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Design of Compliant Mechanisms Using Meshless Level
Set Methods
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Abstract: This paper presents a meshless Galerkin level-set method (MGLSM)
for shape and topology optimization of compliant mechanisms of geometrically
nonlinear structures. The design boundary of the mechanism is implicitly described
as the zero level set of a Lipschitz continuous level set function of higher dimension.
The moving least square (MLS) approximation is used to construct the meshless
shape functions with the global Galerkin weak-form in terms of a set of arbitrar-
ily distributed nodes. The MLS shape function is first employed to parameterize
the level set function via the surface fitting rather than interpolation, and then used
to implement the meshless approximations of the discrete state equations. Since
the MLS shape function lacks of Kronecker delta function property, a constrained
Galerkin global weak-form using the penalty method is applied to enforce the es-
sential boundary conditions. In this way, the shape and topology optimization of
the design boundary is just a question of advancing the discrete level set function
in time by updating the unknown parameters for the parameterized size optimiza-
tion. Compared to most conventional level set methods, the proposed MGLSM is
able to (1) propagate the discrete level set function and solve the state equations
at the same time with one unified set of meshes, (2) avoid numerical difficulties in
solving the complicate Hamilton-Jacobi partial differential equations (PDEs), and
(3) describe the implicit moving boundaries without remeshing for discontinuities.
A benchmark numerical example is used to demonstrate the effectiveness of the
proposed method.

Keywords: Complaint mechanisms; Topology optimization; Level set methods;
Moving least square (MLS) shape functions; Meshless Galerkin weak-forms.

1 School of Electrical, Mechanical and Mechatronic Systems, The University of Technology, Syd-
ney, NSW 2007, Australia

2 School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei
430074, China

3 Corresponding Author, Tel.: +86 27 8779 3070; Fax: +86 27 8779 2251. E-mail address: wu-
tao1972@mail.hust.edu.cn (Prof. Tao Wu)



300 Copyright © 2012 Tech Science Press CMES, vol.85, no.4, pp.299-328, 2012

1 Introduction

Compliant mechanisms [Howell (2001)] are a relatively new family of hinge-free
devices to perform mechanical tasks of transferring and transforming energy, force
and motion between different ports. Compared to conventional rigid-link mecha-
nisms, a compliant mechanism can achieve at least a portion of its flexibility via the
elastic deformation of one more structural segments triggered by the strain energy.
Compliant mechanisms are becoming increasingly popular in a variety of engineer-
ing areas over the past [Ananthasuresh and Howell (2005)], due to its great poten-
tial in reducing friction, lubrication, assemblage, noise and vibration. Amongst a
number of design methods, topology optimization has provided an alternative tech-
nique for the systematic design of compliant mechanisms [Sigmund (1997); Howell
(2011); Lin, Luo and Tong (2010)].

Topology optimization has recently experienced considerable development with
a range of successful applications [Bendsøe and Sigmund (2003)], including the
lightweight design of aerospace structures [Luo, Yang and Chen (2006)], and com-
pliant multiphysics actuators [Luo, Tong and Kang (2009); Luo, Zhang, Ji and Wu
(2012)]. Essentially, topology optimization consists of a numerical procedure to
iteratively redistribute a prescribed amount of material in the design domain sub-
jecting to supports and loads, to determine the best material layout to optimize
the design objective under specific constraints. During the past years, several typ-
ical topology optimization methods have been developed, including the homog-
enization method [Bendsøe and Kikuchi (1988)], the SIMP approach [Zhou and
Rozvany (1991); Bendsøe and Sigmund (1998)], and the level set-based method
[Sethian and Wiegman (2000); Wang, Wang and Guo (2003); Allaire, Jouve and
Toader (2004)]. In particular, SIMP has experienced popularity due to its concep-
tual simplicity and implementation easiness, and a couple of variant SIMP models
have also been developed [e.g. Kang and Wang (2011); Wang, Luo and Zhang
(2012)].

Recently, the level set method has emerged as an alternative approach to struc-
tural shape and topology optimization. The level set method is originally intended
for tracking, modeling, and simulating the motion of an interface to achieve com-
plex shape fidelity and topology changes in many fields [Osher and Sethia (1988);
Sethian (1999); Osher and Fedkiw (2002)]. Since the landmark work of [Sethian
and Wiegmann (2000)], many different level set methods have been developed for
shape and topology optimization problems. These methods can be roughly classi-
fied into two different categories. The first of which is to evolve the design bound-
ary according to the solutions of the Hamilton-Jacobi PDEs using explicit time
schemes [Sethian and Wiegmann (2000); Wang, Wang and Guo (2003); Allaire,
Jouve and Toader (2004); Yamada, Izui, Nishiwaki and takezawa (2010)]. How-
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ever, it is well known that several unfavorable numerical features are involved in ap-
plying the standard level set method to shape and topology optimization of contin-
uum structures. To overcome these numerical difficulties, some alternative level set
methods have been developed without directly solving the Hamilton-Jacobi PDEs
[e.g. Luo, Tong and Kang (2009); Lin, Luo and Tong (2010); Luo, Zhang, Ji
and Wu (2012)]. But it can be found that most of the above level set methods com-
prise two distinct numerical stages based on two different sets of structured meshes,
namely, the propagation of the discrete level set function based on a set of Eulerian
grid and the state equations discretization based on a set of Lagrangian mesh. To
unify the two different stages will simplify the numerical process in applying the
level set method to shape and topology optimization. Since the level set equation
is hyperbolic PDEs, it is difficult to unify the two different stages using standard
finite element methods due to numerical instabilities.

Over the past, at least 10 different meshfree methods have been developed with
a large number of publications [Belytscko, Krongauz, Organ, Fleming, and Krysl
(1996); Atluri and Shen (2002); Liu and Gu (2005)]. Amongst these methods, the
methods based on Galerkin weak-forms are experiencing popularity, which typ-
ically include the element free Galerkin (EFG) method [Belytscko, Lu, and Gu
(1994)] and the meshless local Petrov-Galerkin (MLPG) method [Atluri and Zhu
(1998)]. In particular, the EFG method [Belytscko, Lu, and Gu (1994)] has been
successfully applied to many mechanics problems, because the EFG method in gen-
eral exhibits good numerical stability and accuracy for solid mechanics problems
[Dolbow and Belytscko (1998)]. In EFG methods, the MLS approximation [Lan-
caster and Salkauskas (1981)] is usually employed to construct the shape function,
the Galerkin global weak-form is used to discretize the state equation, and back-
ground cells, independent of the field nodes, is included to implement numerical in-
tegrations for system matrices. The MLS Galerkin approximation is required to be
constrained to enforce the satisfaction of the Kronecker delta function property for
the imposition of essential boundary conditions. So in this way the MLS approxi-
mation is both consistent and compatible, and one particular attractive property of
MLS approximation is that its continuity can be inherited from the continuity of
weight functions.

From the literature, it can be seen that there have been a few researches attempted
to apply meshless methods to topology optimization of structures [Li and Atluri
(2008); Zheng, Long and Xiong and Li (2008); Du, Luo, Tian and Chen (2009);
Luo, Zhang, Ji and Wu (2012)]. However, the EFG method with MLS approx-
imation hasn’t been applied to level-set models for advanced topology optimiza-
tion problems of structures, although it is a natural way to combine EFG meshless
methods with level-set models. So this study aims to propose a meshless level-set



302 Copyright © 2012 Tech Science Press CMES, vol.85, no.4, pp.299-328, 2012

method for shape and topology optimization of the compliant mechanisms in terms
of a set of arbitrarily scattered nodes. The MLS shape function is not only used to
parameterize the level set function, but also applied to construct the shape functions
for meshless function approximations. The MLS meshless approximation enforced
by the penalty method can satisfy the basic requirements for a good meshless ap-
proximation. As a result, compared to most conventional level set methods asso-
ciated with finite element methods, the proposed meshless level set method can be
used to unify the two different numerical stages, to avoid numerical difficulties and
to handle the moving boundary discontinuities without remeshing.

2 Approximations using MLS shape functions

With the well-known moving least squares (MLS) interpolants in curve and surface
fitting [Lancaster and Salkauskas (1981)], the MLS approximation for a general
function u(x) at x is defined by

uh(x) =
m

∑
J=1

pJ(x)aJ(x) =pT(x)a(x) (1)

where pT(x) is a complete polynomial of order m acting as the basis at x. For a
linear basis in two dimensional cases, we have the following definition considering
x = [x,y] and xI = [xI,yI]

pT(x) = [1,x,y] (2)

and a(x) is the vector consisting of unknown coefficients, which is given as

aT(x) = [a0(x),a1(x),a2(x), ...,am(x)] (3)

where a j(x) are the parameters related to any given point, which can be determined
by minimizing a weighted discrete L2 norm over all nodes I ∈ {1,2, ...,n} where
the parameters uI are pre-known.

J =
n

∑
I=1

w̃(x−xI)

(
m

∑
J=1

pJ(xI)aJ(x)−uI

)2

(4)

where n is the number of nodes within the local support of x where w̃(x−xI) 6= 0.
uI is the nodal parameter of u at x = xI . The minimization of J with respect to the
coefficients a(x) results in a set of linear equations as

A(x)a(x) = B(x)u (5)
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Here u is the vector consisting of the nodal parameters for all nodes inside the
support domain, and uT = [u1,u2, ...,un]. A(x) and B(x) are the matrices which can
be constructed according to the linear basis and the weight function. A(x) is called
the weighted moment matrix defined by

A(x) =
n

∑
I=1

w̃(x−xI)p(xI)pT(xI) (6)

and the matrix B(x) is defined as

B(x) = [w̃(x−x1)p(x1), w̃(x−x2)p(x2), ..., w̃(x−xn)p(xn)] (7)

Solving Equation (5) for a(x) leads to

a(x) = A−1(x)B(x)u (8)

Substituting the above equation back into Equation (1), we have the following the
MLS approximant

uh(x) =
n

∑
I=1

NI(x)uI = N(x)u (9)

where N(x) is the vector of MLS shape functions related to the n nodes in the local
support domain of the point x. The shape function NI(x) associated with node I at
point x can be written as

NI(x) = pT(x)(A(x))−1 BI(x) (10)

The partial derivative of the shape function is expressed as follows:

NI,x(x) = pT
,x(x)A

−1(x)BI(x)+pT(x)(A−1(x)),xBI(x)+pT(x)A−1(x)BI,x(x) (11)

where

BI,x(x) =
dw̃
dx

(x− xI)p(xI) (12)

(A(x))−1
,x =−A−1(x)A(x),xA−1(x) (13)

where

A,x(x) =
n

∑
I=1

dw̃
dx

(x− xI)p(xI)pT(xI) (14)
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The matrix A(x) is often referred to the moment matrix of size m×m. It can be
seen that this matrix must be inverted wherever the MLS shape functions are to be
evaluated. Considering computational cost and the possibility of moment matrix
singularity, a more efficient numerical scheme involving the LU decomposition
can refer to the work of [Dolbow and Belytscko (1998)].

The MLS shape functions have the following properties:

(1) Linear consistency due to the linear basis k=1 used. The consistency condition
is closely related to the completeness and reproducibility of the approximation. The
lowest order form of MLS shape functions is the well-known Shepard function.

(2) Partition of unity, because the constant term is included in the basis.

(3) The desirable continuity of the approximation inherited from the weigh function
of high continuity.

(4) The MLS shape function lacks of the Kronecker delta function property, as there
is no guarantee that the smooth curve or surface via the least square fitting will pass
through the nodes.

As aforementioned, in MLS approximations, each node is associated with a com-
pactly supported non-negative weight function. One of the major advantages of
MLS approximation is it can inherit the continuity of the weight function. A lower
order polynomial basis can be used to generate higher continuous approximations
by choosing a proper weight function, and so the weight function plays an im-
portant role in the performance of meshless approximations. Many functions can
act as the weight functions provided that they can satisfy certain conditions [Lan-
caster and Salkauskas (1981)], such as continuous and derivable functions that are
non-negative and compactly supported over the local domain, a normality (unity)
property, a monotonically decreasing function, and Dirac delta function behavior.
The condition of non-negative and compact support is crucial for the selection of
weight function, as it enables the approximation to be generated via a local rep-
resentation of window wavelets. The normality condition may be used to assure
consistency of the discrete form of the approximation.

In terms of the above selection criteria, the commonly used weight functions for
MLS approximations include the exponential, the cubic spline and the quartic
spline functions. This work employs the cubic spline weight function with rect-
angle influence domain. The weight function and its derivative are written as a
function of the normalized radius ϒ[Dolbow and Belytscko (1998)], respectively,
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as

w̃(x− xI) = w(ϒ) =


2
3 −4ϒ2 +4ϒ3, for ϒ≤ 1

2

0, for ϒ > 1
4
3 −4ϒ+4ϒ2− 4

3 ϒ3, for 1
2 < ϒ≤ 1

(15)

dw̃I

dx
=

dw̃I

dϒ

dϒ

dx
=


(−8ϒ+12ϒ2)sign(x− xI), for ϒ≤ 1

2

0, for ϒ > 1
(−4+8ϒ−4ϒ2)sign(x− xI), for 1

2 < ϒ≤ 1

(16)

It is noted that the spatial derivative of the weight function is necessary for the
evaluation of the spatial derivative of the matrices A and B. This first-order deriva-
tive is continuous over the entire domain. By far we have obtained the MLS shape
functions for meshless approximations of the displacement.

3 Level set model using MLS shape functions

As aforementioned, in most of current level set methods, the design boundary is im-
plicitly represented by embedding it into the zero level-sets of a higher-dimensional
level set surface (e.g. 2D boundary to 3D surface) [Osher and Sethian (1988);
Sethian (1999); Osher and Fedkiw (2002)]. The level set optimization is actually
a process of shape variations but able to achieve topological changes via boundary
merging and breaking simultaneously. This process leads to an integrated shape and
topology optimization with clear medium interfaces in distinct and smooth state. It
is noted that the level set function itself is a mathematically only scalar function
with Lipschitz continuity, without any physical meanings to mechanics problems
[Luo, Zhang and Wang (2012)].

In this study, the level set function Φ is defined over a fixed reference domain
D, a bounded open set including all the admissible shapes of the design domain
Ω(Ω ⊂ D). For instance, the boundary representation scheme for a 2D structure
(d = 2) is illustrated by embedding it into a 3D level set surface at its zero level set
as follows (Figure 1):

Φ(x) < 0⇔∀x ∈Ω\∂Ω(void)
Φ(x) = 0⇔∀x ∈ ∂Ω∩D(boundary)
Φ(x) > 0⇔∀x ∈ D\Ω(material)

(17)

To enable the dynamic process, introducing the pseudo-time t into the level set
function Φ(x) leads to the following first-order Hamilton-Jacobi PDE by differ-
entiating Φ(x(t), t) = 0 on both sides with respect to the pseudo-time t [Sethian
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(a) 2D boundary at zero level set              (b) 3D level set surface 

 Figure 1: Implicit level set representation at zero level set

(1999); Osher and Fedkiw (2002)]:

∂Φ(x, t)
∂ t

+vn |∇Φ|= 0, Φ(x,0) = Φ0(x) (18)

The normal velocity is expressed as follows:

vn = v ·n = v ·
(

∇Φ

|∇Φ|

)
=

dx
dt

(
∇Φ√

∇Φ ·∇Φ

)
(19)

Hence, moving boundary Γ = {x |Φ(x) = C} along normal direction nis equivalent
to advancing the level set function Φ by solving the Hamilton-Jacobi PDE with
appropriate numerical schemes. In most conventional level set methods [Wang,
Wang and Guo (2003); Allaire, Jouve and Toader (2004)], the motion of the dis-
crete level set function is governed by a process of solving the Hamilton-Jacobi
PDEs on a fixed Eulerian rectilinear grids, and the velocity field in the Equation
(22) is generally determined using the shape derivative analysis [Sokolowski, and
Zolesio (1992)]. Since a general analytical form for the level set function is usually
unknown, in conventional level set methods, explicit schemes are indispensable to
enable the propagation of the discrete level set function in time.

However, as above described, numerical difficulties in conventional level set meth-
ods limit the further application of the level set methods to more advanced topology
optimization problems [Sethian (1999); Osher and Fedkiw (2002)], the CFL time-
marching step condition is required to be satisfied to ensure numerical stability in
terms of the minimal size of a set of spatial meshes. The periodically applied re-
initializations are included to maintain a regular shape of the level set surface. The
unshaped level set function will influence the calculation of the derivatives and the
speed of convergence, as a too step or flat level set surface will usually be developed
due to the unwanted dissipation of the front.
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With the MSL meshless approximation, the discrete level set surface Φh can be
parameterized with the MLS shape functions N(x) and the level set nodal values
φ(t) as follows:

Φ
h(x, t) = pT(x)a(t) = N(x)φ(t) =

n

∑
i=1

Ni(x)φi(t) (20)

The level set model is reshaped by substituting (24) into the original level set equa-
tion as

N(x)T
φ̇(t)−vn

∣∣∣(∇N(x))T
φ(t)

∣∣∣= 0 (21)

Then vn is now directly expressed as

vn =
N(x)T

|(∇N(x))T
φ(t)|

φ̇(t) =
1
|∇Φ|

N(x)T
φ̇(t), where φ̇(t) =

dφ(t)
dt

(22)

In this way, if we suppose that the set of scattered nodes are fixed spatially in
the design domain during the optimization, the original more difficult time-space
Hamilton-Jacobi PDE is uncoupled into a set of ordinary differential equations, in
which the discrete level set values are temporal only. Accordingly, the original
more difficult shape and topology optimization is then transformed into a relatively
easier size optimization, to which more efficient optimization algorithms can be
applied in finding the discrete level set nodal values iteratively.

4 Meshless level-set method for geometrically nonlinear structures

In this study, the nonlinear effect as large displacements in nonlinear strain dis-
placement is considered, under the assumption that the material is subjected to
small strains. Since the initial level set function is defined with undeformed fixed
reference domain, the Total Lagrange formulation [Bathe (1996)] is a natural choice
for the geometrically nonlinear analysis.

For elastic solids of geometrical nonlinearity, embedding the implicit design bound-
ary into the level set function, the variational form of the equilibrium equations can
be obtained based on the principle of virtual work. Let the test function be the vari-
ational term δu ∈ U of the trial function u ∈ U, in terms of the integration by parts
and the divergence theorem, the corresponding weak formulation of the equilibrium
equation [Bathe (1996)] can be expressed by∫

D
Si j(u)δεi j(u;δu)H(Φ)dΩ =

∫
D

biδuiH(Φ)dΩ+
∫

∂DΓ

tiδuidΓ (23)
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Here u and δu are the trial and virtual displacement vectors, respectively, belonging
to the same space U spanned by the kinematically admissible set of displacements.
Si j is the second Piola-Kirchhoff symmetrical stress tensor, and δεi j is the virtual
Green-Lagrange strain tensor. Ω and D are the design and reference design domain,
respectively. ∂D = ∂DΓ ∪ ∂Du consists of the Neumann ∂DΓ and Dirichlet ∂Du

boundaries. b and t are externally applied body force and boundary traction. H(Φ)
and δ (Φ) represent the Heaviside function and the corresponding Delta function,
respectively [Wang, Wang and Guo (2003); Allaire, Jouve and Toader (2004)].

As aforementioned, the MLS approximation doesn’t possess the Kronecker delta
function property, and this study employs the penalty function method [Atluri and
Shen (2002); Gu and Liu (2005)] to handle essential boundary conditions. With the
total Lagrangian formulation (T.L.) referring to the initial configuration at t = 0,
the equilibrium equation corresponding to the configuration at time t + ∆t can be
expressed in the notations of internal energy and external virtual work as∫

0D

t+∆t
0 Si j(u)δ

(t+∆t
0 εi j(u;δu)

)
H(Φ)dΩ+α

∫
0∂Du

δuT
i (ui−ui0)dΓ = t+∆taΦ(u,δu)

t+∆t lΦ(δu) =
∫

0D

t+∆t
0 biδuiH(Φ)dΩ+

∫
0∂DΓ

t+∆t
0 tiδuidΓ (24)

where 0Ω and 0D are the design and reference domain, respectively.

Using the incremental scheme [Bathe (1996)], the second Piola-Kirchhoff stress
and Green-Lagrange strain tensor ε are defined by

t+∆t
0 Si j = t

0Si j + 0Si j (25)

t+∆t
0 εi j = t

0εi j + 0εi j (26)

Here the first terms t
0Si j and t

0εi j are known, and the first terms 0Si j and 0εi j are the
incremental of the Kirchhoff stress and the Green strain with respect to the initial
configuration. So the virtual Green-Lagrange strain tensor is given by

δ
(t+∆t

0 εi j
)

= δ (0εi j) (27)

The Green strain vector 0εi j can be further written as

0εi j = 0ei j + 0ηi j (28)

where 0ei j and 0ηi j are the incremental terms of the linear strain and nonlinear
strain, which can be defined, respectively, as follows:

0ei j = (0ui, j + 0u j,i)
/

2+(t
0uk,i0uk, j + 0uk,i

t
0uk, j)

/
2 (29)
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0ηi j = (0uk,i0uk, j)
/

2 (30)

In this way, the equilibrium equation with the T.L. formulation can be re-defined as∫
0D

(
0Si jδ 0εi j + t

0Si jδ 0ei j + 0Si jδ 0ηi j
)
H(Φ)dΩ+α

∫
0D

δuT
i (ui−ui0)δ (Φ) |∇Φ|dΩ

= t+∆tWΦ

t+∆tWΦ =
∫

0D

t+∆t
0 biδuiH(Φ)dΩ+

∫
0D

t+∆t
0 tiδuiδ (Φ) |∇Φ|dΩ (31)

For large-deformation under the assumption of small strain, the constitutive relation
with respect to the initial configuration can be approximately expressed via the
material elasticity tensor Di jkl as

0Si j(u) = 0Di jkl0εkl (32)

It is noted that the second Piola-Kirchhoff symmetrical stress tensor 0Si j, rather
than the original nonsymmetrical Green-Lagrange stress tensor, and the Green-
Lagrange strain tensor 0εkl are used.

Substituting the above linearized constitutive equation into Equation (31), the first
term is given by∫

0D
(0Si jδ 0εi j)H(Φ)dΩ =

∫
0D

0Di jkl(0ekl + 0ηkl)(δ 0ei j +δ 0ηi j)H(Φ)dΩ (33)

Eliminating the terms related to the nonlinear strain 0ηi j, and the linearized equi-
librium equation is∫

0D
0Di jkl0eklδ (0ei j)H(Φ)dΩ+

∫
0D

t
0Si jδ (0ηi j)H(Φ)dΩ

+α

∫
0D

δuT
i (ui−ui0)δ (Φ) |∇Φ|dΩ = t+∆tWΦ−

∫
0D

t
0Si jδ (0ei j)H(Φ)dΩ (34)

Define a linearized bilinear functional:

ãΦ =
∫

0D
0Di jkl0eklδ (0ei j)H(Φ)dΩ+

∫
0D

t
0Si jδ (0ηi j)H(Φ)dΩ

+ α

∫
0∂Du

δuT
i (ui−ui0)dΓ (35)

and a linearized load form:

l̃Φ = t+∆tWΦ -
∫

0D

t
0Si jδ (0ei j)H(Φ)dΩ (36)
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Thus the equilibrium equation with the linearized terms at the current configuration
is re-defined by

t
0R = ãΦ(u,δu,ui)− l̃Φ(u,δu)≈ 0 (37)

where t
0R denotes the residual load vector at the current configuration, due to the

unbalanced stress caused by the linearization of the equilibrium equation involving
the displacement increment ui.

In numerical implementation, the modified Newton-Raphson iteration scheme [Bathe
(1996)] is used to balance the stress caused by the linearization until t

0R is small
enough. With the MLS shape function N(x), the current nodal displacement vec-
tor, the related nodal point forces, and the tangential stiffness matrix for the next
iteration can be obtained based on ui.

Substituting N(x) into ui yields the following meshless approximations:

t+∆tuh(x) =
n

∑
i=1

tNi(x)tui = tN(x)tuT
i , (38)

where uT
i = [u1,u1, ...,un].

where N(x) is the MLS shape functions already obtained previously. ui is the vector
of the nodal displacement incremental. n is the number of the nodes in the support
domain of the point x to construct MLS shape functions.

With the meshless MLS approximations, the linearized T.L. formulation of the
equilibrium equation can be re-expressed in the matrix form as:

t
0R = (t

0KL0 + t
0KL1 + t

0KNL + t
0KP)ui− (t+∆tW− t

0F)≈ 0 (39)

where ui is the nodal displacement vector consisting of the increments. From this
equation, it can be seen that the tangent stiffness matrix is composed of four differ-
ent matrix terms. So the four matrices, and the external force vector, as well as the
nodal force vector are defined as follows, respectively

t
0KL0 =

∫
0D

t
0BT

L0 0Dt
0BL0H(Φ)dΩ (40)

t
0KL1 =

∫
0D

(t
0BT

L0 0Dt
0BL1 + t

0BT
L1 0Dt

0BL0 + t
0BT

L1 0Dt
0BL1

)
H(Φ)dΩ (41)

t
0KNL =

∫
0D

t
0BT

NL0St
0BNLH(Φ)dΩ (42)

t
0KP = α

∫
0∂Du

t
0N(x)T

0Zt
0N(x)H(Φ)dΩ (43)
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t+∆tW =
∫

0D

t
0N(x)t+∆t

0 bH(Φ)dΩ+
∫

0∂Dt

t
0N(x)t+∆t

0 tdΓ+α

∫
0∂Du

t
0N(x)T

0Zt
0u0dΓ

(44)

t
0FNL =

∫
0D

(t
0BT

L0
+ t

0BT
L1

)
0S̄H(Φ)dΩ (45)

In the above equations, 0D represents the practical material elasticity property ma-
trix. t

0KL0 is the matrix corresponding to the small displacement, called small-
displacement matrix, and t

0KL1 is the matrix caused by the displacement t
0ui at the

initial configuration, in the name of initial displacement or large-displacement ma-
trix. t

0BL0 is the small deformation strain-displacement matrix, which is related
to the first part (0ui, j + 0u j,i)

/
2 in the linear strain 0ei j, while t

0BL1 is the strain-
displacement matrix corresponding to the second part (t

0uk,i0uk, j + 0uk,i
t
0uk, j)

/
2 in

the linear strain 0ei j. t
0KNL defines a tangent stiffness matrix arising from the stress

matrix 0S at the initial configuration, named geometric matrix or initial stress ma-
trix. t

0KNL is related to the strain-displacement matrix t
0BNL of the non-linear strain

0ηi j. t
0KP is the matrix term caused by the penalty function in order to enforce the

essential boundary condition in MLS meshless approximation, in which t
0N(x) is

the MLS shape function. 0Z is the matrix consisting of two entries for displace-
ment constraint in two different directions in 2D Cartesian coordinates. 0S and 0S̄
are used to denote the matrix and the vector of the second Piola-Kirchhoff stress,
respectively.

So in this way the MLS meshless approximation of Galerkin weak-form can be
used to establish a set of discretized system equations for the displacement vector of
the trial function. The strain at any point can also be obtained using the derivatives
of the MLS shape functions and the nodal displacements. The penalty method
can lead to a positive definite system matrix, as it enforces the essential boundary
condition without increasing the size of the system equations.

5 Optimal design of compliant mechanisms

In this section, the optimal design of compliant mechanisms is mathematically es-
tablished to maximize the output displacement under two specified constraints. The
differentiability of the meshless level set approximations allows the rigorous shape
sensitivity analysis for geometrically nonlinear structures without losing the gener-
ality [Kwak and Cho (2005)]. For numerical simplicity, the optimization problem
is considered here only with single input and a single output.
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5.1 Mathematical formulation

The design of compliant mechanisms concerned in this study is illustrated as Figure
2. An artificial spring model [Sigmund (1997)] is amounted at the output port to
model the clearance and simulate the reaction force between the workpiece and
the mechanical piece. The spring model refers to an artificial spring with a pre-
known stiffness k = c attached in the expected output direction. For the topology
optimization of compliant mechanisms, there are many objective functions under
the assumption of linear elasticity. However, the linearity assumption may not
be properly applied to compliant mechanisms involving geometrical nonlinearity
for various reasons [Pedersen, Buhl and Sigmund (2001); Luo, Zhang, Ji and Wu
(2012)].

 
Figure 2: Model of compliant mechanisms

By far the widely used objective function to capture the large-formation compliant
mechanisms is the displacement output or the equivalent forms [Bruns and Tor-
torelli (2001); Cho and Kwak (2006); Luo, Zhang, Ji and Wu (2012)]. So in this
study the displacement output is used as the objective function under two con-
straints. The level-set optimization problem is now formulated as follows

Minimize
(Φ)

: uout

Subject to:


uin−u∗in ≤ 0,∫

D H(Φ)dΩ−V ∗ ≤ 0,

ãΦ(u,δu,ui) = l̃Φ(u,δu),∀δu ∈ U

(46)

where uout is defined as the objective function, and uin refers to the displacement
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occurred at the input position. The first constraint is applied to restrain the maximal
displacement input u∗in and to prevent excessive deformation and stress level inside
the mechanism, so as to avoid convergence difficulties [Sigmund (1997)]. The
second constraint is used to restrict the allowable material usage V ∗ in order to
generate “truss-type” structural segments in the mechanism.

5.2 Design sensitivity analysis

The design sensitivity is performed to enable the dynamic boundary evolvement
of the mechanism by using both the concept of shape derivative [Sokolowski and
Zolesio (1992)] and the procedure of adjoint sensitivity analysis method.

First, the displacement υi for the ith degree of freedom is defined by

υi = LTU (47)

where L is a unit load vector consisting of an entry of Li = 1 at position i, and the
rest of the entries are zero. U is the displacement vector produced by the applied
load F at the input port, which can be obtained using MLS meshless approximation.

Introducing a vector of Lagranian multiplier λ , the original objective function is
augmented as a new objective without changing anything by adding the term λ TR
related to the residual term R

ui = LTU+λ
TR (48)

and the design sensitivity of the augmented objective function can be obtained as

dυout

dαi
= (LT +λ

T ∂R
∂U

)
dU
dαi

L+λ
T ∂R

∂αi
(49)

By setting the displacement vector λ to be the solution of the following equation

Kλ =−L (50)

where K is the tangential stiffness matrix which has been factorized from the pri-
mary MLS meshless analysis, which makes the numerical problem with a reason-
able computational expense. Due to the Equation (48) is always satisfied at the
equilibrium state, the term related to R will remain zero regardless of the choice of
the displacement vector λ . So, the sensitivity can be simplified as

dυout

dαi
= λ

T ∂R
∂αi

(51)
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Now, our major task is to find out the sensitivity of the residual with respect to the
variation of the design variables. It is noted that the residual R can be re-written in
a general functional form as

RΦ(t+∆t
0 u) =

∫
0D

ℜ(t+∆t
0 u)H(Φ)d0

Ω (52)

Its shape derivative at configuration (t + ∆t) can be found by following the same
procedure as that in the relevant references [Wang, Wang and Guo (2003); Allaire,
Jouve and Toader (2004); Luo, Tong, and Kang (2009)].

∂RΦ(t+∆t
0 u)

∂ t
=
∫

0D
ρΦ(t+∆t

0 u,w)δ (Φ) |∇Φ|vndΩ (53)

Recalling the normal velocity vector vn defined in Equation (23), and substitut-
ing it into the above Equation (58), the shape derivative for the residual load of
geometrically nonlinear structures is

∂RΦ(t+∆t
0 u)

∂ t
=

n

∑
i=1

(∫
0D

ρΦ(t+∆t
0 u,w)δ (Φ)Ni(x)dΩ

)
φ̇i(t) (54)

where ρ is the shape gradient density, which can be defined as follows

ρΦ(t+∆t
0 u,w) = ℜ(t+∆t

0 u)−Di jklεkl(t+∆t
0 u)δεi j(t+∆t

0 u;w)+ t+∆t
0 pw

+
(

∇(t+∆t
0 τw) · ∇Φ

|∇Φ|
+
(

∇ · ∇Φ

|∇Φ|

)
t+∆t
0 τw

)
(55)

On the other hand, by the chain rule, the shape derivative of the residual load is
given as follows:

∂RΦ(t+∆t
0 u)

∂ t
=

n

∑
i=1

dRΦ(t+∆t
0 u)

dφi
φ̇i(t) (56)

Thus, the design sensitivity with respect to the discrete level set nodal values can
be expressed as

∂RΦ(t+∆t
0 u)

∂φi
=
∫

0D
ρΦ(t+∆t

0 u,w,λ )δν(Φ)Ni(x)dΩ (57)

where δν is a regularized version of the Dirac function given as follows:

δν(Φ(x)) = 1/πν ·

(
1+
(

Φ(x)
ν

)2
)

(58)
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Here ν is a real positive constant, and it is usually chosen as 2-4 times as the mesh
size in terms of numerical experiences.

In the above equations, λ is the displacement vector by applying the unit load vec-
tor L at the output position. φi are the unknown parameters served as the design
variables of the size optimization to be updated in time. It can be seen that the
complaint mechanism with geometrical nonlinearity is not self-adjoint. The ad-
joint displacement vector w is introduced to indicate the terms dependent on design
perturbations by the following equation∫

0D

t
0Si j(w)δ (0ei j(w;δu))H(Φ)dΩ =

∫
0D

∂ℜ(t+∆t
0 u)

∂u
H(Φ)δudΩ (59)

where w is computationally cheap because the factorized tangential stiffness matrix
has already been obtained in the prime MLS meshless subroutine.

Once getting the design sensitivities of the objective function and constraint, the
rest is just a question of applying appropriate optimization algorithms to update
the discrete nodal level set values in time. For the parametric optimization prob-
lem, several optimization algorithms can be used to update the design variables,
including the Optimality Criteria (OC) method [Zhou and Rozvany (1991); Sig-
mund (2001)], mathematical programming techniques, e.g. the Method of Moving
Asymptotes (MMA) [Svanberg (1987)]. In this work, the MMA algorithm is used
as the optimizer.

6 Numerical Implementation of Meshless Approximations

For the MLS Galerkin meshless approximation, a background shadow cell struc-
ture, independent of the set of scattered field nodes, is required for implementing
numerical quadrature of the system stiffness matrix. The system matrix is assem-
bled by a two-step procedure: the first step is to loop over all the cells of the
background mesh, and the second step is to evaluate all Gauss quadrature points
(4×4=16 computational points) inside each cell. In this study (Fig. 3), a rectangu-
lar background mesh is used to implement the quadrature for numerical simplicity.
Another issue in the implementation of the meshless level set method is the rep-
resentation of the implicit moving boundary without remeshing for discontinuities
[Allaire, Jouve and Toader (2004); Luo, Zhang, Ji and Wu (2012)]. In particular,
the EFG method shows potential in handling moving boundary discontinuities in
level set models.

This Section focus on the implementation of a very simple and effective scheme
for evaluating the strain field in terms of discrete level set nodal values. As de-
scribed previously, the discrete level set values at field nodes denotes the solid ma-
terial points (ΦI>0), and void (weak) material points (ΦI<0), as well as the design
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(a)                                             (b) 
 Figure 3: Background cells, field nodes and quadrature/computational points

boundary where the level set nodal values are zero (ΦI=0). So it is straightforward
to get point-wise density values over the computational points in terms of the dis-
crete level set nodal values. The field nodes can only show the relative position of
different nodes, and it is difficult to describe the degree of how the boundary closes
to these nodes. In practice, a relatively large number of scattered field nodes are re-
quired for an accurate material property representation, but it will greatly increase
system degrees leading to a substantial increase of the computational cost.

To overcome this difficulty, the 4×4=16 quadrature (computational) points in each
cell are employed on behalf of the field nodes, to describe the geometry of the
moving boundaries without significantly increasing the system degree. In this way,
it can directly obtain the discrete level-set point values over the quadrature points,
just according to a local interpolation of the discrete level set nodal values. The
major merit of this simple scheme is a direct determination of the densities at the
computational points based on the discrete level set nodal values, rather than the
interpolation of the field nodal densities.

After obtaining the point-wise density field over Gauss quadrature points, the Young’s
modulus for any computational point ‘x’ inside the design domain can be repre-
sented as follows:

E(x) = ρ(x)E0 (60)

where ρ(x) is the practical density at ‘x’, and E0 is the solid-state Young’s modulus.
According to the practical Young’s modulus E(x), it is easy to get the practical
material elasticity D(x). The level set function values at any quadrature point can
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be determined by the local interpolation inside the cell.

Φ(xJ) =
SJ

∑
S=1

[LS (xJ(rJS))ΦS] (61)

where ΦS is the discrete level set nodal values of shadow cell SJ of the Jth quadra-
ture point. LS is the standard Lagrange shape function. So the density at the Jth

quadrature point can be determined in terms of Φ(xJ) at this point:

ρ(xJ) =


1, if Φ(xJ) > 0
1, if Φ(xJ) = 0
0.0001, if Φ(xJ) < 0

(62)

As aforementioned, for geometrically nonlinear structures, the system tangent stiff-
ness matrix K consists of four different matrix terms, which can be obtained via
the Guass quadrature, respectively, with a similar numerical procedure based on
the background cells. For instance, t

0KL0 is given as

t
0KL0(s, t) =

4

∑
i=1

4

∑
j=1

{
ht

0BT (si, t j)(
t
0ρ(si, t j)D0)t

0B(si, t j)
∣∣t
0J(si, t j)

∣∣wiw j
}

(63)

In the above equations, ρ is the corresponding density at the related Gauss point. w
is the weighting factor, D0 represents the elasticity matrix of the full solid material
properties at the quadrature points, and J is the Jacobin determinant. Once the
system tangent stiffness matrix and the nodal displacement vector are obtained,
the strain energy densities for the ‘shape gradient density’ in the shape derivative
analysis can also be obtained straightforwardly.

7 Numerical example: Inverter mechanism

In this section, one benchmark numerical example, inverter mechanisms, is used
to demonstrate the effectiveness of the proposed meshless level set method in the
design of compliant mechanisms. The level set function is initially embedded as a
signed distance function, and the corresponding level set nodal values can be used
to determine the initial point-wise density field. No further reinitializations are ap-
plied. The regular background cell structure is used for the numerical integration of
the Galerkin weak-form. For the “artificial” material model: Young’s modulus for
full solid material is 200, for weak material to fill the void area is 0.2, and Poisson’s
ratio for all material inside the design domain is 0.3. It is noted that in topology
optimization the units for the artificial material model can be defined flexibly but
all the units are required to be unchanged during the design optimization.
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Figure 4 is the design domain of the cantilever beam with L=30. The left side
of the domain is fixed as the Dirichlet boundary while the right side is treated as
a non-homogenous Neumann boundary with a concentrated force F=5 vertically
applied at the center point. Only the upper half of the structure is considered in
numerical procedure due to its symmetry, but the entire structural topologies will
be given for exploring the whole mechanism. The objective function is to minimize
the mean compliance, and the constraint is to limit the maximum material usage
less than 22.5%, and the allowable input displacement is set as 6. In numerical
implementation, alternatively, the maximal input displacement can also be adjusted
via the input force and an artificial spring to be attached at the input port. The
design domain is discretized with a set of nodes (61×31=1891), and a number of
regular background cells (60×30=1800) are used only for numerical integration.

 
Figure 4: Design domain of compliant inverter mechanism

In the first case, an artificial spring with stiffness ks=0.5 is mounted at the output
port position to simulate the resistance from a work-piece. To limit the input dis-
placement, the artificial spring stiffness at the input port is set to 5. The shape and
topology optimization is converged after 517 iterations, and the overall displace-
ment is maximized from -0.0214 to 0.0.4628. Figure 5 displays the topology plots
of the level-set contours at the zero level set, and the corresponding topology plots
of Gauss quadrature points are shown in Figure 6. It can be found that the favor-
able features [Osher and Sethian (1988); Sethian (1999)] of the level set-based free
boundary representation scheme are well maintained, such as the concise interface
and smooth boundary, merging existing holes and creating new holes to enable
shape fidelities and topological flexibilities. Also we can see that the initial level
set function has a relatively simple shape and topology, but it can implement more
complicate shape fidelity and topology changes. The level-set based shape evolu-
tion and its topology propagation of the design boundary are actually determined
by a sequence of solutions of the size optimization, which is obtained via the MLS
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meshless approximations on the set of field nods. The final mechanisms are similar
to those widely reported in the relevant literatures.

In Figure 6, the material density field for the computational pints can be directly
determined via the interpolation of discrete nodal level set values, in which the
densities for solid material points are ρ=1 (Φ>=0) and for weak material points
are ρ=0.001 (Φ<0). The plots in Figure 6 are exactly align with the level-set topo-
logical contours at the zero level set, which denotes that the computational points
are very suitable in describing the local details for the shape fidelity and topology
changes of the moving boundaries. The topology plots for deformation are given
in Figure 7 to show the effect of the large deformation of nodal field displace-
ment effect for geometrically nonlinear structures. The more detailed discussion
for large-displacement compliant mechanisms can be found in literatures, such as
[Bruns and Tortorelli (2001); Pedersen, Buhl and Sigmund (2001); Luo, Zhang, Ji
and Wu (2012)]. However, it is noted that the effect of geometrical nonlinearity
is a nature behavior of compliant mechanisms. So, the large-displacement effect
is in general required to be included, despite the finite element or the meshless
numerical methods are employed in the model of compliant mechanisms.

 
(a)                       (b)                       (c) 

 
(d)                       (e)                       (f) 

 
Figure 5: Topology plots of level-set contours at zero level set
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(a)                       (b)                       (c) 

 
(d)                       (e)                       (f) 

 
Figure 6: Topology plots of Gauss quadrature points

Figure 7 displays curves of the objective function and the volume constraint over
the iterations. It can be seen that the first a small amount of iterations are mainly
used to push the volume back to satisfy the constraint. Then the following iter-
ations, less than 150 steps, are used for structural topological changes. The rest
of iterations are applied to achieve shape variations, which occupies a majority of
computational time of the optimization process. However, this cost is necessary to
adjust the distribution of the material inside the domain to satisfy the optimal cri-
teria. The constraint curve shows that the proposed method is mass conservative,
compared to most conventional level set methods.

In the second case, an artificial spring with stiffness ks=5 is attached at the output
port position to simulate the resistance from a work-piece, the artificial spring stiff-
ness at the input port is set to 0.5, to limit the maximal input displacement. Figure
8 shows the level-set topology contours at the zero level set, Figure 9 is the re-
lated topology plots of Gauss quadrature points, and Figure 10 is the displacement
deformation for the geometrically nonlinearity effect.

With Garlerkin global weak form, it can be seen that the two typical numerical
procedures in most conventional level set methods [Sethian (1999)] can be seam-
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(a)                       (b)                       (c) 

             
(d)                       (e)                       (f) 

 
Figure 7: Topology plots of deformation for field nodal points

 
Figure 8: Curves of objective function and volume constraint
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less integrated in a uniform framework, and numerical difficulties in solving the
Hamilton-Jacobi PDEs can be avoided because of the parameterization of the level
set function. The objective and constraint curves over the iterations are given in
Figure 11. It can be found the design is converged after 521 iterations with the out-
put displacement maximized from -0.0215 to 0.5332. The result is slightly different
from the previous result due to the difference of spring stiffness, which can flexi-
bly control the maximal displacement inputs as well as the maximal displacement
outputs, to create different topological designs.

 
(a)                       (b)                       (c) 

 

(d)                       (e)                       (f) 

 Figure 9: Topology plots of level-set contours at zero level set

In this Section, two numerical cases for a benchmark compliant mechanism have
been discussed to showcase the effectiveness of the proposed meshless level set
method. In both numerical cases, it is noted that the present meshless level set
method cannot prevent the occurrence of the de-facto hinges in the resulting mech-
anisms. The de-facto hinge problem is an open topic in the topology optimization
of compliant mechanisms. The further investigation for the hinge problem is out
of the scope of this study. The proposed method the numerical difficulties can be
avoided. The more efficient optimization algorithms in the community of the struc-
tural optimization can be directly applied. It noted that the overall computational
expense is higher than the methods based on finite element methods, because the
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(a)                       (b)                       (c) 

 

(d)                       (e)                       (f) 

 Figure 10: Topology plots of Gauss quadrature points

background shadow cells are utilized in numerical integration for the state equa-
tions. However, this study is not focused on the study of the meshless method
itself. It is straightforward to incorporate the other meshless methods into the level
set model for shape and topology optimization.

8 Conclusions

This study has proposed a meshless level set method for structural shape and topol-
ogy optimization involving geometrical nonlinearity. The MLS shape functions are
first used to implement the discrete level set function via MLS surface fitting rather
than interpolation, and then to construct the meshfree function approximation with
global weak form. The design problem is fully parameterized into a size opti-
mization, without experiencing numerical difficulties in most conventional level
set methods. The motion of the design boundary is just a question of transporting
the discrete level set function values by finding solving the size optimization. One
benchmark example of compliant mechanisms is applied to demonstrate the effec-
tiveness of the proposed method. This study provides an extended level set method
which can be applied to more advanced shape and topology optimization problems.
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(a)                       (b)                       (c) 

             

(d)                       (e)                       (f) 

 Figure 11: Topology plots of deformation for field nodal points

 
Figure 12: Curves of objective function and volume constraint
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