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A Direct Integral Equation Method for a Cauchy Problem
for the Laplace Equation in 3-Dimensional Semi-Infinite

Domains

Roman Chapko 1 B. Tomas Johansson 2

Abstract: We consider a Cauchy problem for the Laplace equation in a 3-dimen-
sional semi-infinite domain that contains a bounded inclusion. The canonical sit-
uation is the upper half-space in IR3 containing a bounded smooth domain. The
function value of the solution is specified throughout the plane bounding the up-
per half-space, and the normal derivative is given only on a finite portion of this
plane. The aim is to reconstruct the solution on the surface of the bounded inclu-
sion. This is a generalisation of the situation in Chapko and Johansson (2008) to
three-dimensions and with Cauchy data only partially given. We represent the solu-
tion in terms of a sum of a layer potential over the surface over the inclusion with an
unknown density and a layer potential involving a Green’s function and a known
density (the given data on the plane). The Cauchy problem is then reduced to
identifying the unknown density. To construct it, we match up the data on the finite
portion of the plane, where both function values and the normal derivative are spec-
ified, and this gives rise to a integral equation of the first kind over the (bounded)
surface of the inclusion having a smooth kernel. We show that this boundary inte-
gral equation is uniquely solvable for a certain class of data in the usual Sobolev
and Hölder type spaces. To numerically solve this equation, we employ Weinert’s
method [Wienert (1990)]. This involves rewriting the integral equation over the
unit sphere under the assumption that the surface of the inclusion can be mapped
one-to-one to the unit sphere. The density is then represented in terms of a linear
combination of spherical harmonics, and this generates a linear system to solve for
the coefficients in this representation. Due to the ill-posedness of the Cauchy prob-
lem, Tikhonov regularization is incorporated. Numerical results are given as well,
showing that accurate reconstructions of the solution and its normal derivative can
be obtained on the surface of the inclusion with small computational effort. We also
investigate the case when the normal derivative is given throughout the plane and
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the function value is only specified at a finite portion, and compare the accuracy of
the reconstructions.

Keywords: Laplace equation; Cauchy problem; Semi-infinite 3D domain; Single-
and double layer potentials; Green’s function; Integral equation of the first kind;
Tikhonov regularization; Discrete projection method.

1 Introduction

The Cauchy problem for the Laplace equation, i.e. the problem of reconstructing a
harmonic function from knowledge of the function and its normal derivative on an
arc (in IR2) or surface (in IR3) goes back to Hadamard (1923). Hadamard showed
that the Cauchy problem is ill-posed, i.e. the solution does not depend continuously
on the data; in fact, for perturbed data, there might not even be a solution. Crite-
ria on the data to guarantee the existence of a solution in IR3 are given in Johnson
(1935). Uniqueness is clear from Carleman (1939); Calderón (1958). Formulas
for the solution, i.e. extension of an analytic function from Cauchy data given on
an arc were presented in Carleman (1926). However, these formulas are unstable
and appear to be not suitable for numerical computations. In Lavrent’ev (1956);
Mergelyan (1956); Pucci (1955), investigations and stable formulas were presented
for the Cauchy problem in two and three dimensions. Since then, a large number
of publications for the Cauchy problem for the Laplace equation have been pre-
sented, in particular on the issue of stable numerical calculation of the solution, see
for example, Berntsson and Eldén (2001); Cao, Klibanov and Pereverzev (2009);
Dinh Nho Hào (1998); Ingham, Yuan and Han (1991); Karageorghis, Lesnic and
Marin (2011); Kubo (1994); Lavrent’ev (1967); Li and Syngellakis (1995); Payne
(1975); Reinhardt, Dinh Nho Hào and Han (1999); Tarchanov (1999) and the refer-
ences therein. Recently, iterative methods based on the ideas in Kozlov and Maz’ya
(1989) have been popular, some of these works are listed in Helsing and Johans-
son (2010). Also, non-linear problems have been investigated Avdonin, Kozlov,
Maxwell and Truffer (2009); Baravdish and Svensson (2011); Egger and Leitão
(2009) (for more on the development of the theory of ill-posed problems and their
stable solution, see for example Engl, Hanke, and Neubauer (1996); Isakov (1998);
Kirsch (1996); Tikhonov and Arsenin (1977); Vainikko and Veretennikov (1986)).

The large number of publications related to the Cauchy problem for the Laplace
equation is partly due to the importance of this problem in engineering appli-
cations. It appears, for example, in cardiology Colli, Franzone, and Magenes
(1979), corrosion detection Cakoni, Kress and Schuft (2010), electrostatics van
Berkel and Lionheart (2007), geophysics Glasko (1971), leak identification Es-
criva, Baranger and Tlatli (2007), non-destructive testing Alessandrini (1993) and
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plasma physics Gorenflo (1965).

However, from the numerical side, it is mainly results in two-dimensional bounded
domains that have been presented. Note though that engineering problems posed in
unbounded domains are common and important, and include the irrotational flow of
an incompressible fluid exterior to a body Hess and Smith (1967), heat flow in the
oceans Shih (1971) and the distribution of stresses in an infinite medium with holes
or inclusions Chen and Wu (2007). The surrounding media can then be treated as
infinite, thus leading to unbounded domain problems. From a theoretical point of
view, partial differential equations in unbounded domains are challenging in itself
and non-standard function spaces are needed to prove properties of solutions, for
an overview, see the introduction in Seager and Carey (1990).

Using standard domain discretisation methods such as the Finite Element Method
(FEM) in unbounded domains, truncation of the solution domain is usually needed,
leading to additional difficulties for the Cauchy problem. In Chapko and Johansson
(2008), the authors presented numerical results for a Cauchy problem posed in an
unbounded planar domain containing a bounded inclusion. The method was based
on an integral equation technique in combination with a generalization of the al-
ternating method Kozlov and Maz’ya (1989). The problem was reformulated as an
integral equation over the bounded boundary of the inclusion, making it computa-
tionally efficient. In particular, no artificial boundary was needed. Integral equation
methods somewhat into the above spirit have been used earlier in the literature for
the Cauchy problem in bounded domains, see Cheng, Hon, Wei and Yamamoto
(2001); Helsing and Johansson (2010); Hon and Li (2003); Zeb, Elliott, Ingham,
and Lesnic (1997) (and in Marin and Lesnic (2005) for Helmholtz-type equations).

As mentioned in Chapko and Johansson (2008), the similar approach could poten-
tially be generalized to unbounded domains in IR3. In this paper, we shall undertake
the challenging task to present and implement an integral equation approach and
produce numerical results for a Cauchy problem in an unbounded domain in IR3,
and this is the main novelty the work.

To formulate the Cauchy problem to be studied, let D1 ⊂ IR3 be a semi-infinite
region with boundary Λ and let D2 be a simply connected bounded domain in IR3

with boundary surface Γ, such that D̄2 ⊂ D1. We let D = D1 \ D̄2.

Assume that we have stationary heat conduction and let the temperature function
u ∈C2(D)∩C1(D̄) satisfy the Laplace equation

∆u = 0 in D (1)

and the regularity condition

u(x) = o(|x|−1), x ∈ D, |x| → ∞. (2)



108 Copyright © 2012 Tech Science Press CMES, vol.85, no.2, pp.105-128, 2012

Figure 1: A semi-infinite solution domain D bounded by the plane Λ (with finite
portion Σ) and the inclusion with boundary Γ.

Compared with Chapko and Johansson (2008), we not only generalize that work to
higher dimensions but we shall also consider the more realistic case when Cauchy
data is only partially known; the corresponding two linear inverse problems that we
consider are:
A) Neumann data measurement. Let the function (temperature) fΛ be given on
the exterior boundary Λ together with knowledge of the heat flux gΣ on the finite
portion Σ of Λ, that is (1) is supplied with the boundary conditions

u = fΛ on Λ and
∂u
∂ν

= gΣ on Σ. (3)

The inverse problem we are concerned with is: Find the corresponding Cauchy data

u and
∂u
∂ν

on the boundary Γ of the inclusion.
B) Dirichlet data measurement. Let the function (heat flux) gΛ be given on the
exterior boundary Λ together with knowledge of the temperature fΣ on the finite
portion Σ, that is (1) is supplied with the boundary conditions

∂u
∂ν

= gΛ on Λ and u = fΣ on Σ. (4)

The inverse problem is also in this case: Find the Cauchy data u and
∂u
∂ν

on the
boundary Γ.

For an illustration of the configuration and solution domain, see Figure 1. For
simplicity, we assume that this is the configuration, i.e. D1 is the half-space x3 > 0,
where x = (x1,x2,x3) ∈ IR3. Note that other semi-infinite domains are possible as
well, for example, an octant.
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We shall represent the solution to each of these inverse problems as a sum of a
layer potential over the surface of the inclusion with an unknown density and a
layer potential involving a Green’s function with a known density (the given data
on Λ). The Cauchy problem is then reduced to identifying the unknown density. For
the construction of it, we match up the additional data on the finite portion Σ. This
generates a boundary integral equation of the first kind over the bounded surface Γ

of the inclusion having a smooth kernel. This equation is uniquely solvable for a
certain class of data in the usual Sobolev and Hölder type spaces.

To numerically solve the obtained boundary integral equation, we employ Weinert’s
method Wienert (1990). This is a timely approach since this method has attracted
much attention recently, see Chapko, Johansson and Protsyuk (2011); Ganesh and
Graham (2004); Ganesh, Graham and Sivaloganathan (1998); Graham and Sloan
(2002). The discretisation first involves rewriting the boundary integral equation
over the unit sphere under the assumption that the surface of the inclusion can be
mapped one-to-one to the unit sphere. The density is then represented in terms
of a linear combination of spherical harmonics, and this generates a linear system
to solve for the coefficients in this representation. Due to the ill-posedness of the
Cauchy problem, Tikhonov regularization is incorporated when solving this linear
system.

Clearly, the assumption that the surface of the inclusion can be mapped one-to-one
to unit sphere is a restriction of our approach. There is however a sufficiently large
class of such inclusions useful in applications, that have this property. Moreover,
one can generalize and use differential geometry and assume that the inclusion is
parametrized by surface patches of the unit sphere or one can even only numerically
construct an approximation to such a map. This is though deferred to future work.

For the outline of this work, in Chapter 2, we introduce some notation and function
spaces, and discuss for which data there exist a solution to the Cauchy problem.
In Chapter 3, we show how to reformulate the above two Cauchy problems in
terms of boundary integral equations, see Theorem 3.2 and 3.5, and discuss the
solvability of these equations. Moreover, we rewrite these equations over the unit
sphere, see Theorem 3.3 and 3.6. In Chapter 4, we discretise these equations with
Wienert’s method [Wienert (1990)]. In Chapter 5, numerical results are presented,
showing that accurate reconstructions of the solution and its normal derivative can
be obtained on the boundary surface of the inclusion with small computational
effort. We also compare the accuracy of the reconstructions for the two inverse
problems described above.
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2 Notation, function spaces and smoothness of the data

Let L2(D0) be the standard L2-space with the standard norm for a smooth domain
D0 in IR3. Then H1(D0) is the Sobolev space of real-valued functions in D0 with
finite norm given by ‖u‖2

H1(D0)
= ‖u‖2

L2(D0)
+‖∇u‖2

L2(D0)
, where ∇ = (∂x1 ,∂x2 ,∂x3).

For trace spaces, we recall that the space of traces of functions from H1(D0) on ∂D0
is H1/2(∂D0). By Ck(D0), where k is a non-negative integer, we mean the set of
functions differentiable up to order k and bounded in the usual sup-norm.

We then briefly discuss what we require in terms of smoothness of the given data
for the above inverse problems. We assume that the data are smooth such that
there exists a classical solution to each of the inverse problems. For compatibility
conditions on the data to guarantee the existence of such a solution, see Johnson
(1935). However, our proposed method will work for more general classes of data.
Let us therefore indicate what one such class of data can be.

For unbounded domains, it is known that for given L2-data, the Dirichlet or Neu-
mann problem for the Laplace equation in the half-space IR3

+ can have a solu-
tion which is not in L2(IR3

+) although its gradient is. A natural framework is
then to use weighted spaces. Let L2,1(IR3

+) be the weighted L2-space with weight
(1+ |x|2)−1/2. The space W 1,0(IR3

+) consists of functions with generalized deriva-
tives of order ≤ 1, such that

‖u‖2
W 1,0(IR3

+) = ‖u‖2
L2,1(IR3

+) +‖∇u‖2
L2(IR3

+)

is finite. Functions in W 1,0(IR3
+) have a well-defined trace on IR2 in the trace space

W 1/2,0(IR2) and such elements have in particular a finite L2,1(IR2) norm. Moreover,
the Dirichlet problem in the half-space IR3

+ for the Laplace equation, with data in
the trace space W 1/2,0(IR2) has a unique solution in W 1,0(IR3

+), see Theorem 6
in Boulmezaoud (2003). Similarly, the Neumann problem for the Laplace equation
in IR3

+ has a unique solution in W 1,0(IR3
+) for data in the dual space W−1/2,0(IR2),

see Theorem 9 in Boulmezaoud (2003).

Let us then show that the above inverse problem with Dirichlet data measurement
on the finite portion Σ is solvable for a large class of data. Let u be the solution
to the Neumann problem in IR3

+ for a given gΛ in W−1/2,0(IR2) and let fΣ be the
restriction of u to Σ. Varying gΛ over W−1/2,0(IR2), we claim that we get a dense set
of elements fΣ in L2(Σ). Assume not, then there exists an element h in L2(Σ) with
( fΣ,h) = 0 (with (·, ·) being the inner product in L2(Σ)), for every fΣ constructed in
the above manner. Since smooth functions are dense in L2, we adjust the situation
such that we can extend h by 0 to an element h̃ in W−1/2,0(IR2). Let v be the
solution to the Neumann problem for the Laplace equation with the extension of h
as data. From the definition of a solution and since Green’s formula is valid, see
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Theorem 1 in Boulmezaoud (2003), we find that
∫

IR2
v

∂u
∂ν

ds =
∫

IR2
u

∂v
∂ν

ds,

from which it follows that
∫

IR2
vgΛ ds =

∫

Σ

fΣ hds = 0 (5)

since h̃ is zero outside Σ and also due to the assumption ( fΣ,h) = 0. Clearly, this
is a contradiction, since we are free to vary gΛ and can make sure that the first
integral in (5) is not zero. This in turns implies that the Cauchy problem is solvable
for a dense set of data with gΛ taken from the space W−1/2,0(IR2) and fΣ ∈ L2(Σ).
Similar considerations holds for the other inverse problem.

Thus, it is justifiable to make the following assumptions. For the Neumann data
measurement case, we assume that the data are given (with gΣ ∈ L2(Σ)) and com-
patible such that there exists a solution to the inverse problem (interpreted in the
classical or weak solution sense). Similarly, for the Dirichlet data measurement
case, we assume that the data are given (with fΣ ∈ L2(Σ)) and compatible such that
there exists a solution to the inverse problem (interpreted in the classical or weak
solution sense). We shall only use fΛ and gΛ that are continuous functions pos-
sibly with a growth condition imposed, although, as shown above, more general
functions from the relevant trace spaces can be used.

3 Integral equation formulations

In this section, we shall reformulate the inverse problems in terms of boundary
integral equations.

3.1 Neumann data measurement

By G we denote the Green’s function for the equation ∆u = 0 in D1 in the case of
a Dirichlet boundary condition on Λ, that is, G is defined for all x 6= y in D̄1 and of
the form

G(x,y) =
1

4π

1
|x− y| − G̃(x,y),

where, for fixed y ∈ D1, the function G̃ satisfies the Laplace equation in D1 with
respect to x and G(· ,y) = 0 on Λ. The solution w satisfying ∆w = 0 in D1 and the
Dirichlet condition w = fΛ on Λ can be represented in the form

w(x) =−
∫

Λ

∂G(x,y)
∂ν(y)

fΛ(y)ds(y), x ∈ D1. (1)
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This is a well-studied representation and if fΛ is continuous and bounded, then w is
a classical solution in D1. One can also consider other types of spaces such as Lp-
spaces, see further Chapter 3 Section 2 in Stein (1970), Finkelstein and Scheinberg
(1975), Gardiner (1981) and Chapter 4 in Axler, Bourdon and Ramey (1992).

Seeking the unique solution of (1)–(3) in the form

u(x) =
∫

Γ

G(x,y)φ(y)ds(y)+w(x), x ∈ D (2)

and taking into account the given normal derivative on Σ, leads to the following
integral equation of the first kind with a smooth kernel

∫

Γ

∂G(x,y)
∂ν(x)

φ(y)ds(y) = gΣ(x)− ∂w
∂ν

(x), x ∈ Σ, (3)

to be solved for the unknown density φ . Since (1) is a classical solution provided
that fΛ(y) is bounded and continuous, the normal derivative is well-defined in L2(Σ)
according to the trace theorem. More generally, we let X(Λ) be a function space
for which the representation (1) makes sense and for which the normal derivative
on Σ is well-defined in L2(Σ).
We introduce the operator

(Kφ)(x) :=
∫

Γ

∂G(x,y)
∂ν(x)

φ(y)ds(y), x ∈ Σ, (4)

which is the normal derivative on Σ of the single-layer potential (with density on
Γ).

Analogously to Chapko and Johansson (2012) we can prove the following theorem,
which is of importance in connection with the regularization of the ill-posed inte-
gral equation (3) of the first kind. For the sake of completeness and since the proof
in Chapko and Johansson (2012) was given in IR2, we include a proof of the result
here.

Theorem 3.1 The operator K : L2(Γ)→ L2(Σ) given by (4) is injective and has
dense range.

Proof. We first show that the operator is injective. Let φ ∈ L2(Γ) satisfy Kφ = 0.
Then for the function u(x) =

∫
Γ

G(x,y)φ(y)ds(y), where x ∈ D, we have u = 0 and
∂u
∂ν

= 0 on Σ. Therefore, by Holmgren’s theorem, u = 0 in D̄. Then, from the
properties of the single-layer potential, we have that u = 0 also in the interior of Γ.
Since φ = ∂u−

∂ν
|Γ− ∂u+

∂ν
|Γ, we obtain that φ = 0, that is K is injective.
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To establish that the operator K has dense range, it suffices to show that the adjoint
operator K∗ : L2(Σ)→ L2(Γ) given by

(K∗ f )(x) =
∫

Σ

∂G(x,y)
∂ν(y)

f (y)ds(y), x ∈ Γ

is injective. Let f satisfy K∗ f = 0. Define the function v(x) =
∫

Σ

∂G(x,y)
∂ν(y) f (y)ds(y),

for x ∈ IR3 \Σ. Clearly, we have ∆v = 0 in IR3 \Σ, v(x) = o(|x|−1), when |x| → ∞,
and v = 0 on Γ. The exterior Dirichlet problem in the exterior of Γ (with the condi-
tion imposed at infinity) for harmonic functions has a unique solution. In particular,
zero data on Γ gives the trivial solution. Thus, since v = 0 on Γ and due to the con-
dition at infinity, it follows that v coincides with the trivial solution in IR3 \Σ (in the
exterior of Γ), i.e. v = 0 in IR3 \Σ. Therefore, since f = v+|Σ− v−|Σ, we conclude
that f = 0. We have then shown that K has dense range in L2(Σ). �

Note that the denseness of the range for the operator K is in line with the observa-
tion in Section 2 that the Cauchy problems under study are solvable for a dense set
of data in L2(Σ).
From properties of single-layer potentials we have the following integral represen-
tation for Cauchy data on the surface Γ.

Theorem 3.2 (Neumann measurement) Let fΛ ∈ X(Λ) and gΣ ∈ L2(Σ) be given.
The value of the solution to (1)–(3) on the surface Γ of the inclusion is given by

u(x) =
∫

Γ

G(x,y)φ(y)ds(y)+w(x), x ∈ Γ (5)

and the normal derivative is given by

∂u
∂ν

(x) =−1
2

φ(x)+
∫

Γ

∂G(x,y)
∂ν(x)

φ(y)ds(y)+
∂w
∂ν

(x), x ∈ Γ, (6)

where w is given by (1) and the density φ is constructed from equation (3).

3.2 Rewriting the Neumann measurement case integral equation over the unit
sphere

Assume that the boundary surface Γ of the inclusion can be bijectively mapped
onto the unit sphere S2, i.e. there exists a one-to-one mapping q : S2→ Γ having a
smooth Jacobian Jq. We can then rewrite the integral equations from the previous
section over the unit sphere.
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Taking into account the parametric representation of Γ, we reduce the integral equa-
tion (3), corresponding to the Neumann data measurement, to the following equa-
tion
∫

S2
Q(x, ŷ)ψ(ŷ)Jq(ŷ)ds(ŷ) = g(x), x ∈ Σ. (7)

Here, we used the following notation ŷ = p(θ ,ϕ) = (sinθ cosϕ,sinθ sinϕ,cosθ),
θ ∈ [0,π], ϕ ∈ [0,2π], ψ(ŷ)= φ(q(ŷ)), g(x)= gΣ(x)− ∂w

∂ν
(x) and Q(x, ŷ)= ∂G

∂ν(x)(x, ŷ).
We can then rewrite the representations (5) and (6) for the Cauchy data over the
unit sphere, and we have the corresponding parametric forms

u(x̂) =
∫

S2

[
R(x̂, ŷ)
|x̂− ŷ| − Q̃(x̂, ŷ)

]
ψ(ŷ)Jq(ŷ)ds(ŷ)+w1(x̂), x̂ ∈ S2 (8)

and

∂u
∂ν

(x̂) =−1
2

ψ(x̂)+
∫

S2

[
R1(x̂, ŷ)
|x̂− ŷ| − Q̃1(x̂, ŷ)

]
ψ(ŷ)Jq(ŷ)ds(ŷ)+w2(x̂), x̂ ∈ S2,

(9)

where

w1(x̂) = w(q(x̂)), w2(x̂) =
∂w
∂ν

(q(x̂)), Q̃(x̂, ŷ) = G̃(q(x̂),q(ŷ)),

R(x̂, ŷ) =
1

4π

|x̂− ŷ|
|q(x̂)−q(ŷ)| , R1(x̂, ŷ) = ν(q(x̂)) · (q(x̂)−q(ŷ))R(x̂, ŷ)

and Q̃1(x̂, ŷ) = ∂ G̃
∂ν(x)(q(x̂),q(ŷ)).

To further simply the discretisation of these equations, we shall move the weak
singularity in the corresponding integrals to the north pole n̂ = (0,0,1). To do this,
we consider the orthogonal transformation Tx̂ such that Tx̂x̂ = n̂ for all x̂ ∈ S2, see
Ganesh and Graham (2004); Ivanyshyn and Kress (2010); Wienert (1990). We also
introduce an induced transformation Tx̂ on C(S2) as

Tx̂ψ(ŷ) = ψ(T−1
x̂ ŷ), ŷ ∈ S2, ψ ∈C(S2)

and its bivariate analogue

Tx̂ψ(ŷ1, ŷ2) = ψ(T−1
x̂ ŷ1,T−1

x̂ ŷ2), ψ ∈C(S2×S2).

We denote by R̃(x̂, ŷ) := R(x̂, ŷ)Jq(ŷ) and R̃1(x̂, ŷ) := R1(x̂, ŷ)Jq(ŷ). Since |x̂−
ŷ|= |T−1

x̂ (n̂− η̂)|= |n̂− η̂ | with η̂ = Tx̂ŷ, the representations with Neumann data
measurement (8) and (9) can be transformed into the following expressions.
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Theorem 3.3 (Neumann data measurement) The representation (5) for the value
of the solution to (1)–(3) on the surface of the inclusion Γ can be rewritten over the
unit sphere S2, using the above notation, as

u(x̂) =
∫

S2

Tx̂R̃(n̂, η̂)
|n̂− η̂ | Tx̂ψ(η̂)ds(η̂)−

∫

S2
Q̃(x̂, ŷ)ψ(ŷ)Jq(ŷ)ds(ŷ)+w1(x̂), (10)

and similarly the equation (6) for the normal derivative can be written over S2 as

∂u
∂ν

(x̂)=−1
2

ψ(x̂)+
∫

S2

Tx̂R̃1(n̂, η̂)
|n̂− η̂ | Tx̂ψ(η̂)ds(η̂)−

∫

S2
Q̃1(x̂, ŷ)ψ(ŷ)Jq(ŷ)ds(ŷ)+w2(x̂).

(11)

3.3 Dirichlet measurement

Let N be the Green’s function for the Laplace equation in D1 in the case of a Neu-
mann boundary condition on Λ, that is, N is defined for all x 6= y in D̄1 and of the
form

N(x,y) =
1

4π

1
|x− y| + Ñ(x,y),

where, for fixed y ∈ D1, the function Ñ satisfies the Laplace equation in D1 with
respect to x and ∂N(· ,y)

∂ν(y) = 0 on Λ.

The solution S2 to the Neumann problem in D1 with boundary data ∂ω/∂ν = gΛ

on Λ can be represented in the form

ω(x) =
∫

Λ

N(x,y)gΛ(y)ds(y), x ∈ D1. (12)

This is also a well-studied representation and if gΛ(y) is continuous and satis-
fying a growth condition, then ω is a classical solution in D1. Furthermore, if
gΛ ∈ L2,1(IR2), then ω is a weak solution in W 1,0(IR3

+). One can also consider
other types of spaces such as Lp-spaces, see further Gardiner (1981); Shu, Tanaka
and Yanagishita (2011). We let Y (Λ) be a function space for which the representa-
tion (12) makes sense and has a well-defined trace in L2(Σ).
We then search for the unique solution of the Cauchy problem (1),(2),(4) in the
form

u(x) =
∫

Γ

N(x,y)υ(y)ds(y)+ω(x), x ∈ D, (13)
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where the unknown density υ satisfies the integral equation of the first kind with a
smooth kernel,
∫

Γ

N(x,y)υ(y)ds(y) = fΣ(x)−ω(x), x ∈ Σ. (14)

Due to the assumption on the Cauchy data in particular since gΛ ∈ Y (Λ), the left-
hand side is in L2(Σ).
For the operator

(Sυ)(x) :=
∫

Γ

N(x,y)υ(y)ds(y), x ∈ Σ, (15)

we have the following properties, which can be proved analogously to Theorem
3.1.

Theorem 3.4 The operator S : L2(Γ)→ L2(Σ) defined by (15) is injective and has
dense range.

Again, this is as expected since it is shown in Section 2 that the Neumann measure-
ment case has a solution for a dense set of data in L2(Σ).
The Cauchy data on Γ can by calculated as follows.

Theorem 3.5 (Dirichlet measurement) Let gΛ ∈ Y (Λ) and fΣ ∈ L2(Σ) be given.
The value of the solution to (1),(2),(4) on the surface Γ of the inclusion is given by

u(x) =
∫

Γ

N(x,y)υ(y)ds(y)+ω(x), x ∈ Γ (16)

and the normal derivative is given by

∂u
∂ν

(x) =−1
2

υ(x)+
∫

Γ

∂N(x,y)
∂ν(x)

υ(y)ds(y)+
∂ω

∂ν
(x), x ∈ Γ, (17)

where ω is given by (12) and the density υ is constructed from equation (14).

3.4 Rewriting the Dirichlet measurement case integral equation over the unit
sphere

Using the above notation, in the case of a Dirichlet data measurement, we obtain
the parametrized integral equation over the unit sphere S2,
∫

S2
L(x, ŷ)ϑ(ŷ)Jq(ŷ)ds(ŷ) = f (x), x ∈ Σ, (18)

where L(x, ŷ) = N(x, ŷ), ϑ(ŷ) = υ(q(ŷ)) and f (x) = fΣ(x)−ω(x).
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The Cauchy data on Γ have in this case the following parametrization

u(x̂) =
∫

S2

[
R(x̂, ŷ)
|x̂− ŷ| + L̃(x̂, ŷ)

]
ϑ(ŷ)Jq(ŷ)ds(ŷ)+ω1(x̂), x̂ ∈ S2

and

∂u
∂ν

(x̂) =−1
2

ϑ(x̂)+
∫

S2

[
R1(x̂, ŷ)
|x̂− ŷ| + L̃1(x̂, ŷ)

]
ϑ(ŷ)Jq(ŷ)ds(ŷ)+ω2(x̂), x̂ ∈ S2,

where we used the notation

ω1(x̂) = ω(q(x̂)), ω2(x̂) =
∂ω

∂ν
(q(x̂)),

L̃(x̂, ŷ) = Ñ(q(x̂),q(ŷ)), L̃1(x̂, ŷ) =
∂ Ñ

∂ν(x)
(q(x̂),q(ŷ)).

We can again move the singularity in each of these equations to the north pole.

Theorem 3.6 (Dirichlet data measurement) The integral representation (16) for
the value of the solution to (1),(2),(4) on the surface of the inclusion Γ can be
rewritten over the unit sphere S2, using the above notation, as

u(x̂) =
∫

S2

Tx̂R̃(n̂, η̂)
|n̂− η̂ | Tx̂ϑ(η̂)ds(η̂)+

∫

S2
L̃(x̂, ŷ)ϑ(ŷ)Jq(ŷ)ds(ŷ)+ω1(x̂), (19)

and the formula (17) for the normal derivative is given by

∂u
∂ν

(x̂) =

− 1
2

ϑ(x̂)+
∫

S2

Tx̂R̃1(n̂, η̂)
|n̂− η̂ | Tx̂ϑ(η̂)ds(η̂)+

∫

S2
L̃1(x̂, ŷ)ϑ(ŷ)Jq(ŷ)ds(ŷ)+ω2(x̂).

(20)

4 Discretisation and Tikhonov regularization

We shall describe how to discretise the equations (10)–(11) and (19)–(20), and how
to solve the obtained linear systems in a stable way.

4.1 Quadrature rules

The following quadrature is used for continuous integrands

∫

S2
f (ŷ)ds(ŷ)≈

2n′+1

∑
ρ ′=0

n′+1

∑
s′=1

µ̃ρ ′ ãs′ f (p(θs′ ,ϕρ ′)), (1)
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where ϕρ ′ = ρ ′π/(n′+ 1), θs′ = arccoszs′ with zs′ being the zeros of the Legendre
polynomials Pn′+1, ãs′ = 2(1− z2

s′)/((n′+1)Pn′(zs′))2 and µ̃ρ ′ = π/(n′+1).
For the case of a weak singularity, we have the quadrature rule

∫

S2

f (ŷ)
|n̂− ŷ| ds(ŷ)≈

2n′+1

∑
ρ ′=0

n′+1

∑
s′=1

µ̃ρ ′ b̃s′ f (p(θs′ ,ϕρ ′)) (2)

with weights

b̃s′ =
π ãs′

n′+1

n′

∑
i=0

Pi(zs′).

Both quadratures are obtained by approximation of the regular part of the integrand
via spherical harmonics and then employing exact integration. Note that according
to results in Ganesh and Graham (2004); Wienert (1990) these quadrature rules
have super-algebraic convergence order.

We also have several integrals over the plane (IR2). For a continuous integrand we
suggest the sinc-quadrature Stenger (1993)

∫

IR2
f (y)ds(y)≈ h2

∞

M1

∑
i, j=−M1

f (ih∞, jh∞). (3)

If the function f is from the standard Hardy space and has the following asymptotic
behaviour | f (x1,x2)| ≤ Ĉe−σ1|x1|e−σ2|x2| with Ĉ > 0, σ1 > 0 and σ2 > 0, then the
approximation (3) converges exponentially.

Let Σ = {x = (x1,x2),a ≤ x1 ≤ b,c ≤ x2 ≤ d} and Σn1
n2

= {x̌i j = (x̃1i, x̃2 j), x̃1i =
a+h1i,h1 = (b−a)/ñ1, i = 0, . . . , ñ1, x̃2 j = c+h2 j,h2 = (d−c)/ñ2, j = 0, . . . , ñ2}.
For the integral over the plane having a weak singularity, we make the following
transformation
∫

IR2

f (y)
|x− y| ds(y) =

∫

IR2\Σ

f (y)
|x− y| ds(y)+

∫

Σ

f (y)
|x− y| ds(y), x ∈ Σ.

Then for the first integral that does not have a singularity we can do the corre-
sponding substitutions and reduce it to the case of (3). Using piecewise constant
approximation for the smooth function f in the second integral on subdividing Σn1

n2

and after exact integration, we obtain the following quadrature rule

∫

Σ

f (y)
|x− y| ds(y)≈

ñ1

∑
i=1

ñ2

∑
j=1

f (x̌i j)Ri j(x), x ∈ Σ,
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where

Ri j(x) =
∫ x̃1i

x̃1,i−1

∫ x̃2 j

x̃2, j−1

dy1dy2

|x− y| = (x̃2 j− x2) ln
x̃1i− x1 + |x̌i j− x|

x̃1,i−1− x1 + |x̌i−1, j− x|+

(x̃1i− x1) ln
x̃2 j− x2 + |x̌i j− x|

x̃2, j−1− x2 + |x̌i, j−1− x| +(x2− x̃2, j−1) ln
x̃1i− x1 + |x̌i, j−1− x|

x̃1,i−1− x1 + |x̌i−1, j−1− x|+

(x1− x̃1,i−1) ln
x̃2 j− x2 + |x̌i−1, j− x|

x̃2, j−1− x2 + |x̌i−1, j−1− x| .

An analogous approach is employed for hypersingular integrals over the plane. The
quadrature for integrals over the domain Σ has in this case the following form

∫

Σ

f (y)
|x− y|3 ds(y)≈

ñ1

∑
i=1

ñ2

∑
j=1

f (x̌i j)Fi j(x), x ∈ Σ, (4)

where (see Nazarchuk and Kulynych (2009))

Fi j(x) =
∫ x̃1i

x̃1,i−1

∫ x̃2 j

x̃2, j−1

dy1dy2

|x− y|3 = ∆x

∫ x̃1i

x̃1,i−1

∫ x̃2 j

x̃2, j−1

dy1dy2

|x− y| = ∆Ri j(x), x /∈ Σ
n1
n2

.

4.2 Linear system and regularization

Now, we return to the ill-posed integral equation (7). The use of quadrature rules
(1), (3) and (4) lead to an approximating equation, which we reduce by collocation
to the linear system

2n′+1

∑
ρ ′=0

n′+1

∑
s′=1

µ̃ρ ′ ãs′Q(xi j, ŷs′,ρ ′)ψ̃(ŷs′,ρ ′)Jq(ŷs′,ρ ′) = g̃(xi j), xi j ∈ Σ,

where i = 1, . . . ,n1, j = 1, . . . ,n2, n1n2 > 2(n′+1)2 and the right-hand side has the
form

g̃(x) = gΣ(x)− 1
2π

ñ1

∑
i=1

ñ2

∑
j=1

fΛ(x̌i j)Fi j(x)+
h2

∞

4π

M

∑
i, j=−M

fΛ(ih∞, jh∞)Ĝ(x, ih∞, jh∞)+

h2
∞

4π

4

∑
`=1

M

∑
i, j=−M

fΛ(y(ψ̃1`(ih∞), ψ̃2`( jh∞)))
ψ̃ ′1`(ih∞)ψ̃ ′2`( jh∞)

|x− y(ψ̃1`(ih∞), ψ̃2`( jh∞))|3 ,

x ∈ Σ,
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with the continuous kernel

Ĝ(x,y) =
∂ 2

∂x3∂y3

[
G̃(x,y)− 1

4π

1
|x− y∗|

]
.

Since the system is ill-posed we incorporate for its numerical solution Tikhonov
regularization with regularization parameter λ > 0.

The approximation for the density ψ can be calculated via projection on the sub-
space of spherical harmonics

ψ̃(x̂) =
n′

∑
`=0

∑
| j|≤`

2n′+1

∑
ρ ′=0

n′+1

∑
s′=1

µ̃ρ ′ ãs′ψ̃(ŷs′,ρ ′)Y R
`, j(ŷs′,ρ ′)Y R

`, j(x̂), x̂ ∈ S2,

where

Y R
`,k =





√
2ImY`,|k|, 0 < k < `,

ReY`,|k|, k = 0,√
2ReY`,|k|, −`≤ k < 0,

with the spherical harmonics Y`,k as defined in Abramowitz and Stegun (1972).

We can then find the approximation for the Cauchy data on Γ via the discretisation
of (10) and (11). The approximation of the function value on Γ is given by

ũ(x̂) =
2n′+1

∑
ρ ′=0

n′+1

∑
s′=1

µ̃ρ ′
[
b̃s′R̃(x̂,Tx̂ŷs′,ρ ′)ψ̃(Tx̂ŷs′,ρ ′)− ãs′Q̃(x̂, ŷs′,ρ ′)ψ̃(ŷs′,ρ ′)Jq(ŷs′,ρ ′)

]

+ w̃1(x̂)

and the approximation of the normal derivative is

∂ ũ
∂ν

(x̂) =

2n′+1

∑
ρ ′=0

n′+1

∑
s′=1

µ̃ρ ′
[
b̃s′R̃1(x̂,Tx̂ŷs′,ρ ′)ψ̃(Tx̂ŷs′,ρ ′)− ãs′Q̃1(x̂, ŷs′,ρ ′)ψ̃(ŷs′,ρ ′)Jq(ŷs′,ρ ′)

]

− 1
2

ψ̃(x̂)+ w̃2(x̂).

Here w̃1 and w̃2 are calculated using the sinc-quadrature rule (3) for the correspond-
ing integrals (see (1)). The discretisation of the equation (14) and approximation
of the Cauchy data (16) and (17) in the case of Dirichlet data measurement can be
realized analogously.
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5 Numerical examples

We use synthetic data for our numerical experiments, i.e. the Cauchy data on Λ

are constructed as follows: the Dirichlet boundary value problem with boundary
conditions u = g on Γ and u = fΛ on Λ, for given boundary functions g and fΛ, is
numerically solved by the boundary integral equation approach Chapko, Johansson
and Protsyuk (2011). Then we find the trace of the normal derivative of the solution
on Σ (to generate the input data gΣ). For the modelling of noisy input data (and to
avoid the “inverse crime”) random pointwise errors have been added to the values
of the normal derivative gΣ on Σ with the percentage given in terms of the L2-norm.

a) Domain and surfaces for Ex.1
−2

−1
0

1
2

−2
−1

0
1

2

0.2

0.3

0.4

0.5

u

b) Exact solution on the plane Ω1
Figure 2: Input data for Example 1

5.1 Example 1

We assume that the semi-infinite region is a half-space D1 = {x ∈ IR3,x3 > 0} with
the boundary Λ = {x∈ IR3,x3 = 0} and the inclusion D2 is a ball with the boundary
Γ = {p(θ ,ϕ)+ (0,0,2),θ ∈ [0,π],ϕ ∈ [0,2π]} (see Fig.2a). The boundary func-
tions are g = 1 on Γ, fΛ = 0 on Λ and the data gΣ on Σ = {x ∈ IR3,−2 ≤ x1,x2 ≤
2,x3 = 0} was generated by solving the corresponding direct problem.

We are interested to see whether it is possible to generate an accurate approximation
also behind (above) the inclusion and shall therefore calculate the approximation
on Ω1 = {x ∈ IR3,−2 ≤ x1,x2 ≤ 2,x3 = 3.5}. In Fig.2b is the exact solution u|Ω1 ,
generated by solving the direct problem. In Fig.3a and Fig.3b are the numerical
solutions ũ|Ω1 , calculated via the outlined integral equation approach, for exact and
3% noisy input data gΣ, respectively. Here, we used the following parameters:
n = 8, n1 = n2 = 50 and λ = 10−9 for the case of exact data and λ = 10−6 for
noisy data. The relative L2- error on the domain Ω was calculated as e2(Ω) =
‖ũ− u‖2,Ω/‖u‖2,Ω. Note that e2(Γ) = 0.05 and e2(Γ) = 0.06 for exact and noisy
data, respectively.
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(a) Exact data (e2(Ω1) = 0.024)

by solving the direct problem. In Fig.3a and Fig.3b are the numerical solutions ũ|Ω1 ,
calculated via the outlined integral equation approach, for exact and 3% noisy input data
gΣ, respectively. Here, we used the following parameters: n = 8, n1 = n2 = 50 and
λ = 10−9 for the case of exact data and λ = 10−6 for noisy data. The relative L2- error
on the domain Ω was calculated as e2(Ω) = ‖ũ − u‖2,Ω/‖u‖2,Ω. Note that e2(Γ) = 0.05
and e2(Γ) = 0.06 for exact and noisy data, respectively.
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b) 3% noisy data (e2(Ω1) = 0.036)

Figure 3: The reconstruction of the solution on Ω1 for Example 1

One can vary the above parameters and check the stability of the approximation.
Making the mesh finer does not improve the results much further. The choice of the
regularization parameter was made by trial and error, although there are rules on how to
choose it that can be incorporated. Calculating the values of the approximation closer
to where the Cauchy data is originally given renders, as one expects, an even better
reconstruction. Choosing Σ larger also improves the approximation. Moreover, Ω1 does
not have to be parallel to Λ.

Example 2. We consider now an inclusion having a non-constant curvature and
choose a cushion-shaped cavity (see Fig. 4a) with the parametrization

Γ = 0.8
√

0.8 + 0.5(cos 2ϕ− 1)(cos 4θ − 1)p(θ, ϕ) + (0, 0, 2), (5.1)

where θ ∈ [0, π], and ϕ ∈ [0, 2π].
The boundary data functions are given by

g(x) = x2
1, x ∈ Γ

and
fΛ(x) = 10 exp(−2|x|2), x ∈ Λ

and the set Σ ⊂ Λ is Σ = {x ∈ IR3,−4 ≤ x1, x2 ≤ 4, x3 = 0}.
Again, we shall show that we can generate an accurate approximation also behind

(above) the inclusion and choose Ω2 = {x ∈ IR3,−4 ≤ x1, x2 ≤ 4, x3 = 3.5}. We
demonstrate in Fig.4b, Fig.5a and Fig.5b the exact solution u|Ω2 , and the numerical
solutions ũ|Ω2 for exact and 3% noisy input data, calculated via the outlined integral
equation approach. Here, we used the following parameters: n = 6, n1 = n2 = 20,

15

(b) 3% noisy data (e2(Ω1) = 0.036)

Figure 3: The reconstruction of the solution on Ω1 for Example 1

One can vary the above parameters and check the stability of the approximation.
Making the mesh finer does not improve the results much further. The choice of
the regularization parameter was made by trial and error, although there are rules
on how to choose it that can be incorporated. Calculating the values of the approxi-
mation closer to where the Cauchy data is originally given renders, as one expects,
an even better reconstruction. Choosing Σ larger also improves the approximation.
Moreover, Ω1 does not have to be parallel to Λ.

5.2 Example 2

We consider now an inclusion having a non-constant curvature and choose a cushion-
shaped cavity (see Fig. 4a) with the parametrization

Γ = 0.8
√

0.8+0.5(cos2ϕ−1)(cos4θ −1)p(θ ,ϕ)+(0,0,2), (1)

where θ ∈ [0,π], and ϕ ∈ [0,2π].
The boundary data functions are given by

g(x) = x2
1, x ∈ Γ

and

fΛ(x) = 10exp(−2|x|2), x ∈ Λ

and the set Σ⊂ Λ is Σ = {x ∈ IR3,−4≤ x1,x2 ≤ 4,x3 = 0}.
Again, we shall show that we can generate an accurate approximation also behind
(above) the inclusion and choose Ω2 = {x ∈ IR3,−4 ≤ x1,x2 ≤ 4,x3 = 3.5}. We
demonstrate in Fig.4b, Fig.5a and Fig.5b the exact solution u|Ω2 , and the numerical
solutions ũ|Ω2 for exact and 3% noisy input data, calculated via the outlined integral
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equation approach. Here, we used the following parameters: n = 6, n1 = n2 = 20,
M1 = 40 and λ = 10−9 for the case of exact data and λ = 10−6 for noisy data. The
error of the approximation is slightly higher compared with the previous example,
which is to be expected since the shape of the inclusion is more complicated.

Again, as in the previous example, one can change the parameters and regions to
conclude that the method is stable and the reconstructions behaves in the expected
way with respect to those. The choice of the regularization parameter was also here
made by trial and error.

Finally, we report that the numerical approximation for the other inverse problem,
where instead the Dirichlet data is given on the finite Σ, behaves in the similar way
for both of these examples.

a) Domain and surfaces for Ex.2
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Figure 4: Input data for Example 2
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b) 3% noisy data (e2(Ω2) = 0.048)
Figure 5: The reconstruction of the solution on Ω2 for Example 2

6 Conclusion

We investigated a Cauchy problem for the Laplace equation in a 3-dimensional
semi-infinite domain containing a bounded inclusion, where the function values is
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given on a plane and the normal derivative on a finite portion of this plane. An
integral equation approach was presented for this problem, where the solution was
represented in terms of a sum of a layer potential over the surface of the inclusion
with an unknown density and a layer potential involving a Green’s function and a
known density. This makes it possible to reduce the Cauchy to a boundary integral
equation (over a bounded surface) for identifying the unknown density. We showed
that this integral equation is solvable for a dense set in the standard space of square
integrable function over the surface of the inclusion. To numerically solve this
equation, we employ Weinert’s method [Wienert (1990)], and this involved rewrit-
ing the integral equation over the unit sphere under the assumption that the surface
of the inclusion can be mapped one-to-one to the unit sphere. The unknown density
is expressed in terms of a linear combination of spherical harmonics, which gener-
ated a linear system to solve for the coefficients in this representation. To solve this
system Tikhonov regularization was incorporated, where the regularization param-
eter was chosen by trial and error. Two examples were numerically investigated,
one where the inclusion was a ball and one where the inclusion had a non-constant
curvature (cushion-shaped). The numerical results indicated the stability and accu-
racy of the proposed method, both for the function value and the normal derivative.
A similar procedure and results were outlined for the Cauchy problem where in-
stead the normal derivative was given on the plane and the function value on a finite
portion of it.
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