∆t)

+(1−θ) f (x,y,k∆t).
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In this paper the Crank-Nicholson scheme, θ = 1
2 , is used and therefore (Eq. 9)

becomes:

uk+1−uk

∆t
=

1
2

(
∇

2 +ω·∇
)(

uk+1 +uk
)

+
1
2

(
f k+1 + f k

)
,

or (
1− ∆t

2

(
∇

2 +ω·∇
))

uk+1 =
(

1+
∆t
2

(
∇

2 +ω·∇
))

uk

+
∆t
2

(
f k+1 + f k

)
. (10)

So, assuming the field uk being known from the computation in the previous time
step, the field variable uk+1 can be obtained via elliptic type PDE (Eq. 10).

To treat the Neumann’s boundary conditions, we use the following finite difference
schemes which are of order O(h3)

∂uk(x,y)
∂x

∣∣∣
x=0

=
1
h

(
−11

6
uk(0,y)+3uk(h,y)− 3

2
uk(2h,y)+

1
3

uk(3h,y)
)

, (11)

∂uk(x,y)
∂x

∣∣∣
x=1

=
1
h

(
11
6

uk(1,y)−3uk(1−h,y)+
3
2

uk(1−2h,y)

−1
3

uk(1−3h,y)
)

. (12)

Finite differences approximation to impose Neumann’s boundary condition in the
MLPG method is used in [Abbasbandy and Shirzadi (2011)].

3 Local integral formulation

we construct a local weak form of (Eq. 10) over some sub-domains Ωs. These
sub-domains could be of any geometric shape and size in the global domain Ω. In
this paper, we use sub-domains of circular shape with radius r0 centered at node
xi = (xi,yi) ∈Ωi

s ⊂Ω. The local weak form of (Eq. 10) over Ωi
s is:∫

Ωi
s

[(
1− ∆t

2

(
∇

2 +ω·∇
))

uk+1
]
vdx = (13)∫

Ωi
s

[(
1+

∆t
2

(
∇

2 +ω·∇
))

uk +
∆t
2

(
f k+1 + f k

)]
vdx.

It is well known that u∗ = − 1
2π

Ln(r)+C is a fundamental solution corresponding
to the poisson’s equation, i.e., ∇2u∗+δ (x,y) = 0, where C is an arbitrary constant,
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δ (x,y) is the Dirac delta function and r is the distance between the field and source
points, i.e., r = ‖x−xi‖. If we choose C = 1

2π
Ln(r0) where r0 is the radius of the

circular sub-domain Ωi
s centered at point xi then the modified fundamental solution

to the poisson’s equation can be given by

u∗ =− 1
2π

Ln(
r
r0

).

If u∗ is chosen as the test function in each sub-domain,then using the divergence
theorem and since u∗ vanishes on ∂Ωi

s, the local weak form equation can be trans-
formed into the following simple local integral equation∫

Ωi
s

uk+1u∗dx+
4t
2

(
uk+1(xi)+

∫
∂Ωi

s

uk+1 ∂u∗

∂n
ds
)

−4t
2

∫
Ωi

s

ω·∇uk+1u∗dx =
∫

Ωi
s

uku∗dx (14)

−4t
2

(
uk(xi)+

∫
∂Ωi

s

uk ∂u∗

∂n
ds
)

+
4t
2

∫
Ωi

s

ω·∇uku∗dx

+
4t
2

∫
Ωi

s

u∗
(

f k+1 + f k
)

dx

where ∂Ωi
s is the boundary of Ωi

s, n = (n1,n2) is the outward unit normal to the
boundary ∂Ωi

s, and ∂u
∂n is the normal derivative.

4 Spatial discretizations and implementation

The moving least-squares (MLS) approximation is employed to form the trial space
in this work. The MLS polynomial basis represents the trial function with the
fictitious values of the unknown function at N given nodes Ξ := {x1, . . . ,xN}. Let
pT (x) = [p1(x), p2(x), ..., pm(x)] be a complete monomial basis of (pre-defined)
order m; for example, for 2D problems with x = (x,y), it could be pT (x) = [1,x,y]
or pT (x) = [1,x,y,x2,xy,y2], for linear basis (m = 3) and quadratic basis (m = 6),
respectively. We allow the vector function pT to take the set of points as input and
return a matrix of size (# points)×m. In particular, we denote the N×m matrix
P = pT (Ξ) with entries [Pi j] = p j(xi) for i = 1, . . . ,N, j = 1, . . . ,m, and xi ∈Ξ. Also
at each node xi, a compactly supported weight function wi > 0 is assigned. In this
work, the Gaussian weight function is used

wi(x) =

 e[−(‖x−xi‖/ci)2]− e[−(ri/ci)2]

1− e[−(ri/ci)2]
, 0≤‖ x−xi ‖< ri,

0, otherwise,
(15)
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where ci > 0 is a constant controlling the shape of the weight function wi, and ri > 0
determines the support size. Note that in this paper ci and ri are fixed with ci = c
and ri = R for all nodes, but they can be made node-dependent for higher flexibility.
We construct a MLS polynomial basis for the distribution of a function u at Ξ as
follows. We seek a MLS approximation U in the form of

U(x) = pT (x)a(x) (16)

in which the (moving) coefficient vector a(x) = [a1(x), . . . ,am(x)] at each x is de-
termined by minimizing a weighted discrete L2-norm residual functional at the N
nodal values

J(a)(x) = ∑
xi∈Ξ

wi(x)
(
pT (xi)a(x)−u(xi)

)2
. (17)

Solving (Eq. 17) from a small-scale linear system yields

a(x) =
(
PTW (x)P

)−1PTW (x)u(Ξ) (18)

where the vector is u(Ξ)T = [u(x1), . . . ,u(xN)], and the matrix function is defined
as W (x) = diag

(
w1(x), . . . ,wN(x)

)
. From another point of view, the trial function

implicitly defined by (Eq. 16) and (Eq. 18) can be rewritten as

U(x) = pT (x)
(
PTW (x)P

)−1PTW (x)︸ ︷︷ ︸
Φ(x)

u(Ξ) =
N

∑
i=1

u(xi)φi(x), (19)

where trial basis (or shape function) φi is the i-th entry in the vector function Φ :
R2 → R1×N . Unless u is a polynomial of degree less than or equal to m, we see
that the MLS approximation U(xi)≈ u(xi) but U(xi) 6= u(xi) for xi ∈ Ξ as seen in
quasi-interpolation schemes. Differentiating the MLS basis φi requires derivatives
of the weight functions and that of some low-order polynomials only. Expanding
uk by (Eq. 19) results in

u(x, tk) = uk(x)≈
N

∑
j=1

Uk
j φ j(x).
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and from the weak formulation (Eq. 14), yields in each sub-domain Ωi
s

N

∑
j=1

(∫
Ωi

s

φ ju∗dx
)

Uk+1
j +

4t
2

N

∑
j=1

(
φ j(xi)+

∫
∂Ωi

s

φ j
∂u∗

∂n
ds
)

Uk+1
j

−4t
2

N

∑
j=1

(∫
Ωi

s

(ω·∇φ j)u∗dx
)

Uk+1
j =

N

∑
j=1

(∫
Ωi

s

φ ju∗dx
)

Uk
j −
4t
2

N

∑
j=1

(
φ j(xi)+

∫
∂Ωi

s

φ j
∂u∗

∂n
ds
)

Uk
j (20)

+
4t
2

N

∑
j=1

(∫
Ωi

s

(ω·∇φ j)u∗dx
)

Uk+1
j +

4t
2

∫
Ωi

s

u∗
(

f k+1 + f k
)

dx

To impose the boundary conditions using the boundary nodes, we adopt our pro-
posed method in [Abbasbandy and Shirzadi (2011)] which for the ease of reader is
represented as follows:
For nodes xl = (0,yl) on the left vertical boundary (0≤ yl ≤ 1), using (11) and the
MLS approximation, we have

∂uk+1(xl)
∂x

≈

1
h

(
− 11

6

nl

∑
i=1

φi(xl)Uk+1
i +3

nl+1

∑
i=1

φi(xl+1)Uk+1
i − 3

2

nl+2

∑
i=1

φi(xl+2)Uk+1
i + (21)

1
3

nl+3

∑
i=1

φi(xl+3)Uk+1
i

)
+O(h3) = g0(xl,(k +1)4t).

with xl+a = (ah,yl)

For nodes xl = (1,yl) on the right vertical boundary (0 ≤ yl ≤ 1), using (12) and
the MLS approximation, we have

∂uk+1(xl)
∂x

≈

1
h

(11
6

nl

∑
i=1

φi(xl)Uk+1
i −3

nl−1

∑
i=1

φi(xl−1)Uk+1
i +

3
2

nl−2

∑
i=1

φi(xl−2)Uk+1
i + (22)

−1
3

nl−3

∑
i=1

φi(xl−3)Uk+1
i

)
+O(h3) = g1(xl,(k +1)4t).
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with xl−a = (1−ah,yl)
For nodes xl = (xl,1) on the top horizontal boundary (0 ≤ xl ≤ 1), using (5) and
the MLS approximation, we have

nl

∑
i=1

φi(xl)Uk+1
i = h1(xl,(k +1)4t). (23)

For nodes xl = (xl,0) on the bottom horizontal boundary (0≤ xl ≤ 1), using (6) we
have

nl

∑
i=1

φi(xl)Uk+1
i −h0(xl)µ̂

k+1 = 0. (24)

Using Simpson’s composite numerical integration rule and the MLS approxima-
tion, the double integral in (7) is approximated in the following way:

∫ 1

0

∫ 1

0
uk+1(x,y)dxdy≈

N

∑
j=1

d juk+1
j =

N

∑
j=1

d j

n

∑
i=1

φi(x j)Uk+1
i

=
N

∑
i=1

( n

∑
j=1

d jφi(x j)
)

Uk+1
i = m((k +1)4t), (25)

where d j’s are Simpson’s composite numerical integration rule coefficients. Equa-
tions 20-25 define N + 1 linear equations which can be solved for the N + 1 un-
knowns U and µ .

5 Evaluation of integrals

For the regular local boundary integrals eight points Gauss-Legendre quadrature
rule is used as follows:∫

∂Ωi
s

φ j(x)
∂u∗

∂n
(x,xi)ds

=
∫ 2π

0

−1
2πr0

φ j(xi + r0cos(θ),yi + r0sin(θ))r0dθ

=−1
2

∫ 1

−1
φ j(xi + r0cos(πθ +π),yi + r0sin(πθ +π))dθ

≈−1
2

8

∑
p=1

wpφ j(xi + r0cos(πθp +π),yi + r0sin(πθp +π))
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where wp and θp are the Gauss quadrature integration rule weights and points on
[-1, 1], respectively. The local domain integrals for test function can be obtained
analytically as follows:∫

Ωi
s

u∗(x,xi)dx =−
∫ 2π

0

∫ r0

0

r
2π

ln
r
r0

drdθ =
1
4

r2
0,

so, we use the following approximations:∫
Ωi

s

u∗(x,xi)
∂φ j(x)

∂x
dx

≈
∂φ j(x)

∂x

∣∣∣
x=xi

∫
Ωi

s

u∗(x,xi)dx =
1
4

∂φ j(x)
∂x

∣∣∣
x=xi

r2
0,

and similarly∫
Ωi

s

u∗(x,xi)φ j(x)dx≈ φ j(xi)
∫

Ωi
s

u∗(x,xi)dx =
1
4

φ j(xi)r2
0.

Precise evaluating the local integrals will increase the computational efficiency of
local integral equation method [Sladek and Sladek (2010); Sladek, Sladek, and
Zhang (2010)]. We refer the interested reader to [Mazzia, Ferronato, Pini, and
Gambolati (2007)] for quadrature rule for MLPG.

6 Numerical demonstration

Recall that r0 is the radius of each local sub-domains and ri is the radius of the
support of the weight function corresponding to node i. For the MLS approxima-
tions, the quadratic basis is used in this paper. The gaussian weight function is
used for the MLS approximation and ci ≈ h, where h is the distance between two
consecutive nodes in each direction. The distribution of nodes are regular in the
examples. Because of the computational techniques described in the previous sec-
tion, r0 should be small enough. A very small r0 also causes much cancelation
error. So it is chosen as r0 ≈ 0.05h in this paper. For the MLS moment matrix to be
invertible, the support of weight functions, ri, should be large enough to have suf-
ficient number of nodes covered in the domain of definition of every sample point.
On the other hand, it should be small enough to preserve the local character of the
approximation. In this paper it is chosen as ri ≈ 3h. In this work, the infinity norm
error which will be reported is defined as:

‖ eu ‖∞= Max{| ui− ūi |, i = 1,2, ...,M},
‖ eµ ‖∞=| µ− µ̄ |,
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and the relative error is defined as:

‖ eu ‖R=

√
∑

M
i=1(ui− ūi)2

∑
M
i=1 u2

i
,

‖ eµ ‖R=
µ− µ̄

µ
,

where µ̄ is the numerical approximation of µ , ūi is the numerical approximation of
u at node i , and errors are computed in M number of nodes for which in general M
is greater than N.

6.1 Test Problem 1.

Consider the diffusion equation:

∂u(x,y, t)
∂ t

= ∇
2u(x,y, t)

with conditions:

u(x,y,0) = exp(x+ y), 0≤ x,y≤ 1,

∂u(x,y, t)
∂x

∣∣∣
x=0

= exp(y+2t), , 0≤ t ≤ T, 0≤ y≤ 1,

∂u(x,y, t)
∂x

∣∣∣
x=1

= exp(1+ y+2t), 0≤ t ≤ T, 0≤ y≤ 1,

u(x,1, t) = exp(1+ x+2t), 0≤ t ≤ T, 0≤ x≤ 1,

u(x,0, t) = exp(x)µ(t), 0≤ t ≤ T, 0≤ x≤ 1,∫ 1

0

∫ 1

0
u(x,y, t)dxdy = exp(2t)(exp(2)−2exp(1)+1) ,

for which the exact solution is

u(x,y, t) = exp(x+ y+2t), µ(t) = exp(2t).

Tab. 1 presents the results obtained at different time instants with N = 441 nodal
points and time step 4t = 0.001. The results reveal that the proposed difference
scheme is stable. The obtained results at time instant t = 1, with N = 441 nodal
points and various 4t are presented in Tab. 2. By going through each column of
Tab. 2 one can see increasing accuracy by decreasing the size of time step.

Fig. 1 presents the exact and approximate solution obtained for µ and Fig. 2 presents
the approximate solution for u at time instant t = 2.0 with representation of er-
ror distribution. Both figures are obtained with using N = 441 nodal points and
4t = 0.001.
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Table 1: The results obtained for example 1 at different time instants by using
N = 441 nodal points and4t = 0.001.

t µ µ̂ ‖ eµ ‖R ‖ eu ‖R

0.2 1.491825 1.491628 1.319581×10−4 8.449680×10−5

0.4 2.225541 2.225247 1.319734×10−4 8.524969×10−5

0.6 3.320117 3.319679 1.319734×10−4 8.525930×10−5

0.8 4.953032 4.952379 1.319733×10−4 8.525943×10−5

1.0 7.389056 7.388081 1.319733×10−4 8.525942×10−5

1.2 11.023176 11.021722 1.319734×10−4 8.525943×10−5

2.0 54.598150 54.590945 1.319734×10−4 8.525940×10−5

Table 2: The results obtained at time instant t = 1 by using N = 441 nodal points
and different4t for example 1.

4t ‖ eµ ‖R ‖ eu ‖R

0.1 1.897967 ×10−3 4.409193×10−4

0.05 5.797418×10−4 1.570939×10−4

0.01 1.499823×10−4 8.707288×10−5

0.005 1.363395×10−4 8.568575×10−5

0.001 1.319733×10−4 8.525943×10−5

6.2 Test Problem 2.

Consider the following diffusion-convection equation

∂u(x,y, t)
∂ t

= ∇
2u(x,y, t)+

∂u(x,y, t)
∂x

−2 exp(x− y+ t)

with conditions:

u(x,y,0) = exp(x− y), 0≤ x,y≤ 1,∫ 1

0

∫ 1

0
u(x,y, t)dxdy = exp(t)(exp(1)+ exp(−1)−2) ,

∂u(x,y, t)
∂x

∣∣∣
x=0

= exp(−y+ t), 0≤ t ≤ T, 0≤ y≤ 1,

∂u(x,y, t)
∂x

∣∣∣
x=1

= exp(1− y+ t), 0≤ t ≤ T, 0≤ y≤ 1,

u(x,1, t) = exp(x−1+ t), 0≤ t ≤ T, 0≤ x≤ 1,

u(x,0, t) = exp(x)µ(t), 0≤ t ≤ T, 0≤ x≤ 1,
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Figure 1: Exact and approximate solutions of µ with using N=441 nodal points and
4t = 0.001 for Example 1.

for which the exact solution is

u(x,y, t) = exp(x− y+ t), µ(t) = exp(t).

Tab. 3 presents the results at different time instants for test problem 2 by using
N = 441 nodal points and time step 4t = 0.001. The obtained results at time
instant t = 1, with N = 441 nodal points and various 4t are presented in Tab. 4.
Again the stability of the difference scheme is confirmed by considering these two
tables.
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Figure 2: Numerical approximation of u at t = 2.0 with representation of error
distribution(infinity norm error) obtained by using N=441 nodal points and 4t =
0.001 for Example 1.

In order to show the spatial convergence of the proposed method, we present Tab. 5.
By going through each column of this table, increasing accuracy by increasing the
number of nodal points can be seen.

Fig. 3 presents the exact and approximate solutions obtained for µ and Fig. 4
presents the approximate solution for u at time instant t = 3.0 with representa-
tion of error distribution. Both figures are obtained with N = 441 nodal points and
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Table 3: The results obtained for example 2 at different time instants with using
4t = 0.001 and N = 441 nodal points.

t µ µ̂ ‖ eµ ‖R ‖ eu ‖R

0.2 1.221402 1.221285 9.574279×10−5 9.558169×10−5

0.4 1.491824 1.491680 9.635099×10−5 9.656620×10−5

0.6 1.822118 1.821943 9.635809×10−5 9.657775×10−5

0.8 2.225540 2.225326 9.635817×10−5 9.657789×10−5

1.0 2.718281 2.718019 9.635817×10−5 9.657788×10−5

1.2 3.320116 3.319797 9.635817×10−5 9.657789×10−5

2.0 7.389056 7.388344 9.635817×10−5 9.657788×10−5

Table 4: The results obtained at time instant t = 1 by using N = 441 nodal points
and different4t for Example 2.

4t ‖ eµ ‖R ‖ eu ‖R

0.1 1.703197×10−4 1.257931×10−4

0.05 1.143504×10−4 1.027325×10−4

0.01 9.720470×10−5 9.681802×10−5

0.005 9.656348×10−5 9.663597×10−5

0.001 9.635817×10−5 9.657788×10−5

Table 5: The results obtained at time instant t = 1 by using4t = 0.001 and different
number of nodal points for example 2.

N eµ ‖ eµ ‖∞ ‖ eu ‖R ‖ eu ‖∞

81 5.807570×10−4 1.578661×10−3 3.552693×10−4 4.291264×10−3

121 4.234847×10−4 1.151150×10−3 3.112411×10−4 3.603712×10−3

289 1.554610×10−4 4.225868×10−4 1.517228×10−4 1.279221×10−3

441 9.635817×10−5 2.619286×10−4 9.657788×10−5 8.404393×10−4

4t = 0.001.

7 Conclusions

In the present paper, a meshless LIE method was proposed for numerical simula-
tions of the two-dimensional diffusion and diffusion-convection equations subject
to a non-local integral condition. A time stepping scheme was employed to approx-
imate the time variable and its derivative. The fundamental solution of Laplace’s
equation was used as the test function in the local weak forms. The MLS ap-
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Figure 3: Exact and approximate solutions of µ with using N=441 nodal points and
4t = 0.001 for Example 2.

proximation was proposed to discretize the spatial variables. Collocation and fi-
nite difference approximations were used to impose the Dirichlet and Neumann’s
boundary conditions, respectively and the Simpson’s composite numerical integra-
tion rule was suggested for discretizing the nonlocal integral condition. The method
was successfully employed to numerically solve the nonlocal diffusion and diffu-
sion convection equations with an integral condition. The results were confirming
the stability and high accuracy of the method and the method can be applied to
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Figure 4: Approximate solutions for u at t = 3.0 with representation of error dis-
tribution(infinity norm error) by using N=441 nodal points and 4t = 0.001 for
Example 2.

solve similar problems in engineering and sciences.
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