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Vibration Analysis of Curved Shell using B-spline Wavelet
on the Interval (BSWI) Finite Elements Method and

General Shell Theory
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Abstract: The implementation of the B-spline Wavelet on the Interval (BSWI)
for curved shell elements with rectangular planform is presented in this paper. By
aid of the general shell theory, cylinder shells, doubly-curved shallow shells and hy-
perbolic paraboloidal shells BSWI elements are formulated. Instead of traditional
polynomial interpolation, scaling functions at certain scale have been adopted to
form the shape functions and construct wavelet-based elements. Because of the
good character of BSWI scaling functions, the BSWI curved shell elements com-
bine the accuracy of wavelet-based elements approximation and the character of
B-spline functions for structural analysis. Different from the flat shell elements,
the curved shell elements obtain a better geometrical fitting property in idealiz-
ing the practical curved structures. This paper focuses on the dynamic analysis of
shell. The study covers wide combinations of boundaries such as cantilever, sim-
ply supported and clamped boundary. Numerical results have been established to
validate the efficiency and accuracy of the presented elements through comparison
with published data from the open literature and some commercial finite element
method software.

Keywords: B-spline wavelet on the interval, wavelet-based element, curved shell,
vibration analysis.

1 Introduction

From the view of geometry, shells are depicted as the three dimensional solids con-
fined by two general surfaces. The scale between the two general surfaces is small
compared with the other scales of shell. From the view of the mechanics, the shell
can be seen as a degraded model of the three dimensional solid whose displacement
of a certain dimension is uniform through the normal direction [Chao and Reddy
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(1984)]. Owing to its practical importance and the computational efficiency, the
study of shell structures has long been an extensive topic for the past decades in the
applications of aerospace, civil and mechanical engineering [Atluri (1985); Voyi-
adjis and Shi (1991); Iura and Atluri (1992); Bathe, Iosilevich, Chapelle (2000)].

Considering the coupling between extensional and bending stiffness, the theory of
curved shells is more complex than that of plates. Different from plates, where
there is a widely accepted plate theory, the theoretical study of shells is still an
open proposition. Many kinds of theories can be used for modeling shells with an
acceptable accuracy. Under the revolutionary shell theory [Artioli, Gould, Viola
(2005);], shells are simplified as one-dimension structures similar to beam. The
Donnell-Mushtari theory [Zhang and Atluri (1986); Qatu (1992, 1999); Qatu and
Asadi (2012)], which is also a simplification of general theory, is more suitable
for shallow shells. It is evident that these simplifications or assumptions are only
appropriate for some special cases of shells, thus we will use the basic general shell
theory for element formulation in this paper [Huang, Shenoy and Atluri (1994);
Tornabene, Viola and Inman (2009); Tornabene (2011)]. The general shell theory
is the theoretical basis of other theories, and it will approach to these theories when
some parameters trend to assumptions.

Unlike the flat shells, curved shells are based on shell hypothesis and formulated by
the general shell theory directly. The coupling between in-plane and out-plane dis-
placements are considered in the derivation process. Thus, it can fit the structures
such as arches well. However, flat shells are only formulated by combining a mem-
brane element for plane elasticity and a bending element for plate theory simply
[Nguyen-Xuan, Rabczuk, Bordas and Debongnie (2008); Nguyen-Xuan, Bordas,
Nguyen-Thanh and Rabczuk (2008)], moreover, an additional drilling degree must
be contained in analysis, which is not claimed to construct the theoretical founda-
tion and will cause a considerable consumption of memory space [Zienkiewicz and
Taylor (2000)]. To idealize the curved structures, a spatial transform matrix must
be used, which also leads in deviations in geometry and additional consumptions in
computing. The visual differences between the formulation of flat and curved shell
elements are presented in Fig. 1.

For decades, numerous papers concerned the continuum or discrete analyses of
curved shells that have been published mainly based on Kirchhoff-Love assump-
tion (Thin shell theory) and Reissner-Mindlin assumption (First-order theory). It
has been known that the assumptions in Kirchhoff-Love theory will lose their va-
lidity with the increase of the panel thickness [Liew and Lim (1995a)]. However,
shells based on Reissner-Mindlin assumption have extensive engineering applica-
tions range and adaptability for the increases of the panel thickness. Until now, re-
search work related to this field has been intensively investigated. A series of early
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Figure 1: Illustration of the formulations for the flat shell element and curved shell
element

studies related to this subject were given by Cowper, Lindberg and Olson [Cow-
per, Lindberg and Olson (1970); Olson and Lindberg (1971)], in which some static
problems and experiments involving transverse loading were analyzed. Apart from
these work, Leissa and Kadi [Leissa and Kadi (1971)] investigated the curvature ef-
fects on shallow shell vibrations. In the 1980’s, more interests in this problem were
presented. Using the Ritz method with algebraic polynomial trial functions, the
group of Leissa studied the vibrations of cantilevered doubly-curved shallow shells
with rectangular planform systematically [Leissa, Lee and Wang (1983)]. Reddy
and his co-workers studied the laminated shells using moderately thick theory and
three dimension finite element method [Reddy (1984); Chao and Reddy (1984)]. In
addition, another combined boundary/interior element method proposed by Zhang
and Atluri should be also mentioned. Based on this approach, they studied the static
stress, free-vibration and transient response of shallow shells [Zhang and Atluri
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(1986)]. In the 1990’s, based on Ritz method and its improvements, Lim and Liew
together with their colleges made a number of remarkable investigations of shell
structures: The pb-2 Ritz energy based approach, along with deflections assumed
in the form of a product of complete two-dimensional orthogonal polynomials and
a basic function, is employed to model the vibratory characteristic of shells [Liew
and Lim (1995b, 1996)]; Combined with the Ritz method, a higher order shear
deformation theory is proposed to analyse the effects of various shell geometries
and boundary conditions on the vibration responses [Lim and Liew (1995)]; The
vibratory characteristics of shells subjected to different boundary conditions were
obtained via a three-dimensional displacement-based energy formulation employed
the p-Ritz method [Liew, Peng and Ng (2002)]; And the analysis of thick shallow
shells vibrating at high modes was given by using the discrete singular convolution
(DSC)-Ritz method on Mindlin plates and shells with various edge supports [Lim,
Li and Wei (2005)]. Apart from their work, Bathe investigated the mixed interpola-
tion of tensorial components (MITC) shell element and the convergence behavior of
common shell element with his group [Eucalemi and Bathe (1993); Bathe and Lee
(1997, 2011); Bathe, Iosilevich and Chapelle (2000)]. Kulikov and Plotnikova pro-
posed a geometrically exact four-node solid-shell element based on the first-order
theory for analyses of homogeneous and multilayered composite shells undergo-
ing finite rotations [Kulikov and Plotnikova (2002, 2008, 2011)]. Furthermore, the
variable thickness shell was studied by Kang and Leissa using Ritz method [Kang
and Leissa (2000)]. By means of the third-order shear deformation theories and
the strain-displacement relations of shell, Lee and Reddy solved the problem of
vibration suppression of laminated shell structures [Lee and Reddy (2004)]. More
available literatures on shells can be found in some comprehensive reviews of the
groups of Qatu, Liew and Reddy [Qatu (1992); Liew, Lim and Kitipornchai (1997);
Reddy and Arciniega (2004)].

High performance computing is an essential issue for some numerical simulation
problems, including the vibration analysis of shells. Some new numerical meth-
ods have been developed in recent years, such as meshless local Petrov-Galerkin
(MLPG) method [Atluri and Zhu (1998); Atluri, Kim and Cho (1999)], the gen-
eralized differential quadrature (GDQ) method [Viola and Tornabene (2009)], the
H-adaptive local radial basis function meshless method [Kosec and Sarler (2011)],
boundary element method [Sapountzakis and Mokos (2009)], and the discontinu-
ous Galerkin method [Noels and Radovitzky (2008)] etc. The wavelet-based nu-
merical analysis is also a new method developed in recent years. It can be viewed
as a finite element method in which the approximation functions are selected as the
scaling or wavelet functions, similar to those used in signal or image processing.
This method is well argued by many researchers in structural analysis fields [Chen
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and Wu (1995, 1996a, 1996b); Han, Ren and Huang (2005, 2006, 2007); Xiang,
Long and Jiang (2010); Zhong and Xiang (2011)]. However, most of the wavelet
functions used now lacking an explicit expression, which would cause numerical
error when finite element solving equation is formulated [Xiang and Liang (2011),
Xiang and Matsumoto et. al (2011)]. Compared with the interpolation wavelet
function basis used now, B-spline wavelet on the interval (BSWI) basis has the
good characteristics of compact support, smoothness and symmetry in addition to
the multi-resolution analysis. Moreover, it has the explicit expression, which will
not lead any trouble for differentiation and integration. Furthermore, as a type of
generalized spline finite element method, BSWI element inherits the superiority
of spline for structural analysis. In this paper, we will present a new BSWI curved
shell element for vibration analysis. Compared with flat shell elements, a great deal
of numerical complexity is involved because the vibratory field is increased to five
degrees of freedom (three for the orthogonal displacement and two for the trans-
verse rotations) and the coupling of them is considered. Nevertheless, it is highly
efficient and economic because there is no geometry approximation being used in
the analysis of curved structures.

The outline of this paper is as follows. In section 2, the basic equations of curved
shells are given from general shell theory as the basement of the element formula-
tion. In section 3, the short introduction of the BSWI functions are presented. A
class of BSWI curved shell elements are constructed in section 4. At last, section 5
provides some numerical examples and comparisons which demonstrate accuracy
and efficiency of the presented elements.

2 Basic equations of curved shells

2.1 Problem definition

Consider a common curved shell of rectangular planform with thickness h and a
pair of radii of curvature at the mid-surface Rx and Ry as shown in Fig. 2. The
geometry of the shell is defined in natural coordinate system XYZ, where X and
Y denote the tangential of surface, and Z denotes the normal of shells. From the
common model given in Fig. 2, three kinds of special curved shell are obtained by
selecting the different ratio of Rx/Ry. The geometry of the circular cylinder, doubly-
curved shallow shell and hyperbolic paraboloidal shell are presented in Fig. 3. Let
Ry =∞, so that Rx/Ry = 0, the model will be the circular cylinder as shown in Fig.
3(a); Let Rx/Ry equal to a positive constant, the model will be the doubly-curved
shallow shell as shown in Fig. 3(b); Let Rx/Ry equal to a negative constant, the
model will be the hyperbolic paraboloidal shallow shell as shown in Fig. 3(c).
Some denotations in Fig. 3 are explained here: the span lengths along x-axis and y-
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axis (Cartesian coordinate) are expressed as a and b; the corresponding span angles
are denoted as θ x and θ y. For convenience, some denotations of boundaries are
used: free boundary (F), simply supported boundary (S) and the clamped boundary
(C).

2.2 Theoretical formulation

The present investigation is based on the first-order shear deformation theory. The
relations among orthogonal deflection components u, v and w and their mid-surface
orthogonal deflection components u0, v0, w0, and rotations ψx and ψy are given as
follows:

u =
(

1+
z

Rx

)
u0 + zψx (1)

v =
(

1+
z

Ry

)
v0 + zψy (2)

w = w0 (3)

The biggest difference between shell and solid is that the strain ε33 = 0 in shell anal-
ysis. Thus, consider the assumptions given in Eqs. (1a-1c) and neglect the higher
order terms of strain, the strain fields under general shell theory are expressed as:

The membrane strain εεε =
{

ε11 ε22 ε12
}T:

ε11 = 1
A1

∂u1
∂ s1

+ u2
A1A2

∂A1
∂ s2

+ w
R1

ε22 = 1
A2

∂u2
∂ s2

+ u1
A1A2

∂A2
∂ s1

+ w
R2

ε12 = A1
A2

∂

∂ s2

(
u1
A1

)
+ A2

A1

∂

∂ s1

(
u2
A2

) (4)

The curvature strain κκκ =
{

κ11 κ22 κ12
}T:

κ1 = 1
A1

∂ψx
∂ s1

+ ψy
A1A2

∂A1
∂ s2

κ2 = 1
A2

∂ψy
∂ s2

+ ψx
A1A2

∂A2
∂ s1

κ12 = 1
A1

∂ψx
∂ s1

+ ψy
A1A2

∂A1
∂ s2

+ 1
A2

∂ψy
∂ s2

+ ψx
A1A2

∂A2
∂ s1

(5)

The transverse shear strain γγγ =
{

γ1 γ2
}T:{

γ1 = ∂w
∂ s1
−ψx

γ2 = ∂w
∂ s2
−ψy

(6)
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in which A1 and A2 are the Lame coefficients, s1 and s2 are the variables with
corresponding Lame coefficients. For flat shell, A1 =A2 = 1 and s1 = Lx,s2 = Ly; for
cylinder shell (Fig. 3(a)), A1 = R,A2 = 1 and s1 = θ x,s2 = Ly; for the doubly-curved
shell and the hyperbolic paraboloidal shell, A1 = Rx,A2 = Ry and s1 = θ x,s2 = θ y. Lx

and Ly are the length on x and y directions (Fig. 3(b,c)), respectively.

Considering the transverse shear strain, the total stain energy of shells consists of
three parts:

U = Uε +Uκ +Uγ (7)

in which

Uε =
1
2

∫ ∫
Ω

εεε
TDm

εεεdΩ (8)

Uκ =
1
2

∫ ∫
Ω

κκκ
TDb

κκκdΩ (9)

Uγ =
1
2

∫ ∫
Ω

γγγ
TDt

γγγdΩ (10)

with

Dm =
Eh

(1− v)2

1 v 0
v 1 0
0 0 (1− v)/2

 (11)

Db =
Eh3

12(1− v)2

1 v 0
v 1 0
0 0 (1− v)/2

 (12)

Dt =
kEh

2(1+ v)

[
1 0
0 1

]
(13)

To express briefly in the following parts, we denote the coefficient in front of the
matrixes in Eq. (7) as Dm

0 , Db
0 and kDt

0, respectively. k is called shearing correction
factor. The kinetic energy is:

T = 1
2 ρ
∫

Ω

[(
∂u
∂ t

)2
+
(

∂v
∂ t

)2
+
(

∂w
∂ t

)2
]

hdΩ

+1
2 ρ
∫

Ω

[(
∂ψx
∂ t

)2
+
(

∂ψy
∂ t

)2
]

h3

12 dΩ

(14)

where the symbol ρ is the mass density of material and symbol t expresses time.
The variational energy function is defined as the difference between the strain en-
ergy and the kinetic energy:

Π = U−T (15)
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(a) The circular cylinder                    (b) The doubly-curved shell 

 

(c) The hyperbolic paraboloidal shell 

 
Figure 2: Geometry of curved shells

3 Two-dimensional B-spline Wavelet on the Interval

The B-spline in a given simple knot sequence can be constructed by employing
piecewise polynomials between the knots and joining them together at the knots.
In this way, the overall smooth B-splines in Cm−2 will be obtained if the order is
assigned to m. By means of a simple linear mapping ξ = (x− a)/(b− a), any one
dimensional function f (x) on the interval [a, b] can be transferred to the interval [0,
1]. Thus, it only needs to construct the mth order B-spline function on the interval
[0, 1]. As interval wavelets, B-spline on interval [0, 1] was given by Goswami,
Chan and Chui [Goswami, Chan and Chui (1995)]. Since there should be at least
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one inner wavelet on the interval [0, 1], the following condition must be satisfied:

2 j ≥ 2m−1 (16)

where j is the scale number of BSWI. According to the 0 scale mth order B-spline
functions and the corresponding wavelets given by Goswami [Goswami, Chan and
Chui (1995)], the j scale mth order BSWI, simply denoted as BSWIm j, scaling
functions ϕ

j
m,k(ξ ) are derived by following formulas:

ϕ
j

m,k(ξ ) =
ϕ l

m,k(2 j−1ξ ), k =−m+1, . . . ,−1 (0 boundary scaling functions)
ϕ l

m,2 j−m−k(1−2 j−lξ ), k = 2 j−m+1, . . . ,2 j−1 (1 boundary scaling functions)

ϕ
j

m,0(2 j−lξ −2−lk), k = 0, . . . ,2 j−m (inner scaling functions)
(17)

Therefore, the scaling functions on the interval [0, 1] can be written in the vector
form:

Φ =
{

ϕ
j

m,−m+1(ξ ) ϕ
j

m,−m+2(ξ ) . . .ϕ j
m,2 j−1(ξ )

}
(18)

where ξ belongs to interval [0, 1]. Kronecker product, which is also called tensor
product, is an easy way to construct two dimensional BSWI from the one dimen-
sional ones. The new two dimensional scaling or approximation space Fj is con-
structed by the Kronecker product of one dimensional approximation spaces V 1

j

and V 2
j (Fj = V 1

j ⊗V 2
j ), and the new basement is Φ = Φ1⊗Φ2, where subscripts 1

and 2 are used to distinguish the different variations in scaling functions as given
in Eq. (12). The one dimensional and two dimensional BSWI43 scaling functions
we used in this paper as the shape function for curved shell element is presented in
Fig. 4.

4 Formulation of BSWI curved shell elements

Using Hamilton’s principle, the following equation of motions for free vibration
analysis can be derived in a short time interval [t1, t2]:

δ

∫ t2

t1
Πdt = δ

∫ t2

t1
(U−T )dt = 0 (19)

Denote d =
{

u v w ψx ψy
}T, the finite element analysis, the normal displace-

ment, tangential displacements and rotation should be interpolated by BSWI43
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scaling functions respectively following the first order shear deformation theory.
The displacement field assumption as follow is made firstly:

d = ΦTa (20)

where T = [ΦT(ξ1) ΦT(ξ2) . . . ΦT(ξn+1)] - T, is a BSWI element transform matrix,
and a is the displacement coefficients vector in BSWI43 scaling space. For a two
dimensional interpolation, the transform matrix is also the Kronecker product of
two one dimensional T. The element displacement field represented by the coef-
ficients of wavelets is transformed from wavelet space to physical space by aid of
this transform matrix.

 

(a) One dimensional BSWI43 scaling functions  (b) Two dimensional BSWI43 scaling functions 
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Figure 3: BSWI43 scaling functions on the interval [0, 1]

Fig. 5 shows the details of the BSWI element. Recur to the inner node of BSWI
element shown in Fig. 5, the element computing area is divided as a n× n grid
by interpolating functions, where n = 2 j + m – 2, j is the scaling parameter and
mis the order of spline mentioned above. In this paper, BSWI43 is selected as the
interpolating function. For m = 4 and j = 3, thus a 10 × 10 grid is obtained. The
total number of nodes is 11 × 11.
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Figure 4: Illustration of the details of B-spline wavelet on the interval element.

4.1 The circular cylinder element

Substituting the corresponding Lame coefficients of circular cylinder into Eqs. (2-
4) results in:

εεε = Bεd =

 ∂

∂x 0 0 0 0
0 1

R
∂

∂θ
0 0 0

1
R

∂

∂θ

∂

∂x 0 0 0

d (21)

κκκ = Bκd =

0 0 0 ∂

∂x 0
0 0 0 0 1

R
∂

∂θ

0 1
R

∂

∂x 0 1
R

∂

∂θ

∂

∂x

d (22)

γγγ = Bγd =
[

0 0 ∂

∂x 1 0
0 − 1

R
1
R

∂

∂θ
0 1

]
d (23)

Substituting Eqs. (15a-c) into Eq. (13), let the variation of variational energy
function equal to zero, the basic solving equation of vibration problem is obtained:(
K−ω

2M
)

X = 0 (24)

where ω is the natural frequency and X the mode shape of arches. The stiffness
matrix K is defined by the summation of the three parts:

K = Km +Kb +Kt (25)

Km=


Km

11 Km
12 Km

13 0 0
Km

22 Km
23 0 0

Km
33 0 0

sym 0 0
0

 (26)
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with
Km

11 = Dm
0

[
Rγγγ11

x ⊗γγγ00
y +(1−ν)ΓΓΓ00

x ⊗γγγ11
y /2R

]
Km

12 = Dm
0

[
νγγγ10

x ⊗γγγ01
y +(1−ν)γγγ00

x ⊗γγγ11
y /2

]
Km

13 = Dm
0

[
νγγγ10

x ⊗γγγ00
y
]

Km
22 = Dm

0

[
γγγ00

x ⊗γγγ11
y /R+(1−ν)Rγγγ11

x ⊗γγγ00
y /2

]
Km

23 = Dm
0

[
γγγ00

x ⊗γγγ10
y /R

]
Km

33 = Dm
0

[
γγγ00

x ⊗γγγ00
y /R

]

Kb=


0 0 0 0 0

Kb
22 0 Kb

24 Kb
25

0 0 0
sym Kb

44 Kb
45

Kb
55

 (27)

with
Kb

22 = Db
0

[
(1−ν)γγγ11

x ⊗γγγ00
y /2R

]
Kb

24 = Db
0

[
(1−ν)γγγ10

x ⊗γγγ01
y /2R

]
Kb

25 = Db
0

[
(1−ν)γγγ11

x ⊗γγγ00
y /2

]
Kb

44 = Db
0

[
Rγγγ11

x ⊗γγγ00
y +(1−ν)ΓΓΓ00

x ⊗γγγ11
y /2R

]
Kb

45 = Db
0

[
νγγγ10

x ⊗γγγ01
y +(1−ν)γγγ01

x ⊗γγγ10
y /2

]
Kb

55 = Db
0

[
γγγ00

x ⊗γγγ11
y /R+(1−ν)Rγγγ11

x ⊗γγγ00
y /2

]

Kt=


0 0 0 0 0

Kt
22 Kt

23 0 Kt
25

Kt
33 Kt

34 Kt
35

sym Kt
44 0

Kt
55

 (28)

with
Kt

22 = Dt
0

[
γγγ00

x ⊗γγγ00
y /R

]
Kt

23 = Dt
0

[
−γγγ00

x ⊗γγγ01
y /R

]
Kt

25 = Dt
0

[
−γγγ00

x ⊗γγγ00
y
]

Kt
33 = Dt

0

[
Rγγγ11

x ⊗γγγ00
y +γγγ00

x ⊗ΓΓΓ11
y /R

]
Kt

34 = Dt
0

[
Rγγγ10

x ⊗γγγ00
y
]

Kt
35 = Dt

0

[
γγγ00

x ⊗γγγ10
y
]

Kt
44 = Dt

0

[
Rγγγ00

x ⊗γγγ00
y
]

Kt
55 = Dt

0

[
Rγγγ00

x ⊗γγγ00
y
]

where the details of integration matrix γγγ can be found in Appendix. The formula-
tion of mass matrix is relatively simple:

M =ρRγγγ
00
x ⊗γγγ

00
y


h 0 0 0 0

h 0 0 0
h 0 0

sym h3/12 0
h3/12

 (29)
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4.2 The doubly-curved shell element

During the construction of BSWI element, the hyperbolic paraboloidal shell is re-
garded as a special case of doubly-curved shell. Thus, in this section, we only give
the formulation of a common doubly-curved shell element. Substituting A1 = Rx

andA2 = Ry. into Eqs. (2-4) results in:

εεε = Bεd =


1

Rx

∂

∂θx
0 1

Rx
0 0

0 1
Ry

∂

∂θy
0 0 0

1
Ry

∂

∂θy

1
Rx

∂

∂θx
0 0 0

d (30)

κκκ = Bκd =

0 0 0 1
Rx

∂

∂θx
0

0 0 0 0 1
Ry

∂

∂θy

0 0 Rx+Ry
RxRy

1
Ry

∂

∂θy

1
Rx

∂

∂θx

d (31)

γγγ = Bγd =

[
− 1

Rx
0 1

Rx

∂

∂θx
1 0

0 − 1
Ry

1
Ry

∂

∂θy
0 1

]
d (32)

The stiffness matrix K is written as the summation of the three parts as Eq. (17),
denote rxy = (Rx +Ry)/RxRy, then the details of K can be expressed as:

Km =


Km

11 Km
12 Km

13 0 0
Km

22 Km
23 0 0

Km
33 0 0

sym 0 0
0

 (33)

with

Km
11 = Dm

0
[
Ryγγγ

11
x ⊗γγγ

00
y /Rx +(1−ν)Rxγγγ

00
x ⊗γγγ

11
y /2Ry

]
Km

12 = Dm
0
[
νγγγ

10
x ⊗γγγ

01
y +(1−ν)γγγ

00
x ⊗γγγ

11
y /2

]
Km

13 = Dm
0
[
Ryγγγ

10
x ⊗γγγ

00
y /Rx +νγγγ

10
x ⊗γγγ

00
y
]

Km
22 = Dm

0
[
Rxγγγ

00
x ⊗γγγ

11
y /Ry +(1−ν)Ryγγγ

11
x ⊗γγγ

00
y /2Rx

]
Km

23 = Dm
0
[
νγγγ

00
x ⊗γγγ

10
y +Rxγγγ

00
x ⊗γγγ

10
y /Ry

]
Km

33 = Dm
0
[
(Ry/Rx +Rx/Ry +2ν)γγγ

00
x ⊗γγγ

00
y
]

Kb =


0 0 0 0 0

0 0 0 0
Kb

33 Kb
34 Kb

35
sym Kb

44 Kb
45

Kb
55

 (34)
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with

Kb
33 = RxRyDb

0
[
r2

xy (1 - ν)γγγ
00
x ⊗γγγ

00
y /2

]
Kb

34 = RxDb
0
[
rxy (1 - ν)γγγ

00
x ⊗γγγ

01
y /2

]
Kb

35 = RyDb
0
[
rxy (1 - ν)γγγ

01
x ⊗γγγ

00
y /2

]
Kb

44 = Db
0
[
Ryγγγ

11
x ⊗γγγ

00
y /Rx +Rx (1−ν)γγγ

00
x ⊗γγγ

11
y /2Ry

]
Kb

45 = Db
0
[
νγγγ

10
x ⊗γγγ

01
y +(1−ν)γγγ

01
x ⊗γγγ

10
y /2

]
Kb

55 = Db
0
[
Rxγγγ

00
x ⊗γγγ

11
y /Ry +Ry (1−ν)γγγ

11
x ⊗γγγ

00
y /2Rx

]

Kt =


Kt

11 0 Kt
13 Kt

14 0
Kt

22 Kt
23 0 Kt

25
Kt

33 Kt
34 Kt

35
sym Kt

44 0
Kt

55

 (35)

with

Kt
11 = Dt

0
[
Ryγγγ

00
x ⊗γγγ

00
y
]

Kt
13 = Dt

0
[
−Ryγγγ

01
x ⊗ΓΓΓ

00
y /Rx

]
Kt

14 = Dt
0
[
−Ryγγγ

00
x ⊗γγγ

00
y
]

Kt
22 = Dt

0
[
Rxγγγ

00
x ⊗γγγ

00
y
]

Kt
23 = Dt

0
[
−Rxγγγ

00
x ⊗γγγ

01
y /Ry

]
Kt

25 = Dt
0
[
−Rxγγγ

00
x ⊗ΓΓΓ

00
y
]

Kt
33 = Dt

0
[
Ryγγγ

11
x ⊗γγγ

00
y /Rx +Rxγγγ

00
x ⊗γγγ

11
y /Ry

]
Kt

34 = Dt
0
[
Ryγγγ

10
x ⊗γγγ

00
y
]

Kt
35 = Dt

0
[
Rxγγγ

00
x ⊗γγγ

10
y
]

Kt
44 = Dt

0
[
RxRyγγγ

00
x ⊗γγγ

00
y
]

Kt
55 = Dt

0
[
RxRyγγγ

00
x ⊗ΓΓΓ

00
y
]

The corresponding mass matrix is:

M =ρRxRyγγγ
00
x ⊗ΓΓΓ

00
y


h 0 0 0 0

h 0 0 0
h 0 0

sym h3/12 0
h3/12

 (36)

5 Numerical studies and comparisons

In this paper, we verify the numerical efficiency and accuracy of the present method
through comparison studies. A set of numerical results are presented and supple-
mented by some typical mode shape illustrations. Throughout the numerical exam-
ples, the Poisson’s ratio v is assigned as 0.3, and the shear correction factors k is
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selected as 0.8601 (CCCC) and 5/6 (the other boundary conditions). The analysis
area is in a smooth and regular field, so only a uniform mesh is employed.

5.1 Free vibration of circular cylinder

5.1.1 Example 1: cylindrical panel

In Tab. 1 the first 10 frequencies for a CFFF boundary cylindrical panel with
the physical properties R = 1m, h = 0.1m, L = 2m, θ =120˚, ρ = 7800 and E
= 2.1×1011Pa are studied. For this problem, some referential solution has been
given by Tornabene et al. using GDQ method and kinds of commercial finite ele-
ment software [Tornabene, Viola and Inman (2009)]. By aid of one BSWI curved
shell element, an excellent agreement between the present method and reference is
achieved, and the first six mode shape obtained by BSWI is presented in Fig. 6. In
addition, one BSWI element is used in the following examples if no explanation is
given.

Table 1: The first10 frequencies for the cylindrical panel with CFFF boundary.

Method
Mode

1 2 3 4 5 6 7 8 9 10
GDQ* 58.32 90.62 146.35 230.72 263.63 278.56 339.43 430.81 489.26 511.3

Abaqus* 58.91 91.82 144.59 232.46 266.07 278.88 338.8 427.44 488.07 512.94
Ansys* 58.84 91.94 145.21 233.09 267.33 278.98 342.11 429.12 493.18 517.49

Nastran* 59.01 91.84 144.99 233.32 267.19 278.78 340.93 428.59 491.86 517.13
Straus* 58.97 91.77 145.08 232.34 266.62 278.47 341.58 427.02 491.01 514.68

Pro/Mechanica* 58.92 91.79 144.59 232.46 266.07 278.69 338.81 427.25 488.22 513.06
Present 58.97 91.95 144.56 232.76 266.94 278.95 339.21 426.58 489.02 514.27

* The solution was given by Tornabene et al. [Tornabene, Viola and Inman (2009)].

Further comparisons for BSWI cylindrical shell element with the referential solu-
tions under different kinds of boundary conditions are presented in Tab. 2. In Tab.
2 an open spherical shell with the same physic properties as the shell investigated in
Tab. 1 is studied. Three kinds of typical boundaries are selected: CFCF, FSFS and
SSFF. From the comparison with the GDQ method [Tornabene, Viola and Inman
(2009)], BSWI shows its accuracy in computations.

5.1.2 Example 2: closed cylindrical shell

In addition, for a comprehensive comparison, a closed cylindrical shell (θ = 360˚)
is investigated, too. Employing two BSWI elements, the estimations of the first 10
frequencies with the CC, SS and CS boundaries are made and presented in Tab.
3. The solution obtained by the GDQ method is also presented there [Tornabene,
Viola and Inman (2009)]. The present method has a good agreement with the GDQ
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Table 2: The first 10 frequencies for cylindrical panel characterized by different
boundary conditions.

Frequencies (Hz)
CFCF FSFS SSFF

GDQ* Present GDQ* Present GDQ* Present
f1 204.87 206.20 168.18 168.15 76.18 77.27
f2 222.97 224.88 364.40 361.99 188.14 187.56
f3 383.58 381.38 407.33 407.76 232.26 233.83
f4 441.11 439.00 421.67 418.85 285.37 285.03
f5 467.98 470.82 634.29 629.86 428.84 423.76
f6 474.78 477.74 651.69 645.32 467.63 468.60
f7 715.01 711.55 717.89 718.07 537.52 537.91
f8 719.14 720.63 781.15 788.76 573.73 572.80
f9 725.44 720.97 792.79 794.05 673.55 670.28
f10 736.76 738.58 806.95 807.02 731.76 724.83

* The solution was given by Tornabene et al. [Tornabene, Viola and Inman
(2009)].

Table 3: The first 5 frequencies for cylindrical shell characterized by different
boundary conditions.

Boundary Method
Mode sequence number

1 2 3 4 5

CC
GDQ* 360.36 375.86 463.29 523.55 646.56
Present 360.84 367.93 467.28 522.77 648.73

SS
GDQ* 331.15 348.46 440.86 508.07 596.25
Present 328.78 347.52 438.66 507.55 600.76

CS
GDQ* 344.78 361.52 451.18 515.53 628.74
Present 343.53 360.97 450.03 514.89 628.81

* The solution was given by Tornabene et al. [Tornabene, Viola and
Inman (2009)].

method in the lower mode shapes. With the increase of mode order number, the
agreement becomes weak. This phenomenon is caused by the fewer degrees of
freedom is used in BSWI for estimating frequencies. It should be mentioned that
the overlapped modes are neglected, and the first five different mode shapes are
shown in Fig. 7.
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Figure 5: The first six mode shapes of CFFF cylindrical panel

Table 4: Comparison of frequency parameters λ = ωa(ρ/E)0.5 for a thin fully
clamped (CCCC) shallow spherical shell.

Method
Mode sequence number

1 2 3 4 5 6 7 8
3-D Ritz Method* 0.57638 0.57638 0.59134 0.63038 0.64764 0.72609 0.72609 0.77493

Thin Shell Theory** 0.58099 0.58099 0.59594 0.63537 0.65422 0.73299 0.73299 0.77902
Present 0.58013 0.58028 0.59921 0.63310 0.66446 0.73952 0.73973 0.79636

* The solution was given by Liew et al. [Liew, Peng and Ng (2002)].
** The solution was given by Liew et al. [Liew and Lim (1994)].

5.2 Free vibration of doubly-curved shell

5.2.1 Example 3: thin shell

The present element is constructed based on the first order shear deformation the-
ory, so its applicability for thin shell should be validated. Tab. 4 compares the
results for a fully clamped (CCCC) thin spherical shell. The basic physical pa-
rameters are: thickness ratio h/a = 0.01; radius of curvature a/Rx = 0.5; radius
ratio Rx/Ry = 1. The dimensionless parameter λ = ωa(ρ/E)0.5 is used to charac-
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Table 5: Comparison of frequency parameters for the λ = ωab
√

ρh/Db
0 CFFF thin

doubly-curved shells.

b/Ry Ry/Rx Method
Mode sequence number

1 2 3 4 5 6

0.1

0.5
Leissa* 5.0840 8.6141 23.229 30.140 31.498 57.249
Liew** 5.0815 8.6109 23.220 30.136 31.487 57.236
Present 5.0865 8.6021 23.217 30.138 31.480 57.247

1.0
Leissa* 4.8282 8.6090 22.694 31.385 32.687 61.282
Liew** 4.8259 8.6058 22.684 31.374 32.682 61.263
Present 4.8270 8.5921 22.668 31.346 32.677 61.278

0.5

0.5
Leissa* 10.295 13.628 27.624 37.048 48.592 71.014
Liew** 10.284 13.606 27.608 37.020 48.499 70.812
Present 10.292 13.585 27.428 37.174 48.560 70.197

1.0
Leissa* 9.0027 9.7809 30.476 33.998 49.237 72.253
Liew** 9.0054 9.7612 30.404 33.943 49.024 71.849
Present 8.8715 9.5958 29.878 33.264 48.414 70.680

* The solution was given by Leissa et al. [Leissa, Lee and Wang (1983)].
** The solution was given by Liew et al. [Liew and Lim (1996)].

Table 6: Comparison of frequency parameters λ = ωa(ρ/E)0.5 derived from the
various shell theories and the present BSWI approach for moderately thick shallow
spherical shells (a/R = 0.5).

h/a Method
Symmetry classes and mode sequence number

SS1 SS2 SS3 SA1 SA2 SA3 AA1 AA2 AA3

0.1

First-order theory* 1.2106 3.1471 3.1915 1.9447 3.7149 3.8243 2.6888 4.4380 5.1226
First-order theory** 1.2005 3.1331 1.1782 1.9314 3.7025 3.8114 2.6749 4.4281 5.1086

3D Ritz*** 1.1881 3.1075 3.1560 1.9150 3.6824 3.8029 2.6610 4.3726 5.1028
Present 1.1863 3.0920 3.1355 1.9061 3.6666 3.7682 2.6383 4.3914 5.0852

0.2

First-order theory* 1.7638 4.3337 4.4078 2.8281 3.7653 5.1442 3.8062 4.4359 5.4412
First-order theory** 1.7454 4.3091 4.3861 2.8046 3.7546 5.1212 3.7827 4.4243 5.4329

3D Ritz*** 1.7358 4.3197 4.3994 2.8061 3.7392 5.1465 3.8044 4.3662 5.4149
Present 1.7265 4.3438 4.3921 2.7834 3.7333 5.0746 3.7509 4.3959 5.3920

* The solution was given by Liew and Lim [Liew and Lim (1995a)].
** The solution was given by Reddy [Reddy (1984)].

***The solution was given by Liew et al. [Liew, Peng and Ng (2002)].



Vibration Analysis of Curved Shell 147

 

 
 

f = 522.77Hz f = 648.73Hz 

f = 467.28Hzf = 367.93Hz f = 360.84Hz 

Figure 6: The first five mode shapes of CC closed cylindrical shell

terize frequency. For this problem, the relative exact solution has been obtained
by Liew and Lim [Liew and Lim (1994)] using a polynomial-based Ritz method
derived from thin shell theory, and another solution is given by Liew, Peng and Ng
[Liew, Peng and Ng (2002)] based on the 3D-Ritz method derived from the three
dimensional model and p-Ritz method. Compared with the solution obtained by
3D-Ritz method, the present solution employing one BSWI element shows a closer
agreement with the solution based on thin-shell theory.

5.2.2 Example 4: moderately thick shell

Further comparisons for moderately thick shell with the predictions from the present
method are presented in Tab. 5 for CFFF boundary open shell. The dimensionless

frequency parameter used here is defined as λ = ωab
√

ρh/Db
0, the other proper-

ties are v = 0.3, b/h= 100.0 and a/b = 1.0. The influences to frequency caused by
the variations of b/Ry and Ry/Rx are studied and compared with the frequencies ob-
tained by Leissa et al. [Leissa, Lee and Wang (1983)] and Liew et al. [Liew and
Lim (1996)]. It is clear that the solution obtained by the present method is in good
agreement with their solutions in a wide parameter range, especially the thicker
ones (b/Ry = 0.1).
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Figure 7: The mode shapes of CCCC doubly-curved shells

Another comparison is given in Tab. 6 among various theories and methods with
CCCC boundary, including the first order shear deformation theory of Liew et al.
[Liew and Lim (1995a)] and Reddy [Reddy (1984)]; the Ritz method based on
three dimensional model [Liew, Peng and Ng (2002)]. Parameter is selected as a/R
= 0.5 and λ = ωa(ρ/E)0.5. It is clear that with the increase of panel thickness, the
accuracy of the three dimensional model for this problem is evident. Tab. 6 presents
that the proposed method has a closer agreement with the 3D-Ritz method, thus
the accuracy of the BSWI is verified. It should be mentioned that symmetry (S)
and antisymmetry (A) is combined as SS, SA and AA to characterize mode shape.
Because of AS modes have the same frequencies with the SA modes, they are not
investigated in this paper. The corresponding mode shapes are depicted in Fig. 8.
Taking the abbreviation SA1 (Fig.8) for example, S means the waveform of mode
shape is symmetry in the first direction (point a to c), and A means the waveform
of mode shape is symmetry in the second direction (point b to d). It should be
mentioned that in SS and AA modes, the first direction is the x-axis and the second
direction is the y-axis.
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Table 7: Frequency parameters λ = ωa(ρ/E)0.5 for a fully clamped (CCCC) spher-
ical shell.

a/R h/a Method
Symmetry classes and mode sequence number

SS1 SS2 SS3 SA1 SA2 SA3 AA1 AA2 AA3

0.1

0.01
3D Ritz* 0.17654 0.41176 0.41691 0.24755 0.51081 0.64424 0.34551 0.73883 0.74202
Present 0.17638 0.43450 0.43987 0.24879 0.52829 0.65745 0.34687 0.74989 0.74989

0.1
3D Ritz* 1.0008 3.1349 3.1652 1.8961 3.7368 3.7969 2.6594 4.4385 5.1590
Present 0.9956 3.1180 3.1481 1.8859 3.7234 3.7735 2.6438 4.4376 5.1377

0.2
3D Ritz* 1.6329 4.3730 4.4338 2.8491 3.7468 5.1950 3.8329 4.4394 5.4546
Present 1.6202 4.3266 4.3876 2.8337 3.7272 5.1354 3.7947 4.4377 5.4346

0.3 3D Ritz* 1.9888 4.8901 4.9619 3.2854 3.7524 5.7619 4.3433 4.4397 5.4504
Present 1.9682 4.8136 4.8872 3.2434 3.7291 5.7487 4.2820 4.4377 5.4350

0.3

0.01
3D Ritz* 0.40471 0.50366 0.54653 0.39241 0.59206 0.70278 0.46231 0.79097 0.79798
Present 0.40765 0.52286 0.56508 0.39393 0.60683 0.70610 0.46350 0.79581 0.79581

0.1
3D Ritz* 1.0675 3.1267 3.1626 1.9018 3.7459 3.8020 2.6606 4.4168 5.1439
Present 1.0635 3.1088 3.1439 1.8929 3.7035 3.7740 2.6421 4.4224 5.1495

0.2
3D Ritz* 1.6682 4.3555 4.4223 2.8351 3.7419 5.1853 3.8236 4.4152 5.4414
Present 1.6567 4.3461 4.4226 2.8102 3.7296 5.1154 3.7802 4.4019 5.4207

0.3
3D Ritz* 2.0156 4.8694 4.9473 3.2577 3.7531 5.7493 4.3303 4.4099 5.4300
Present 1.9957 4.8787 4.9350 3.2139 3.7451 5.7256 4.2618 4.4227 5.4251

0.5

0.01
3D Ritz* 0.59165 0.64815 0.77540 0.57648 0.72685 0.80683 0.63061 0.88577 0.89967
Present 0.59921 0.66446 0.79636 0.58013 0.73952 0.81228 0.63312 0.86552 0.93432

0.1
3D Ritz* 1.1886 3.1095 3.1579 1.9122 3.6802 3.8052 2.6625 4.3727 5.1059
Present 1.1863 3.0902 3.1355 1.9061 3.6681 3.7682 2.6383 4.3914 5.0852

0.2
3D Ritz* 1.7360 4.3197 4.3993 2.8062 3.7322 5.1656 3.8044 4.3662 5.4151
Present 1.7265 4.2649 4.3921 2.7834 3.7333 5.0746 3.7509 4.3438 5.3920

0.3
3D Ritz* 2.0678 4.8267 4.9180 3.2027 3.7533 5.7234 4.3036 4.3503 5.3902
Present 2.0487 4.8316 4.9255 3.1592 3.7698 5.6981 4.2213 4.3921 5.4041

* The solution was given by Liew et al. [Liew, Peng and Ng (2002)].

5.2.3 Example 5: from thin to thick

In the examples mentioned above, thin shell and thick shell are studied indepen-
dently. Compared with the 3D Ritz method [Liew, Peng and Ng (2002)], an inves-
tigation from thin to thick shell is given in Tab. 7. Frequency parameter is assigned
as λ = ωa(ρ/E)0.5, and the boundary is selected as a fully clamped (CCCC). It can
be seen that the proposed method has a good agreement with the 3D Ritz method,
especially for moderately thick shells. The difference becomes bigger when the
panel thickness increases. This phenomenon is due to the shell hypothesis, which
neglects the stress along out-plane direction. However, it is clear that the shell ele-
ment is two dimensional, thus, a great deal of computing consumption is saved to
achieve a satisfying solution compared with the 3D method.

5.2.4 Example 6: hyperbolic paraboloidal shell

With the frequency parameter of λ = ωa(ρ/E)0.5 and the ratio a/b = 1, the estima-
tion of BSWI for the vibration parameters for the fully clamped (CCCC) hyperbolic
paraboloidal shell (Ry/Rx = -0.5) is presented in Tab. 8. The present solution is com-
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Table 8: Frequency parameter of λ = ωa(ρ/E)0.5 for a CCCC moderately thick
doubly-curved shallow shell with v = 0.3, a/b = 1 and different Ry/Rx.

Ry/Rx b/Ry h/b Method
Symmetry classes and mode sequence number

SS1 SS2 SS3 SA1 SA2 SA3 AA1 AA2 AA3

-0.5

0.1
0.1

Ritz* 0.98918 3.1092 3.1383 1.8800 3.7261 3.7618 2.6346 4.4399 5.0972
Present 0.98977 3.1019 3.1316 1.8790 3.7252 3.7508 2.6307 4.4385 5.1032

0.2
Ritz* 1.6114 4.3090 4.3680 2.8047 3.7270 5.1124 3.7691 4.4409 5.4359

Present 1.6171 4.2867 4.3459 2.8024 3.7265 5.0857 3.7599 4.4380 5.4345

0.3
0.1

Ritz* 1.0207 3.1158 3.1451 1.8956 3.7208 3.7681 2.6369 4.4434 5.0973
Present 1.0167 3.1095 3.1455 1.8966 3.7148 3.7646 2.6343 4.4305 5.1165

0.2
Ritz* 1.6317 4.3140 4.3718 2.8143 3.7280 5.1089 3.7624 4.4518 5.4346

Present 1.6296 4.3153 4.3783 2.8140 3.7231 5.1094 3.7723 4.4407 5.4200

0.5

0.1
0.1

Ritz* 0.99122 3.1093 3.1388 1.8805 3.7252 3.7634 2.6356 4.4395 5.0979
Present 0.99210 3.1184 3.1484 1.8843 3.7250 3.7729 2.6438 4.4384 5.1017

0.2
Ritz* 1.6128 4.3091 4.3685 2.8049 3.7273 5.1133 3.7707 4.4396 5.4362

Present 1.6183 4.3275 4.3883 2.8229 3.7274 5.1213 3.7612 4.4386 5.4352

0.3
0.1

Ritz* 1.0384 3.1167 3.1494 1.8997 3.7167 3.7788 2.6456 4.4396 5.1033
Present 1.0334 3.1096 3.1484 1.8996 3.7144 3.7751 2.6419 4.4298 5.1216

0.2
Ritz* 1.6437 4.3142 4.3761 2.8159 3.7309 5.1177 3.7765 4.4401 5.4369

Present 1.6401 4.3131 4.3808 2.8036 3.7308 5.1167 3.7848 4.4310 5.4264

* The solution was given by Liew and Lim [Liew and Lim (1995a)].

pared with the solution given by Liew and Lim [Liew and Lim (1995a)] using the
Ritz method based on the refined first order shear deformation theory. From Tab.
8, it is observed that the present results are in good agreement with the solutions
obtained by Liew and Lim [Liew and Lim (1995a)].

6 Conclusions

A class of B-spline wavelet on interval curved shell elements are constructed in this
paper. This method gives satisfactory results for free vibration analysis of structures
with various curvatures, thicknesses and boundaries. The reason for getting accept-
able results can be attributed to the facts that the present element is developed in
generalized shell theory, which is adapted to obtain the couple of normal, tangential
and rotational displacement. Another reason for getting acceptable results can be
attributed to the numerical properties of B-spline wavelet on interval. By means of
the numerical examples, the accuracy and efficiency of the present element are val-
idated. It can be seen that the proposed method can obtain good results for the free
vibration analysis of structures. The methodology and results presented here can
help in understanding the more complicated behavior of the curved shell structures.
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Appendix

The integration matrixes mentioned in this paper have the details as the follows:

Γ
0,0
1 = sex

∫ 1

0
TT

Φ
T
ΦTdξ (A1)

Γ
0,1
1 =

∫ 1

0
TT

Φ
T dΦ

dξ
Tdξ (A2)

Γ
1,0
1 =

∫ 1

0
TT dΦT

dξ
ΦTdξ (A3)

Γ
1,1
1 =

1
sex

∫ 1

0
TT dΦT

dξ

dΦ

dξ
Tdξ (A4)

Γ
0,0
2 = sey

∫ 1

0
TT

Φ
T
ΦTdη (A5)

Γ
0,1
2 =

∫ 1

0
TT

Φ
T dΦ

dη
Tdη (A6)

Γ
1,0
2 =

∫ 1

0
TT dΦT

dη
ΦTdη (A7)

Γ
1,1
2 =

1
sey

∫ 1

0
TT dΦT

dη

dΦ

dη
Tdη (A8)

where sex and sey are the variables with corresponding Lame coefficients in x-axis
and y-axis directions, respectively (refer to Eqs (2-4)).




