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Uniform Loading of a Cracked Layered Composite Plate:
Experiments and Computational Modelling

A.P.S. Selvadurai1,2 and H. Nikopour2

Abstract: This paper examines the influence of a through crack on the over-
all flexural behaviour of a layered composite Carbon Fibre Reinforced Polymer
(CFRP) plate that is fixed boundary along a circular boundary. Plates with dif-
ferent through crack configurations and subjected to uniform air pressure loading
are examined both experimentally and computationally. In particular, the effect
of crack length and its orientation on the overall pressure-deflection behaviour of
the composite plate is investigated. The layered composite CFRP plate used in the
experimental investigation consisted of 11 layers of a polyester matrix unidirec-
tionally reinforced with carbon fibres. The bulk fibre volume fraction in the plate
was approximately 61%. The stacking of cracked laminae is used to construct a
model of the plate. The experimental results for the central deflection of the plate
were used to establish the validity of a computational approach that also accounts
for large deflections of the plate within the small strain range.

Keywords: Laminated composite plate, cracked plate, elasticity, finite element
analysis, large deflection behavior, representative area element.

1 Introduction

Fibre-reinforced plates are used extensively in various engineering applications be-
cause of their high tensile strength, light weight, resistance to corrosion and high
durability [Spencer (1972); Selvadurai and Moutafis (1975), Christensen (1979);
Jones (1987); ten Busschen and Selvadurai (1995), Selvadurai and ten Busschen
(1995), Hwu and Yu (2010); Nikopour and Nehdi (2011); Nehdi and Nikopour
(2011)]. Although research on the mechanical behaviour of fibre-reinforced plates
has made considerable progress over the past decades, there still remain a number
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of aspects of the mechanical behaviour of fibre-reinforced plates that need further
investigation. In particular, the mechanics of fibre reinforced plates during progres-
sive damage is less well understood in comparison to the significant progress that
has been made in the modelling and experiments involving defect free composite
plates [Reddy (2004)]. Damage in fibre-reinforced composites can take place at
various scales ranging from matrix cracking, matrix yield, fibre fracture and inter-
face debonding, depending upon the types of mechanical and environmental loads
that are applied to the composite during its functional use. The importance of dam-
age to the structural integrity of fibre-reinforced materials was discussed several
decades ago by a number of researchers including Beaumont and Harris (1972),
Bowling and Groves (1979), Aveston and Kelly (1980), and Backlund (1981). The
investigations dealing with the modelling of flaw-bridging in composites were pre-
sented by Selvadurai (1983 a, b; 2010). This paper examines role of a through crack
on the overall mechanical behaviour of a laminated fibre reinforced composite. In
particular, the influence of crack length and orientation is examined experimentally
using an apparatus that can apply a uniform pressure. The paper also presents the
application of a computational procedure that accounts for large deflection effects,
to model the plate flexure. The results of the computational modelling, which use
the model for the elastic behaviour of a single unidirectionally reinforced laminae
with an irregular representative fibre spatial arrangement and volume fraction, are
compared with experimental results.

2 Plate lay-up and material properties

The fibre-reinforced plates used in this research were supplied by Aerospace Com-
posite Products, California, USA. The tested plates measured 460.0 mm×360.0
mm×2.4 mm. Optical microscope investigations were made on samples measuring
25.0 mm×5.0 mm×2.4 mm to identify the fibre arrangement. Figure 1 shows the
scanned results for the physical arrangement of fibres in the plate.

The image processing toolbox in the MATLABT M software was then used to esti-
mate the fibre area fraction in a single layer. The fibre area fraction changes with
the size, location and orientation of the chosen representative area; the results of
image analysis indicate that the limiting fibre The plate consisted of 11 orthogo-
nally oriented layers with a lay-up of [(90◦/0◦)2, 90◦, 0◦, 90◦, (90◦/0◦)2] relative to
the longitudinal direction of the plate. The diameter of a typical fibre was 8 µm.
Volume fraction was approximately 61% for a large square section that had an area
greater than 40 times the area of a single fibre. As is evident from Fig. 2, the tensile
failure of the fibre-reinforced material involves largely fibre breakage rather than
fibre pull out. This points to a fibre-reinforced material with adequate fibre-matrix
bond.
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Figure 1: Results from the scanning electron microscope
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Figure 2: The fracture topography
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In a companion study [Selvadurai and Nikopour (2012)], the effective transversely
isotropic properties of a unidirectionally fibre-reinforced carbon-fibre-polymer com-
posite was investigated using a micro-mechanical computational simulation of the
fibre arrangements over a representative over a representative area element of the
composite. It was shown that the effective transversely isotropic elastic properties
of the unidirectionally reinforced composite determined from experimental results
coupled with computational simulations closely matched the results based on the
theoretical relationships proposed by Hashin and Rosen (1964). The properties of
both the fibre and matrix materials in their as-supplied condition were provided by
the manufacturer and these are listed in Table 1.

Table 1: Mechanical properties of resin matrix and fibre

Property Specific Tensile Young’s Ultimate Poisson’s
Gravity Strength Modulus Tensile Strain Ratio

Resin 1.20 78.6 MPa 3.1 GPa 3.4% 0.35
Fibre 1.81 2450.4 MPa 224.4 GPa 1.6 % 0.20

Table 2 shows a comparison between the transversely isotropic elastic constants de-
termined from the Hashin and Rosen model [Hashin and Rosen (1964)], which does
not take into consideration any irregularity in the fibre arrangement with results
obtained from the Selvadurai Nikopour RAE approach [Selvadurai and Nikopour
(2012)] that considers irregular fibre arrangements.

The strain-stress relations can be expressed in terms of the five elastic constants,

Table 2: Transverse isotropic elasticity properties obtained from Hashin and Rosen
(1964) and the RAE approach of Selvadurai and Nikopour (2012)

Hashin and Rosen RAE Percentage difference
E11[GPa] 149.17 146.26 2.0

ν12 0.23 0.23 0.0
E22[GPa] 12.72 12.11 5.0

ν23 0.27 0.29 7.4
G23[GPa] 5.01 4.85 3.3



Uniform Loading of a Cracked Layered Composite Plate 283

E11,E22,ν13,ν23 and G12 in the form

ε11
ε22
ε33
2ε31
2ε12
2ε23


=



1
E11

− ν12
E11

− ν13
E11

0 0 0
− ν12

E11

1
E11

− ν13
E11

0 0 0
− ν13

E11
− ν13

E11

1
E33

0 0 0
0 0 0 1

G12
0 0

0 0 0 0 1
G12

0
0 0 0 0 0 2(1+ν23)

E22





σ11
σ22
σ33
σ31
σ12
σ23


(1)

The relationship (1) can be inverted to obtain the stresses in terms of the strains.
The thermodynamic requirements for positive definite strain energy is defined by
the condition

U =
1
2

σi jεi j > 0 (2)

We can substitute (1) into (2) and group terms such that the result has a quadratic
form in εi j [see Selvadurai (2000) for the isotropic case]. The requirement for pos-
itive definite strain energy thus reduces to the multiplying factors of the quadratic
terms be positive definite [Christensen (1979), Amadei et al. (1987)].
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(3)

Elastic constants determined from both the Hashin and Rosen model and the Sel-
vadurai Nikopour RAE approach satisfied the thermodynamic restrictions. The
research presented in paper makes direct use of the properties determined from the
RAE method to examine the mechanical behaviour of a laminated plate contain-
ing a through crack and exhibiting large deflections, within the small strain range,
during flexure.

3 Air pressure loading of a circular cracked plate

The test apparatus shown in Fig. 3, had provisions for examining the flexural be-
haviour of a composite plate that was fixed along a circular boundary with a diam-
eter of 250 mm. Figure 4 shows a schematic view of the test setup and steel grips
used to provide fixity. The plates were subjected to a monotonically increasing
quasi-static air pressure using and air-flow controller (OmegaT M) with capacity of
10 litres /min, which was connected to 3 power supplies for ±15 Volts DC control.
A potentiometer was installed in the apparatus to measure the transverse deflection
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at the center of the plate. Pressure in the system was monitored using a 1000 kPa
pressure transducer (HoneywellT M). The applied pressure and the resulting dis-
placements were monitored using a digital data acquisition system (Measurement
COMPUTINGT M) connected to a computer that incorporated the TracerDAQT M

software. The fixed boundary condition was achieved by clamping the CFRP plate
between two steel plates of 10.0 mm thickness, using eight 4 mm screws. In order
to prevent the air leakage and pressure loss in the system, four layers of thin adhe-
sive film were placed between the steel plates and test frame and also between the
steel plates and the CFRP plate. A thin natural rubber was incorporated between
the lower steel plate and the cracked CFRP plate to prevent air leakage through the
crack (Fig. 5).

 

400 mm Control valves 

Mass flow 
controller 

Pressurized air line 

Potentiometer CFRP plate 

4 mm screw

Steel plate

Figure 3: Experimental setup

Through cracks were made using a 500 µm thick slitting cutter with a diameter of
100 mm and 300 teeth which was connected to a milling machine (Fig. 6). Crack
tips were later polished using a #1500-b sandpaper (Fig. 7) to eliminate the stress
concentration effect. All tests were performed in a pressure control mode in a lab-
oratory where the temperature was approximately 20◦C with nominal variation of
±1◦C and maximum air pressurepmax was limited to 120 kPa. The air pressuriza-
tion was performed at a rate of ṗ = 200 Pa/sec to eliminate any dynamic or thermal
effects. Each test was performed 3 times to establish repeatability of the nonlinear
pressure-deflection results. Through crack patterns of various lengths were tested
(Fig. 8d); the results were then compared with results of computational modelling,
which was subsequently used to investigate flexure behaviour of plates with more
complex crack patterns.
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Figure 4: Schematic view of test setup
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Figure 5: Schematic view of the detail at B in Fig. 4
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Figure 6: Crack formation using a slitting cutter
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Figure 7: Optical images of a crack tip

4 Computational modelling of plates

The nonlinear theory of plates is well documented in the texts by Timoshenko and
Woinowsky-Krieger (1959) and Reddy (2004). The theory of large deflections of
laminated plates has also been investigated by Bathe and Bolourchi (1980), Punch
and Atluri (1986) and Kam et al. (1996) using computational approaches. Wu
and Erdogan (1993) analytically investigated the effect of through cracks on the
stress intensity factor for orthotropic laminated plates under flexure. Baltacioglu
and Civalek (2010) conducted a nonlinear analysis of anisotropic composite plates
resting on nonlinear elastic foundations. The displacement field in a thin laminated
plate undergoing large deflections is assumed to be of the form:

ux(x,y,z) = u0(x,y)+ zψx(x,y)
uy(x,y,z) = v0(x,y)+ zψy(x,y)
uz(x,y,z) = w(x,y)

(4)

where ux, uy, uz are the deflections in the x, y, z directions, respectively, u0,v0,w
are the associated mid-plane deflections, and ψx and ψy the rotations due to shear.
The strain-displacement relations in the von Karman plate theory can be expressed
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in the form [Kam (1996)]:
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where ε0
i (i = x,y,s) are in-plane strains; ε j ( j = 4,5) are transverse shear strains,

and κi (i = x,y,s) are bending curvatures. The associated second Piola-Kirchoff
stress vector σ is

σ = [σx,σy,σs,σ4,σ5] T (6)

The constitutive equations for the plate can be written as{
Ni
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}
=
[
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Bi j Di j

] {
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j
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In (4), ai j,Bi j,Di j(i, j = x,y,s) and Āi j(i, j = 4,5) are the in-plane, bending cou-
pling, bending or twisting, and thickness-shear stiffness coefficients. Ni, Mi, Q1
and Q2 are the stress resultants defined by

(Ni : Mi) =
∫ h/2

−h/2
(1 : z)σidz (8a)

(Q1 : Q2) =
∫ h/2

−h/2
(σ5 : σ4)dz (8b)

and

(Ai j : Bi j : Di j) =
NL

∑
m=1

∫ zm+1

zm

Q(m)
i j (1 : z : z2)dz; (i, j = x,y,s) (9a)
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Āi j =
NL

∑
m=1

∫ zm+1

zm

kαkβ Q(m)
i j dz; (i, j = 4,5; α = 6; β = 6− j) (9b)

where zm is the distance from the mid-plane to the lower surface of the mth layer,
NL is the total number of layers, Qi j are material constants, andkα are the shear
correction coefficients which are set as k1 = k2 =

√
5/6, [Kam et al. (1996)]. The

basis of the formulation of the governing equations of the plate is the principle of
minimum total potential energy in which the total potential energy π is expressed
as the sum of strain energy, U , and the potential energy, P:

π = U +P (10)

Performing the through thickness integration, the strain energy can be rewritten as
[Kam et al. (1996)]:

U =
1
2

∫ ∫ [
ε

0TAε
0 +2ε
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TĀγ
]
dxdy (11)

Considering the laminated composite plate discretized into NE elements, the strain
energy and potential energy of the plate can be expressed in the form:

U =
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and
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∑
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}
i

(13)

where Ωe,Ue are, respectively, the element area and the strain energy per element.
The mid-plane displacements and rotations (u0,v0,w,ψx,ψy) within an element are
given as a function of 5×n discrete nodal deflections and in matrix form they are:

u =
n

∑
i=1

[ΦiI]∇ei = Φ∇̃e (14)

where n is the number of nodes of the element; Φi are the shape functions; I is a
5× 5 unit matrix; Φ is the shape function matrix; ∇̃e =

{
∇e1,∇e2, ....,∇eq

}T; and
the nodal displacements ∇ei at a node are:

∇ei = {u0i,v0i,wi,ψxi,ψyi}T , i = 1, ...,n (15)
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The first variation of equation (10) in terms of the nodal displacements can be
expressed as:

δπ = δ (U +P) =
NE

∑
i=1

[
δ ∇̃

T
e Fe∇̃e

]
i −

NE

∑
i=1

[
δ ∇̃

T
e Pe
]

i = 0 (16)

where Fe∇̃e, Pe are the element internal and nodal force vectors.

In this research, computational modelling of the large deflection behaviour of the
plates, which incorporated the above developments, was performed using the general-
purpose finite element code ABAQUST M. The objective here is to model cracked
CFRP plates with different through crack patterns that are subjected to uniform
pressure, compare the computational predictions with experimental observations
for the central deflection of the plate and to observe the influence of the through
crack on the deflection contours. Considering the stacking arrangement for the
composite, the circular CFRP plate was modelled as a three-dimensional domain.
Transversely isotropic stiffness coefficients were determined [see e.g. Lekhnitskii
(1987), Hearmon (1961), Green and Zerna (1968); Maceri (2010)] and each layer
was modelled as a homogenous transversely isotropic material with a principal
axis along its fibre direction. Table 3 presents the transversely isotropic stiffness
coefficients calculated on the basis of the effective estimates derived computation-
ally using the RAE approach of Selvadurai and Nikopour (2012) and the analyt-
ical estimates obtained from Hashin and Rosen (1964) for the effective elasticity
properties of the transversely isotropic elastic layer. Perfect interface bonding was
assumed to exist between the layers forming the composite plate. As the thickness
of sealing rubber was small, (1 mm in the undeformed state and 0.3 mm in the de-
formed state after the steel screws and the steel bolts where completely tightened),
fixed-edge boundary conditions were used for the boundaries of the composite lay-
ers. The computational modelling of the test plate was performed using standard
15-noded quadratic triangular prism elements available in the element library of
ABAQUST M. Each node has three displacement and three rotational degrees of
freedom. The second-order form of the quadrilateral elements was selected be-
cause it provides greater accuracy for problems that do not involve complex contact
conditions. Second-order elements also have extra mid-side nodes in each element
making computations of large deflection behaviour more effective. The large de-
flections in the modelling are assumed to be mainly due to bending action and the
procedures can be extended to include shear deformations of the plate [Rajapakse
and Selvadurai (1986)]. Although in principle the crack tip contains a stress sin-
gularity, in the current modelling that focuses on the flexure problem, no singular
elements were incorporated. A study with progressive increases in the mesh re-
finement was conducted to determine convergent results and whether or not there
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should be a mesh refinement, to accommodate high stress gradient at the crack
tip, or use a coarser mesh to reduce the computing time. Mesh configuration for
composite plates with different types of crack patterns (Fig. 8) with a/R=0.8 are
presented in Fig. 9. Denser meshes were implemented close to the crack tips.
Scanning electron microscopy was used to check the possibility of crack devel-
opment/extension close to the crack tips. Crack extension was not observed at the
maximum pressure level chosen for testing the plates, consequently crack extension
was not considered in the computational modelling.

Table 3: Transversely isotropic stiffness coefficients for a composite layer ob-
tained from Hashin and Rosen [Hashin and Rosen (1964)] and RAE [Selvadurai
and Nikopour (2012)] methods.

 

1 
2 

3 

Elastic Coefficient D1111 D2222 D1122 D2233 D1212 D2323

RAE Method (GPa) 143.77 13.35 4.33 3.97 55.20 4.85
Hashin and Rosen (GPa) 142.08 13.86 4.42 3.84 55.20 5.01
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Figure 8: Intact plate and various crack patterns (R= 125 m; Crack length = 2a;
Plate lay-up in x- direction: [(90◦/0◦)2, 90◦, 0◦, 90◦, (90◦/0◦)2]).

5 Results and discussion

Figures 10-15 show the experimental results for pressure versus central deflection
for the intact plate and plates with C-90◦ crack pattern and crack length ratios (a/R)
of 0.2, 0.4, 0.6, 0.8 and 1. Plates with higher stiffness and lower crack length
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Figure 9: Mesh configurations for the intact CFRP plate and cracked CFRP plates
with a/R= 0.8

showed a more observable nonlinear pressure-deflection trend compared to less
stiff plates. This characteristic response is considered to be an effect that results
from large deflections. Plates with lower crack lengths had larger crack opening at
the maximum pressure loading; however, as mentioned earlier, no evidence of the
extension of the through crack was observed.

Having the experimental results for intact and C-900 cracked plates, computa-
tional modelling was verified by comparing numerical results with experimental
results. The reasonable predictions of the experimental responses using computa-
tional modelling then allowed further simulation of the other possible crack pat-
terns. Figure 16 presents the computational results for deflection contours of plates
with various types of crack patterns with a constant crack length ratio, a/R, of 0.8
under a constant pressure of 120 kPa. The cracked plate C-0◦ had the smallest
increase and C-0◦-45◦ cracked plate had the largest increase in their maximum de-
flection, with respect to the intact plate.

It should be mentioned that it is expected that by increasing the number of layers,
the results for C-00, C-450 and C-900 will converge to a unique number similar to
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Figure 10: Experimental and computational results for pressure versus transverse
deflection for intact CFRP plate.
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Figure 11: Experimental and computational results for pressure versus deflection
for C-90◦ plate with crack length ratio, a/R= 0.2
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Figure 12: Experimental and computational results for pressure versus deflection
for C-90◦ plate with crack length ratio, a/R= 0.4
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Figure 13: Experimental and computational results for pressure versus deflection
for C-90◦ plate with crack length ratio, a/R= 0.6
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Figure 14: Experimental and computational results for pressure versus deflection
for C-90◦ plate with crack length ratio, a/R= 0.8
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Figure 15: Experimental and computational results for pressure versus deflection
for C-90◦ plate with crack length ratio, a/R= 1.0
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Figure 16: Computational results for deflection of other cracked CFRP plates with
a/R= 0.8 under a pressure of 120 kPa



Uniform Loading of a Cracked Layered Composite Plate 295

that of an isotropic plate.

6 Concluding remarks

The mechanical behaviour of a CFRP composite plate, with various crack patterns
and crack lengths, subjected to uniform loading was examined using both experi-
ments and computational simulations. It was found that the RAE method developed
for estimating the elastic properties of uni-directional fibre reinforced plates pro-
vides reasonable estimates for the finite element modelling of a composite plate at
the macro-scale. The limitation of the RAE method is the need to perform optical
experiments to determine the fibre arrangement prior to developing the RAE ele-
ment. The RAE approach, however, captures the geometric features of the fibre
configuration, which is absent in effective property estimates proposed in the liter-
ature. The fact that both approaches give close results suggests that the theoretical
estimates can be used with confidence in instances where scanning electron micro-
scope images and data are unavailable. The other important observation was that
plates with higher stiffness and smaller crack lengths were more likely to exhibit a
nonlinear trend in the applied pressure-transverse deflection. At the level of applied
pressure, the regions in the vicinity of the crack tip remained intact and there were
no observations of crack extension. The computational modelling that incorporates
effect of large deflections is essential for examining the deflection behaviour of the
plate.
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