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Numerical Investigation of a Vibroacoustic Analysis with
Different Formulations

M. Amdi1, M. Souli1, J. Hargreaves 2 and F. Erchiqui3

Abstract: Simulation of vibroacoustic problems becomes more and more the fo-
cus of engineering in the last decades for acoustic comfort in automotive industry to
reduce noise and vibration inside a cabin and also in sport industry to analyze sound
produced by a club impacting a golf ball to avoid unexpected noise problems during
the design process. Traditionally, Finite element and Boundary element methods
are used in frequency domain to model pressure noise from structure vibration in
low and mid frequency range. These methods require velocity in frequency domain
on the vibrating structure as boundary conditions. To analyze pressure noise from
impact analysis like in golf problem for instance, time domain analysis of nonlin-
ear finite element method using explicit or implicit time integration, needs to be
performed first, to supply velocity boundary conditions for the acoustic problem.
In this paper a combined time domain and frequency domain analysis is performed
to solve acoustic problems of vibrating structure. In this paper we use the state
of the art in LSDYNA code that combine both analysis to analyze pressure noise
deduced from a short time impact on a deformable structure. To validate numerical
results from our simulation, different formulations are performed and validated to
simulate pressure sound at different locations.

Keywords: BEM, vibroacoustic, low-rank approximation.

1 Introduction

Full scale experimental tests for analyzing a pressure sound level from a vibrat-
ing structure are costly. Numerical simulations help to minimize the number of
experimental tests required. Once simulations are validated by test results, engi-
neers can use them as tool design for improvement of the system structure involved.
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These analysis have been extensively used in automotive industry to reduce noise
in interior car from vibration and more recently in sport industry to analyze sound
level during a golf ball impact, which is an important issue in golf industry. In the
analysis of pressure noise level form impact problem or vibration on a non linear
structure, two steps need to be performed. The first step is the nonlinear analysis of
the impact problem, this can be done by nonlinear finite element analysis in time
domain. Analysis of impact problems are usually short time analysis and can be
performed using explicit time integration method. The finite element analysis pro-
vides velocity at the nodes of the structure at each time step of the computation.
Using Fast Fourier Transform (FFT), these data can be converted into frequency
domain for each node of the structure mesh. Once the structure analysis is per-
formed and provide structure velocity, an acoustic analysis can be performed using
BEM (Boundary Element method). To solve the acoustic problem, using velocity
on the structure that is related to the normal derivative of the pressure in frequency
domain by:

∂ p
∂n

=−iρωvn

where vn is the normal velocity and ρ is the density of the fluid.

The Helmholtz equation governing acoustic pressure propagation in frequency do-
main:

∆p+ k2 p = 0

is used in its boundary integral form, k = ω/c denotes the wave number c is the
speed of sound and ω = 2π f is the pulsation, where the solution inside the domain
is represented through an integral involving the solution and the normal derivatives
of the solution at the boundary. The BEM method has been developed in LSDYNA
code to solve level pressure sound in frequency domain for external and internal
problems. Unlike Finite Element methods that generate sparse matrix, and require
low memory storage, in BEM method a dense matrix is generated. Low Rank
method is used to accelerate the solution of the linear system and reduce computa-
tional time, and also to minimize RAM memory storage. The main idea of the Low
Rank is to employ iterative solvers, such as GMRES, to solve the BEM system
of equations and use representative modes to accelerate the matrix-vector multi-
plication in each iteration step, without forming the full size matrix. The main
characteristic of the method is that only a mesh of the structure is required, and
external or internal air mesh is not needed. Hence, the method is easier to apply
than classical finite element method, which requires a finite element mesh for the
air domain. Since the ultimate objective is a design of structure that reduce the
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noise for acoustic comfort, numerical simulations can be included in shape design
optimization with shape optimal design techniques, Souli et al. [Souli and Zole-
sio (1993)], and material optimisation, Souli et al. [Erchiqui, Souli, and Yedder
(2007)], Ozdemir et al. [Ozdemir, Souli, and Fahjan (2010)]. Once simulations are
validated by test results, it can be used as design tool for the improvement of the
system structure involved.

In this paper, we perform an analysis of sound pressure level at arbitrary locations,
issued from vibration of a clamped structural shell plate subjected to an impul-
sive loading. To validate numerical results, different formulations are performed
and compared to the simulation from SYSNOISE a well established acoustic code.
This paper is structured as follows, in section 2, the mathematical and numerical
description of the finite element model is described. Section 3 is devoted to the
mathematical formulation and description of the Boundary Element formulation
deduced from Helmholtz equation that describes acoustic wave propagation in fre-
quency domain. The Low Rank method used to reduce computational time and
memory storage when solving the linear system with GMERS iterative method is
described in section 4. In section 5, we compare different formulations using their
accuracy and computational time.

2 Structural dynamic problem

In this paper, the interaction of an elastic structure with a compressible, isotropic,
homogeneous and non-viscid fluid is considered. Let’s consider an isotropic struc-
ture occupying a volume ΩS [Fig. 1]. When it is subjected to a body force f ,
the equation governing its vibratory behavior is given by the following momentum
equation:

ρ
d2−→u
dt2 = div(σ)+

−→
f (1)

where −→u is the displacement, σ is the Cauchy stress, ρ is the density.

Let ΓS0 and ΓS denote the boundaries subjected to a displacement and traction,
respectively. The boundary conditions associated to the structure can be written in
Γs as:

{
u(x,0) = 0
∂u(x,0)

∂ t = 0
(2)

In almost all studies, the structure simulations have been done using explicit Finite
Element Method. The solution is advanced in time using centered second order
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Figure 1: Structural problem

scheme. The resolution is advanced in time with the central difference method,
which provides a second order accuracy for time integration. For each node, the
velocity and displacement are updated using centered second order finite difference
method in time:

.
un+ 1

2 =
.
un− 1

2 +∆tM−1(Fext +Fint) (3)

un+1 = un +∆t
.
un+ 1

2 (4)

Where Fint is the internal vector force and Fext the external vector force associated
with body forces, coupling forces, and pressure boundary conditions, M is a diag-
onal lumped mass matrix and

.
u is the velocity. At each node, the internal force is

computed as follows:

Fint =
Nelem

∑
k=1

∫
k
Bt

σdv (5)

Where B is the gradient matrix and Nelem is the number of elements. Using the
mass matrix would require the solution of a system of linear equations for the dis-
placements at each time step, which would be costly, therefore a lumped diagonal
mass matrix is commonly used [Belytschko (2000)] for explicit time integration.
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The time step size, ∆t, is limited by the courant stability condition [Benson (1992)],
which may be expressed as

∆t ≤ l
c

Where l is the characteristic length of the element and c is the speed of sound
through the material in the element. For solid material, the speed of sound is defined
as

c =

√
K
ρ

Where ρ is the material density and K is the modulus of compressibility.

To perform the Boundary Element Method, nodal velocities in time domain are
stored at each time step and will be converted to frequency domain at the end of the
structural analysis. The FFT applied to the nodal velocity constitutes the boundary
condition of the BEM.

3 Boundary Element Method

Once the structural dynamic problem is solved in time domain; and velocity con-
verted from time domain to frequency domain using Fast Fourier Transform we use
the velocity as boundary conditions for the acoustic analysis. The BEM is used to
evaluate the pressure response in the acoustic domain from the structure velocity
results deduced from the first analysis. Consider a boundary surface S enclosing a
volume Ωs filled and surrounded by an ideal and homogeneous fluid medium [Fig.
2].
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Figure 2: Acoustical problem

For a harmonic disturbance of frequency f without any source or loss mechanisms,
the pressure p satisfies the Helmholtz equation:
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∆p+ k2 p = 0 (6)

For Neumann boundary condition with implies that the velocity is continuous across
the surface:

∂ p
∂n

=−iρωvn (7)

By using Green’s theorem, the corresponding integral equation can be written as:

C(r)p(r) =
∫

Sy

(G(r,ry)
∂ p(ry)

∂ny
− p(ry)

∂G(r,ry)
∂ny

)dsy (8)

This equation allows the calculation of sound pressure at any point of the acoustic
domain. In equation (6) and (8) k = ω

c denotes the wave number, c is the speed of
sound, ω = 2π f is the pulsation, p(r) is the pressure at any field point r,G(r,ry) =
e−ik‖r−ry‖

4π‖r−ry‖ is the Green’s function. Where r is the position vector of any field point,
ry is the position vector of a source point located at acoustic domain boundary and
C is the jump term resulting from the treatment of the singular integral involving
Green’s function.

The indirect Boundary Element Method defines the primary variables as the jump in
the pressure µ = p1− p2 and the jump in the normal gradient of the pressure σ =
∂ p(ry1)

∂ny
− ∂ p(ry2)

∂ny
= iωρ(Vn(ry1)−Vn(ry2)) between the two sides of the boundary

element method [Z. Zhang and Zhang (2000)].

Due to the definition of the primary variables, there is no differentiation between
interior and exterior acoustic domain. Therefore, the Indirect BEM approach is
suitable for simulation of general geometries involving multi-connections as well
as free edges of non-closed objects [Wu (2001)]. In addition, the Indirect BEM
approach takes into account the fluid on both sides, which makes it suitable for
noise transmission problems through elastic structures. However, care must be
taken when modeling free edges where the primary variables must be forced to
zero [Wu (2001)].

For Neumann problem that involve velocities prescribed on the acoustic boundary,
the integral form in Eq. (5) is obtained:

p(r) =
∫

Sy

∂G(r,ry)
∂ny

µ(ry)dsy (9)
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Hence, equation (9) can be written as following:

−iρωVn(rx) =
∫

Sy

∂ 2G(r,ry)
∂nx∂ny

µ(ry)dsy (10)

Equation (10) can be solved using the variational principle to the integral equation.
In fact, it permits to reduce the hypersingular integrals to a less singular form.
In addition, the variational indirect boundary element method yields to symmetric
fully populated matrices. By using the variational method, the last equation can be
written as:

−iρω

∫
Sx

Vn(rx)µ(rx)dsx =
∫

Sx

∫
Sy

∂ 2G(r,ry)
∂nx∂ny

µ(rx)µ(ry)dsxdsy (11)

where µ(rx) represents the test function of the variational method.

This method has been widely used despite the hypersingularity [Hamdi (1982)]
which can be reduced to a less singular form more suitable for numerical calcula-
tions [Hamdi (1982)]. The solution of Eq. (11) can be obtained by dividing the
surface into boundary elements. Therefore, the discretized form of the integral
equation leads to a linear system given by Aµ = B.

From equation (11), the double potential layer is calculated. Finally, the pressure
at any point of the field can be computed via equation (9). It is to be emphasized
that in BEM the linear system depends on the frequency via Green’s function. For
each frequency, the system has to be solved. For this reason, we have used an
iterative solver like GMRES which is more efficient for this kind of problems than
the direct solver. GMRES is an algorithm for solving non-symmetric linear system
based on Hessenberg process. GMRES iterative method accesses the matrix A
through a matrix-vector product at each iteration and does not need to use the matrix
coefficient explicitly. The number of required iterations of the GMRES which are
equal to the number of required matrix-vector products is crucial.

4 Low Rank Method

Low-rank matrix factorization is one of the most useful tools in scientific comput-
ing and data analysis. The goal of low-rank factorization is to decompose a matrix
into a product of two smaller matrices of lower rank that approximates the original
matrix well.

A
m×n

= B
m×k

C
k×n

(12)
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A universal benefit of such low-rank decomposition is that fewer elements are re-
quired to represent the matrix (km + kn "versus" mn), requiring less storage and
less operations to perform matrix-vector multiplication. The A matrix can be well
approximated by a low rank matrix. The easiest way to show this is to consider
the QR Houshoulder decomposition of A which decomposes a matrix A into two
matrices:

A
m×n

= Q
m×m

R
m×n

(13)

such that Q has orthonormal columns, and R is upper triangular. The basis formed
by the columns of Q are an orthogonalisation of the columns of A. The full QR
decomposition is computed by a sequence of special projections, the Householder
projections of the form Hq = I−qqt , which are reflections about a line determined
by q. Vector qi can always be chosen to transform Hqi−1 . . .Hq1A into a similar
matrix which zeros out the elements of the ith column below the diagonal. After n
iterations, we obtain Hqn . . .Hq1A = R so Q = Hq1 . . .Hqn .

The rank-revealing QR, or RRQR method, can be used for partial decomposition
[Gu and Eisenstat (July 1996)]. RRQR works much the same as standard QR with
Housholder reflections, but also determines a pivoting of the columns to terminate
when the Frobenius norm of the unprocessed columns is determined to be negligi-
ble.

Contrarily to the FEM matrices, the BEM matrix is full dense and cannot be stored
as dense array since the memory requirement would grow up very quickly with the
size of the system. In order to limit the memory requirement, a domain decompo-
sition is done on the BEM mesh, which splits the BEM matrices into submatrices
as shown in figure 3. On the off-diagonal submatrices, a low rank approximation
based on a rank revealing QR decomposition is performed [Golub and van Loan
(1996)-Businger and Golub (1965)]. For submatrices corresponding to far away
domains, the rank can be significantly smaller than the size of the submatrix, thus
reducing the storage of the submatrix [Huang, Ashcraft, and L’Eplattenier (2008)].
We typically see reductions of the full dense matrix and the block matrix with
low rank approximations. This low rank approximation also speeds up the matrix-
vector operation used intensively in the iterative method to solve the BEM system.

Modeling reduces to solving linear system Aµ = b, where A is a dense matrix that
has special block structure:
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A =


A1,1 A1,2 . . . A1,p

A2,1 A2,2 . . . A2,p
...

...
. . .

...
Ap,1 Ap,2 . . . Ap,p

 (14)

The off-diagonal submatrices Ai, j are numerically deficient to some degree, de-
pending on discretisation accuracy requested. They represent the operator between
subdomains Ωi and Ω j [Fig.3].

The matrix A is split into the sum of two matrices M and N A = M + N, with M
having dense submatrices (diagonal bloks):

M =


A1,1 0 . . . 0

0 A2,2
. . .

...
...

. . . . . . 0
0 . . . 0 Ap,p

 (15)

and N contains low rank submatrices:
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N =


0 Q1,2R1,2 . . . Q1,pR1,p

Q2,1R2,1
. . . . . .

...
...

. . . . . . Qp−1,pRp−1,p

Qp,1Rp,1 . . . Qp,p−1Rp,p−1 0

 (16)

For each off-diagonal submatrices, we compute a partial RRQR factorization:

Q
(

R1,1 R1,2
0 R2,2

)
= Ai, jP (17)

The factorization stops when [Huang, Ashcraft, and L’Eplattenier (2008)]:

‖R2,2‖F ≤ τ

√
‖Ai,i‖F · ‖A j, j‖F (18)

Where the Frobenius norm is written as:

‖A‖F =

√
m

∑
i=1

n

∑
j=1
|ai, j|2 (19)

Then finally the matrix approximation:

Âi, j = Q
(

R1,1 R1,2
)
' Ai, j (20)

As we can see in the figure 4 the approximated matrix seems to the symbolic matrix.

5 Numerical Application

We modeled a vibrating plate of Aluminum with dimensions of 0.9m in width,
0.6m in height and 0.001m in thickness. The material model of the plate was
taken as elastic material with the following mechanical properties: Young Mod-
ulus E = 210GPa, Density ρ = 7800Kg/m3, Poisson’s Ratio ν = 0.3. The plate
was considered to be surrounded by air with following physical properties: speed
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Figure 4: Symbolic matrix factorized

of sound = 340m/s and mean air density = 1.21Kg/m3.The BEM model was built
by 600 shell elements. The constraints were applied to the edges of the modeled
plate for no displacements and rotations in all directions. The model was excited by
applying a nodal force at node (0.33,0.45,0) as shown in figure 5. The application
of the nodal force versus time is illustrated in figure 6. The pressure fluctuations
caused by the structural response of the plate was noted at a field point located at a
distance of 1m away from the plate, as shown in figure 5.

In order to calculate the sound pressure, several numerical applications are pre-
sented in this section; the predicted pressure from the simulation is validated us-
ing numerical results from SYSNOISE a well established acoustic code worldwide
used for different industrial and academic applications. Our simulation using dif-
ferent Boundary Element formulation is compared to numerical pressure level from
SYSNOISE used as reference solution.

5.1 Boundary element method

In figure 7 the computed sound pressure by the BEM described above and SYS-
NOISE curves for the plate in motion are given. The presented numerical result
shows good correlation with SYSNOISE result.
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Figure 5: Boundary conditions applied to the BEM mesh

 
Figure 6: Nodal force load curve plotted against time

5.2 Rayleigh method

The BEM solver is very computationally intensive and time consuming therefore;
the simple Rayleigh method based on plane wave approximation was used instead
for the study. The acoustic pressure at the structure is given by:

P = ρcv (21)

With c is the speed of sound = 340m/s, ρ is the mean air density = 1.21kg/m3 and
v is the normal velocity on the plate.
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Figure 7: Comparison between BEM method and SYSNOISE

Rayleigh method assumes that the radiating structure is a plane surface clamped
into an infinite rigid plane. The Rayleigh integral [Rayleigh (1974)] directly re-
lates the sound pressure in the acoustic domain to the velocity distribution on the
plate. This model can be applied to a range of acoustic problems. For example
it can model the acoustic field around the near-flat surface of an object. From the
computational point of view, Rayleigh method is fastest among all methods since
no linear system is being solved, the acoustic pressure at the structure is known
analytically through equation 21. In figures 8, computed Rayleigh and SYSNOISE
sound pressures in the hearing point of the plate are compared. The results appear
to be in good agreement.

5.3 Kirchhoff method

The other alternative is the Kirchhoff method; where a layer of finite element using
acoustic material shearing nodes with the structure is added to the problem, to
compute the acoustic pressure at the stucture. The radiating boundary condition at
infinity is satisfied by prescribing a non-reflecting boundary condition. The mesh
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Figure 8: Comparison between Rayleigh method and SYSNOISE

corresponding to Kirchhoff method is shown in figure 9.

 

 

  

 

Material acoustic 

Figure 9: Vibrating plate model used in Kirchhoff method

The sound pressure level (dB) at the observation point is computed using Kirchhoff
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Figure 10: Comparison between Kirchhoff method and SYSNOISE
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Figure 11: Variation of radiated pressure of plate with respect to frequency
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method. The results can be found in Figure 10. We observe the same shape of the
curves with a slight difference in the amplitude.

Finally we compared the result from LS-DYNA for three different formulations
given as BEM, Kirchhoff and Rayleigh as shown in figure 11. The analysis showed
good agreement within the results. The numerical results given by the three meth-
ods correlate well. We observe from these analysis that each formulation predicts
the resonance frequency that correlate very well with the reference solution from
Sysnoise.

The solution by BEM can reach a high accuracy since it solves the singular in-
tegral equation and get the primary unknown variables on each node without any
assumption. Rayleigh and Kirchhoff methods are each based on some assumptions
thus they are less accurate. But Rayleigh and Kirchhoff methods may be employed
as the first attack when solving large problems because they are much faster than
BEM, 5 seconds for Rayleigh and 7 seconds for Kirchhoff instead of 384 seconds
for BEM. One can see for this example of a rectangular plate, the Rayleigh and
Kirchhoff methods can still provide satisfactory results. This is because the geom-
etry of the problem is simple and satisfies the assumption of the two approximate
methods.

6 Conclusion

In the present work, different formulations have been used to model a simple vi-
broacoustic problem. The computational solution of a given acoustic radiation
problem first involves the selection of an appropriate acoustic radiation model
which underlies the choice of method. For example the model of a closed sur-
face in an infinite acoustic medium underlies the boundary element method. In
terms of accuracy, the solution by BEM can reach a high accuracy since it solves
the singular integral equation and get the primary unknown variables on each node
without any assumption. Rayleigh and Kirchhoff methods are each based on some
assumptions thus they are less accurate. But Rayleigh and Kirchhoff methods may
be used for first estimation of acoustic pressure level when solving large problems
because they are much faster than BEM. For external problems as the one described
above, Rayleigh and Kirchhoff methods can still provide satisfactory results, this is
not true for internal problems where BEM method needs to be used.
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