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A Domain Decomposition Method Based on Natural BEM
and Mixed FEM for Stationary Stokes Equations on

Unbounded Domains

Ju’e Yang1, Hongying Huang2 and Dehao Yu3

Abstract: In this paper, a new domain decomposition method is suggested
for the stationary Stokes equations on unbounded domain and its convergence is
proved. We draw an artificial boundary to make the domain into two parts: one
is bounded, in which we use the mixed finite element method; the other is un-
bounded, in which we apply the natural boundary reduction. Then we change the
sub-problem on the unbounded domain onto a one in a bounded domain and we use
the Dirichlet to Neumann(DtN) alternating algorithm to solve the resulting mixed
system. The theoretical results as well as the numerical examples show that this
method is very effective especially for problems over unbounded domains.
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1. Introduction

Let Ω be a simply connected domain in R2 with a Lipschitz-continuous boundary
Γ0, and denote Ωc the complement of Ω

⋃
Γ0. We consider the following exterior

boundary value Stokes equation
−η∆~u+∇p = ~f in Ωc

div~u = 0 in Ωc

~u = 0 on Γ0

(1.1)
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where~u = (u1,u2)T is the velocity vector of the fluid which we assume it is limited
at infinity, p is the kinematic static pressure, η > 0 is kinematic viscosity, ~f =
( f1, f2)T is a given density of outer volume force. Here we assume ~f has compact
support, i.e. supp~f ⊆Ω0, Ω0 is a disk with radius R (R > 0 is a constant).

Many physicists and mathematicians has been attracted by this problem because
of its wide range of practical applications. There are many kinds of methods to
solve the Stokes problems. Girault and Raviart (1986) discussed the finite element
method of the Stokes problems and Temam (1984); Verfurth (1984) introduced a
detail mathematical theory and numerical analysis for this problem. For the prob-
lems over unbounded domains, the standard techniques such as FEM(finite ele-
ment method), which is effective for most problems over bounded domains, will
meet some difficulties and the corresponding computing cost will be very high. As
a alternative, the boundary element method is considered and developed for this
kind of problems(see, e. g. Han and Wu (1985b); Bao (2000); Meddahi and Sayas
(2000); Reidinger and Steinbach (2003)).

The mixed finite element method(refer to Brezzi (1974); Raviart and Thomas (1977)),
which is a general technique for the solution of partial differential equations, which
arise in many fields of applications. In recent years, there has been a rapidly grow-
ing interest in developing the combination of mixed finite element method with
boundary integral method(see, e.g. Han and Wu (1985b), Brink, Carstensen, and
Stein (1996), Carstensen and Stefan (2000), Gatica and Wendland (1997)). One
feather of our paper is that we’ll use the mixed finite element method to solve this
problem over unbounded domains. Another feather we want to mention in this pa-
per is that natural boundary reduction method is used. Natural boundary reduction
method, which is also known as the exact artificial boundary condition method, was
suggested and developed by K. Feng, D. Yu and H. Han in the early 1980s(refer to
Feng and Yu (1982); Han and Wu (1985a); Yu (1993, 2002)). Compared with many
other approaches of reduction, natural boundary reduction method has its own ad-
vantages(see. e.g.Feng and Yu (1982); Yu (1993, 2002); Yang, Hu, and Yu (2005);
Yu and Huang (2008); Liu and Yu (2008); Yang and Yu (2011)). Liu and Yu (2008)
has solved this problem by the coupling of natural BEM and FEM. But here we’ll
consider the domain decomposition method based on natural boundary reduction
and mixed finite element method and provide a DtN alternate algorithm to approx-
imate the discrete system. The theoretical and numerical result will show that this
algorithm is convergent and very effective for the stationary Stokes equations in
2-dimensional unbounded plane.

The rest of our paper is organized as following. In section 2, we apply the natural
boundary reduction and derive the mixed variational formulation for the Stokes ex-
terior problem. We also prove the existence and uniqueness of the resulting system.
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In section 3, we propose a Dirichlet-Neumann(DtN) alternating method for solving
mixed formulation of the problem in the interior domain and prove the convergence
of this iterative method. Finally, the results of numerical experiments show that our
theoretical results and algorithm are very effective for unbounded domains.

2. The mixed variational formulation

Define the Sobolev space

W 1(Ωc) =
{

w
∣∣∣∣ w√

1+ r2 ln(2+ r2)
,

∂w
∂xi
∈ L2(Ωc), i = 1,2, r =

√
x2

1 + x2
2

}
,

(2.2)

L2
0(Ω

c) =
{

q ∈ L2(Ωc);
∫

Ωc
qdx = 0

}
(2.3)

and let

W 1
0 (Ωc) =

{
~v ∈W 1

0 (Ωc)2|~v = 0,on Γ0
}

, (2.4)

Define H := W 1
0 and M = L2

0(Ω
c) with norm

||~v||2H := ||~v||21,Ω1
+ ||~v||21

2 ,Γ1
. (2.5)

Then the exterior Stokes problem (1.1) is equivalent to the following variational
form: Find (~u, p) ∈ H×M, such that

D(~u,~v)−
∫

Ωc
pdiv~vdx1dx2 = F(~v), ∀~v ∈ H,∫

Ωc

qdiv~udx1dx2 = 0, ∀ q ∈M.

(2.6)

where

D(~u,~v) = 2η

2

∑
i, j=1

∫ ∫
Ωc

εi j(~u)εi j(~v)dx1dx2, (2.7)

εi j(~v) =
1
2

{
∂vi

∂x j
+

∂v j

∂xi

}
, i, j = 1,2, (2.8)

F(~v) =
∫

Ωc
~f~vdx1dx2 (2.9)
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Figure 1: Ωc = Ω1∪Ω2, and Γ1 is an auxiliary circle

Draw an artificial boundary Γ1 with radius R dividing Ωc into an unbounded part
Ω2 and a bounded part Ω1 containing the support of ~f (see Fig1.). Apply the nat-
ural boundary reduction to Ω2 and let K be the natural integral operator of Stoke
problem with respect to Ω2, K : H1/2(Γ1)→ H−1/2(Γ1). Let

D̂2(~u0,~v0) =
∫

Γ1

~v0 ·K ~u0ds. (2.10)

We have the explicit expression of the natural integral equation on Γ1(refer to Yu
(1993)-Yu (2002))

K ~u|Γ1 =
2η

R

 −
1

4π sin2 θ

2

0

0 − 1
4π sin2 θ

2

∗
[

u1(R,θ)

u2(R,θ)

]
(2.11)

where ∗ denotes the convolution with respect to θ . By the energy invariance we
obtain

D2(~u,~v) = D̂2(~u0,~v0)+
∫

Ω2

pdiv~vdx1dx2. (2.12)

Therefore problem (2.6) is equivalent to the problem in bounded subdomain Ω1:
Find (~u, p) ∈ H×M such that A(~u,~v)−B(~v, p) = F(~v), ∀~v ∈ H,

B(~u,q) = 0, ∀ q ∈M.
(2.13)
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where

A(~u,~v) = D1(~u,~v)+ D̂2(γ~u,γ~v), (2.14)

B(~v,q) =
∫

Ω1

qdiv~vdx1dx2 (2.15)

and γ is the Dirichlet boundary value operator with respect to Γ1.

The following lemma is proved in Yu (2002), which will be used in the following
theorem.

Lemma 2.1 The bilinear form D̂2(~u0,~v0) is symmetric, continuous and V-elliptic
in H

1
2 (Γ1)/R×H

1
2 (Γ1)/R, that’s means the natural boundary integral operator

K is H
1
2 (Γ1)/R-elliptic, i.e., there exists C > 0 such that

〈K ~v0,~v0〉 ≥C||~v0||2[H1/2(Γ1)/R]2 , ∀~v0 ∈ [H
1
2 (Γ1)/R]2. (2.16)

Consider the closed subspace of H given by

H0 = {~v ∈ H|div~v = 0, in Ω1} (2.17)

Theorem 2.1 Assume that the following hypotheses hold:

(a) There exists a constant α > 0 such that

A(~v,~v)≥C||~v||2H ∀~v ∈ H0 (2.18)

(b) There exist a constant β > 0 such that

sup
~v∈H

B(~v,q)
||~v||H

≥ β ||q||M ∀q ∈M. (2.19)

Then the mixed variational problem (2.13) has a unique solution.

Proof: Condition (a) is straightforward to verigy. From Poincaré-Friedrichs in-
equality and Lemma 2.1, we derive

A(~v,~v) = 2η |~v|21,Ω1
+ 〈K (γ~v),γ~v〉 |Γ1 ≥ α(||~v||21,Ω1

+ ||~v||21
2 ,Γ1

)≥ α||~v||2H . (2.20)

For the proof of the so-called inf-sup condition (b), see Girault and Raviart (1986).
The proof is complete.
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3. A D-N Alternating algorithm

In this section we design a Dirichlet-Neumann(DtN) alternating algorithm for solv-
ing the resulting mixed system (2.13). For simplicity of exposition, we here discuss
only the D-N alternating algorithm of continuous problems.

Algorithm 3.1

(1) Choose initial value~λ 0 ∈ H
1
2 (Γ1), and set n := 0,k := 0, p1

0 ∈ L2
0(Ω1).

(2) Solve the natural integral equation on Γ1

~t2n = K~λ n (3.21)

(3) Solve the mixed boundary value problem in the annular subdomain Ω1:

A(~v2n+1, p2n+1) = ~f in Ω1,

div~u2n+1 = 0 in Ω1,

~u2n+1 = 0 on Γ0,

~t2n+1 =−~t2n on Γ1.

(3.22)

where δi j is the Kronecker Delta,~n = (n1,n2) is the outward normal direction
to Ω2 and~t = (t1, t2)T

ti =
2

∑
i, j=1

σi j(~u, p)n j, i = 1,2, (3.23)

σi j(~u, p) =−δi j p+2ηεi j(~u), i, j = 1,2, (3.24)

Uzawa Method of (3.22):
D1(~u2n+1

k+1 ,~v1) = F(~v1)+(p2n+1
k ,div~v1)−

∫
Γ1

~t2n~v1dx, ∀~v1 ∈ H,

~u2n+1
k+1 = 0, on Γ0,

p2n+1
k+1 = p2n+1

k −ρdiv~u2n+1
k+1 ,

(3.25)

(4) If ||~u2n+1
k+1 −~u2n+1

k ||< ε1 and ||p2n+1
k+1 − p2n+1

k ||< ε2, then continue; If not, set
k := k +1 and goto step (3).
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(5) Directly compute the following formula:(
~u2n+2

p2n+2

)
= P~u2n+1

k+1 |Γ1

(6) If the solution approximate enough, stop computing; If not, let

~λ n+1 = θn~u2n+1
k+1 +(1−θn)~λ n, on Γ1, (3.26)

then set n := n+1 and goto step (2).

In step (3) ρ denotes a relaxation factor, 0 < ρ < 2η . In step (5) P is the Poisson
integral operator of Stokes equation(refer to Yu (2002)).

Remark 3.1 Algorithm 3.1 is absolutely different with the usually DtN algorithm.
In step (2) we need not solve the Dirichlet boundary value problem on unbounded
domain Ω2. We just directly apply the natural boundary integral operator K ,
which is just the DtN operator, i.e. Steklov-Poincaré operator for Ω2 and solve the
value of the outward normal derivative~t2n by the given boundary value~λ n on Γ1.

Therefore the Algorithm 3.1 can greatly reduce the computational work. We only
treat the mixed boundary value problem in the rather small bounded domain where
the mixed finite element method will be used. Moreover, it is very important to
choose the relaxation factor ρ and θn in Algorithm 3.1. The iteration may be not
convergent when we choose some bad relaxation factors. Usually we choose θn =
0.5 and ρ = 1

2 η or some bigger values.

Next, we analysis the convergence of Algorithm 3.1. The convergence of Uzawa
method in step (3) can see Girault and Raviart (1986). Then we have

~u2n+1
k+1 →~u2n+1, p2n+1

k+1 → p2n+1, k→ ∞. (3.27)

Taking limit as k→ ∞ in (3.25), we get


D1(~u2n+1,~v1) = F(~v1)+(p2n+1,div~v1)−

∫
Γ1

~tn
2~v1dx, ∀~v1 ∈ H,

(q,div~u2n+1) = 0, ∀q ∈M,

~u2n+1 = 0, on Γ0,

(3.28)
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Assumed that Φ =
{
~v|Γ1 :~v ∈W 0

}
, then ∀~ϕ ∈ Φ, k = 1,2, find (~ωk(~ϕ),τk(~ϕ)) ∈

W 0
k ×L2

0(Ωk) such that

Dk(~ωk(~ϕ),~v)+bk(~v,τk(~ϕ)) = 0, ∀~v ∈W 00
k ,

bk(~ωk(~ϕ),q) = 0, ∀q ∈ L2
0(Ωk),

~ωk(~ϕ) = ~φ , on Γ1,

~ωk(~ϕ) = 0, on ∂Ωk/Γ1,

(3.29)

where

bk(~v,q) =
∫ ∫

Ωk

qdiv~vdx1dx2, (3.30)

W 0
k =

{
~v ∈W 1

0 (Ωk)2|~v = 0, on ∂Ωk/Γ1
}

, (3.31)

W 00
k =

{
~v ∈W 0

k |~v = 0, on Γ1
}

(3.32)

We call (~ωk(~ϕ),τk(~ϕ)) as the Stokes extension from ~ϕ to Ωk,k = 1,2. Let

< S~ϕ, ~ψ >:= S(~ϕ, ~ψ) :=
2

∑
k=1

[Dk(~ωk(~ϕ),Rk~ψ)+bk(Rk~ψ,τk(~ϕ))] (3.33)

where the operator S is called the Skeklov-Poincaré operator on the auxiliary bound-
ary Γ1 and Rk denotes any extension operator from Φ to W 0

k :

Rk : Φ 7→W 0
k (3.34)

Rk~ϕ|Γ1 = ~ϕ|Γ1 , Rk~ϕ|∂Ωk/Γ1 = 0. (3.35)

Theorem 3.1

S(~ϕ, ~ψ) = D1(~ωk(~ϕ), ~ωk(~ψ))+D2(~ωk(~ϕ), ~ωk(~ψ)). (3.36)

Proof: From the definition (3.33)

S(~ϕ, ~ψ) =
2

∑
k+1

(Dk(~ωk(~ϕ), ~ωk(~ψ))+Dk(~ωk(~ϕ),Rk~ψ−~ωk(~ψ)) (3.37)

+ bk(Rk~ψ−~ωk(~ϕ),τk(~ϕ))+bk(~ωk(~ϕ),τk(~ϕ))).

Because of~v = Rk~ψ−~ωk(~ψ) ∈W 00
k , using (3.28) we obtain

bk(~ωk(~ϕ),τk(~ϕ))) = 0, (3.38)

Dk(~ωk(~ϕ),Rk~ψ−~ωk(~ψ))+bk(Rk~ψ−~ωk(~ϕ),τk(~ϕ))) = 0. (3.39)
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The proof is complete.

Set

Sk(~ϕ, ~ψ) = Dk(~ωk(~ϕ), ~ωk(~ψ)) (3.40)

From the proof of Theorem 3.1 we derive

Sk(~ϕ, ~ψ) = Dk(~ωk(~ϕ),Rk~ψ)+bk(Rk~ψ,τk(~ψ)) (3.41)

Therefore S = S1 + S2. We assume that the solution (~ω∗k ,τ∗k ) satisfy the following
equations

Dk(~ω∗k ,~v)+bk(~v,τ∗k ) = 0, ∀~v ∈W 00
k ,

bk(~ω∗k ,q) = 0, ∀q ∈ L2
0(Ωk),

~ω∗k = 0, on Γ1,

~ω∗k = 0, on ∂Ωk/Γ1,

(3.42)

Define χi ∈Φ′ as

< χi,~ϕ >:= Fi(Ri~ϕ)−Di(~ω∗i ,Ri~ϕ)−bi(Ri~ϕ,τ∗i ) ∀~ϕ ∈Φ, (3.43)

and also define χ := χ1 + χ2, then we have

Lemma 3.1 Assumed that (~u, p) is the solution of (2.6)and letλ :=~u|Γ1 , then λ the
Steklov-Poincaré equation on the artificial boundary Γ1:

λ ∈Φ :< Sλ ,µ >:=< χ,µ > ∀µ ∈Φ. (3.44)

For its proof see Quarteroni and Valli (1999).

Theorem 3.2 The DtN alternating method is equivalent to the associated precon-
ditioned Richardson iterative method:

S1(~λ n+1−~λ n) = θn(χ−S~λ n) (3.45)

where χ = S~λ .

Proof: The step (5) of Algorithm 3.1 is equivalent to solve the following Dirichlet
problem in Ω2:

D2(~u2n,~v)+b2(~v, p2n) = (~f ,~v), ∀~v ∈W 00
2 ,

b2(~u2n,q) = 0, ∀q ∈ L2
0(Ω2),

~u2n =~λ n, on Γ1,

(3.46)
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(3.28) is equivalent to solve the mixed boundary value problem in Ω1:

D1(~u2n+1,~v)+b1(~v, p2n+1) = (~f ,~v), ∀~v ∈W 00
1 ,

b1(~u2n+1,q) = 0, ∀q ∈ L2
0(Ω1),

~u2n+1 = 0, on Γ0,

~t2n+1 =−~t2n, on Γ1.

(3.47)

Taking k→ ∞, (3.26) becomes

~λ n+1 = θ~u2n+1 +(1−θn)~λ n, on Γ1. (3.48)

We consider the error~ei =~u−~ui, ei
p = p− pi, ~µn =~λ −~λ n and compare (2.6) with

(3.46), (3.47). We derive that~ei,ei
p,~µ

i satisfy
D2(~e2n,~v)+b2(~v,e2n

p ) = 0, ∀~v ∈W 00
2 ,

b2(~e2n,q) = 0, ∀q ∈ L2
0(Ω2),

~e2n =~µn, on Γ1,

(3.49)



D1(~e2n+1,~v)+b1(~v,e2n+1
p ) = 0, ∀~v ∈W 00

1 ,

b1(~e2n+1,q) = 0, ∀q ∈ L2
0(Ω1),

~e2n+1 = 0, on Γ0,

~t1−~t2n+1 =−(t2−~t2n), on Γ1,

(3.50)

~µn+1 = θn~e2n+1 +(1−θn)~µn, on Γ1. (3.51)

From (3.49) we obtain

~e2n = ~ω2(~µn), e2n
p = τ2(~τn). (3.52)

Also From (3.50) we get

~e2n+1 = ~ω1(~e2n+1|Γ1), e2n+1
p = τ1(~e2n+1|Γ1). (3.53)

By the fourth equation of (3.50) we have∫
Γ1

(~t1−~t2n+1)R1~ϕds =−
∫

Γ1

(~t2−~t2n)R2~ϕds ∀~ϕ ∈Φ. (3.54)
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Using Green Formula we derive

D1(~e2n+1,R1~ϕ)+b1(R1~ϕ,e2n+1
p ) =−(D2(~e2n,R2~ϕ)+b2(R2~ϕ,e2n

p )), (3.55)

i.e. S1(~e2n+1|Γ1 ,~ϕ) =−S2(~µn,~ϕ). So

~e2n+1|Γ1 =−S−1
1 S2~µ

n. (3.56)

Then we obtain

~µn+1−~µn = θn~e2n+1|Γ1 +(1−θn)~µn−~µn (3.57)

= θn~e2n+1|Γ1−θn~µ
n

= −θnS−1
1 S2~µ

n−θn~µ
n

or

S1(~µn+1−~µn) =−θn(S2 +S1)~µn =−θnS~µn. (3.58)

By~λ =~µ|Γ1 and S~λ = χ , we have the following Richardson iteration formulation

S1(~λ n+1−~λ n) = θn(χ−S~λ n). (3.59)

The proof is complete.

Remark 3.2 When we prove that the solution ~u is convergent, we get the conver-
gence of p, e.g. from (3.49), (3.50), as n→ ∞, ~e2n,~e2n+1→ 0, therefore we obtain
e2n

p ,e2n+1
p → 0, i.e. p is also convergent.

Let~en =~λ n−~λ and then we have

~en+1 = (I−θnS−1
1 S)~en (3.60)

Define Hk(~ϕ) as a Stokes extension from ~ϕ ∈Φ to Ωk:

Hk(~ϕ) ∈W 0
k : Dk(Hk(~ϕ),~v) = 0 ∀~v ∈W 00

k , (3.61)

Hk(~ϕ) = ~ϕ on Γ1,

Hk(~ϕ) = 0 on ∂Ωk/Γ1.

||Hk(~λ )||2k = Dk(Hk(~λ ),Hk(~λ )),k = 1,2. (3.62)

Then by the priori estimate we obtain

||Hk(~ϕ)||1,Ωk ≤ ||~ϕ||Φ, ∀~ϕ ∈Φ. (3.63)

In order to get the convergence of Algorithm 3.1, the following lemmas are given
first.
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Lemma 3.2 For k = 1,2, C1||Hk(~λ )||k ≤ ||~ωk(~λ )||k ≤C2||Hk(~λ )||k ∀~λ ∈Φ.

Proof: Applying the trace theorem and (3.63), we have

||Hk(~λ )||1 ≤C||~λ ||Φ ≤C′||~ωk(~λ )||k. (3.64)

So

C1||Hk(~λ )||k ≤ ||~ωk(~λ )||k. (3.65)

Due to ~ωk(~λ )−Hk(~λ ) ∈W 00
k , by the definition (3.61) we get

Dk(Hk(~λ ),Hk(~λ )−~ωk(~λ )) = 0, (3.66)

Therefore,

Dk(Hk(~λ ),Hk(~λ )) = Dk(Hk(~λ ), ~ωk(~λ )). (3.67)

Finally we derive

||Hk(~λ )||2k = Dk(Hk(~λ ), ~ωk(~λ ))≤C2||Hk(~λ )||k||~ωk(~λ )||k (3.68)

Then the lemma is proved. Using the trace theorem we have the following lemma.

Lemma 3.3 There exists positive constants σ and ζ such that

σ = sup
~λ

||H1(~λ )||21
H2(~λ )||22

, ζ = sup
~λ

H2(~λ )||22
H1(~λ )||21

, (3.69)

where Hk(~λ )||2k = Dk(Hk(~λ ),Hk(~λ )),k = 1,2.

Then we have

C1||H1(~λ )||1|| ≤ H2(~λ )||2 ≤C2||H1(~λ )||1 ∀~λ ∈Φ. (3.70)

From Lemma 3.2 and (3.70), we obtain

K1||~ω1(~λ )||1 ≤ ||~ω2(~λ )||2 ≤ K1||~ω1(~λ )||1, (3.71)

where K1,K2 are positive constants. So ||~ω1(~λ )||1 is equivalent with ||~ω2(~λ )||2.

Theorem 3.3 There exists θ ∗ ∈ (0,1) such that ∀θn ∈ (0,θ ∗), Algorithm 3.1 is
convergent.
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Proof: Since

(S~λ ,~λ )

(S1
~λ ,~λ )

= 1+
(S2

~λ ,~λ )

(S1
~λ ,~λ )

=
D2(~ω2(~λ ), ~ω2(~λ ))

D1(~ω1(~λ ), ~ω1(~λ ))
(3.72)

Connecting (3.71) we obtain

1+K2
1 ≤

(S~λ ,~λ )

(S1
~λ ,~λ )

≤ 1+K2
2 (3.73)

Due to the matrix B = I−θnS−1
1 S2, we can deduce that

ρ(B) = max
i
|1−θnλi|, (3.74)

where λi is the eigenvalue of S−1
1 S2, ρ(b) is spectral radius. We choose the value

of θn such that

0 < θn <
2

2+K2
1 +K2

2
<

2
1+K2

2
≤min

i

2
λi

. (3.75)

So we have ρ(b) < 1 and deduce the iteration is convergent. We may choose θ ∗ =
2

2+K2
1 +K2

2
, then there exists a positive constant θ ∗ ∈ (0,1) such that ∀θn ∈ (0,θ ∗),

ρ(B) < 1, that’s means Algorithm 3.1 is convergent. The proof is complete.

4. Numerical Experiments

Let Ωc be a unbounded domain outside a square Ω

Ω = {(x,y)|−L≤ x≤ L,−L≤ y≤ L,L > 0}, (4.76)

Γ0 denotes the boundary of Ω, i.e.

Γ0 = {(x,y)|−L≤ x≤ L,y =±L;x =±L,−L≤ y≤ L} . (4.77)

The artificial boundary Γ1 is a circumference with radius R, R >
√

2L, which di-
viding the unbounded domain Ωc into one bounded sub-domain Ω1 and another
unbounded sub-domain Ω2. We divide Γ1 into equal segmental arcs and denote the
triangulation in Γ0 and Γ1 as Γ0h and Γ1h, respectively. We take piecewise linear
boundary element on Γ1:

Li(θ) =



N
θ −θi−1

θi−1 ≤ θ ≤ θi

N
θi+1−θ

θi ≤ θ ≤ θi+1, i = 1, · · · ,N.

0 otherwise

(4.78)
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Then we have the discrete formulation of the natural integral operator K (2.11):

Kh =
1
R

(
Q11 0

0 Q22

)
(4.79)

where

Q11 = Q22 = 2η



a0 a1 · · · aN−2 aN−1

aN−1 a0 · · · aN−3 aN−2
...

...
. . .

...
...

a2 a3 · · · a0 a1

a1 a2 · · · aN−1 a0


, (4.80)

Q11,Q22 are symmetric circular matrix of rank N−1 and

ak =
4N2

π3

∞

∑
j=1

1
j3 sin4 j

N
π cos

jk
N

2π, k = 0,1, · · · ,N−1. (4.81)

When computing, we substitute
∞

∑
j=1

by
M
∑
j=1

and we choose M = 20 here. We make

the finite element subdivision in Ω1 and apply the mixed finite element method to
solve the discrete system in Ω1; As to the unbounded subdomain we directly use
the following Poisson integral formula:


ur(r,θ)

uθ (r,θ)

p(r,θ)

=


pss pst

pts ptt

psss pttt

∗
(

ur(R,θ)

uθ (R,θ)

)
, r > R, (4.82)
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where

pss = cosθP(r,θ)+
r2−R2

2r2

[
cosθ

(
−r

∂P(r,θ)
∂ r

)
+ sinθ

∂P(r,θ)
∂θ

]
,

pst = sinθP(r,θ)+
r2−R2

2r2

[
sinθ

(
−r

∂P(r,θ)
∂ r

)
− cosθ

∂P(r,θ)
∂θ

]
,

pts = −sinθP(r,θ)+
r2−R2

2r2

[
sinθ

(
−r

∂P(r,θ)
∂ r

)
− cosθ

∂P(r,θ)
∂θ

]
,

ptt = cosθP(r,θ)− r2−R2

2r2

[
cosθ

(
−r

∂P(r,θ)
∂ r

)
+ sinθ

∂P(r,θ)
∂θ

]
,

psss =
2η

r

[
cosθ

(
−r

∂P(r,θ)
∂ r

)
+ sinθ

∂P(r,θ)
∂θ

]
,

pttt =
2η

r

[
sinθ

(
−r

∂P(r,θ)
∂ r

)
− cosθ

∂P(r,θ)
∂θ

]
,

and

P(r,θ) =
r2−R2

2π(R2 + r2−2rRcosθ)
, r > R. (4.83)

Here P(r,θ −θ ′) is just the Poisson kernel for the harmonic equation in an exterior
circular domain of radius R. Denote the maximum error of the exact solution and
approximation solution in Ω1h as:

E1(n) = max
Ω1h

∣∣u1−u2n+1
1h

∣∣ , (4.84)

E2(n) = max
Ω1h

∣∣u2−u2n+1
2h

]
,

Ep(n) = max
Ω1h

∣∣p− p2n+1
h

∣∣
and denote the maximum error of the approximation solutions between two itera-



362 Copyright © 2012 Tech Science Press CMES, vol.85, no.4, pp.347-366, 2012

Table 1: The maximum error of Example 1, R = 6, η = 1.0

m N
iteration steps

n 1 2 3 4 5 6

k 15 13 9 5 3 2

8 16

E1(n) 6.1258E-2 2.4928E-2 2.5451E-2 2.3407E-2 2.5136E-2 2.3776E-2

E2(n) 3.3527E-2 1.0444E-2 2.2920E-2 4.8594E-3 4.4760E-3 3.8078E-3

Ep(n) 3.9747E-2 2.8606E-2 3.2609E-2 3.1652E-2 3.2228E-2 3.1915E-2

ε1(n) 8.9036E-2 8.3953E-3 3.6476E-3 4.7622E-3 3.93963E-3 3.3723E-3

ε2(n) 6.1305E-2 1.3319E-2 6.0768E-3 4.1130E-3 3.2505E-3 2.6302E-3

εp(n) 3.9747E-2 2.2763E-2 4.8224E-3 9.5640E-4 5.9312E-4 4.6203E-4

k 12 11 7 3 1 1

16 64

E1(n) 5.3999E-2 1.4930E-2 1.3687E-2 1.4311E-2 1.3920E-2 1.4157E-2

E2(n) 2.2774E-2 9.5596E-3 4.5125E-3 5.9324E-3 5.1798E-3 5.6665E-3

Ep(n) 3.2187E-2 1.3863E-2 1.5544E-2 1.5355E-2 1.5392E-2 1.5370E-2

ε1(n) 8.1777E-2 1.5129E-3 2.9905E-3 1.9736E-3 8.2650E-4 5.4434E-4

ε2(n) 5.0552E-2 7.0578E-3 1.5182E-3 6.6081E-4 4.2220E-4 2.7555E-4

εp(n) 3.2187E-2 2.9068E-2 3.4258E-3 4.7867E-4 1.0273E-4 6.8058E-5

tion steps as:

ε1(n) = max
Ω1h

∣∣u2n−1
1h −u2n+1

1h

∣∣ , (4.85)

ε2(n) = max
Ω1h

∣∣u2n−1
2h −u2n+1

2h

∣∣ ,
εp(n) = max

Ω1h

∣∣p2n−1
h − p2n+1

h

∣∣ .
In the following numerical examples, we take the side length R = 6, η = 1.0,
L = 3.0 and denote m as the numbers of arcs on the artificial boundary, N as the
number of elements in Ω1, n as the iteration steps of the DtN alternating algorithm,
k as the iteration steps of the mixed finite element in the bounded domain Ω1. In
computation we choose θn = 0.5,ρ = 0.5. ε1 = 10−4,ε2 = 10−3 are denoted as the
bound of error. The computational results are listed in Table 1 – Table 3.

Example 1. Let Ωc be the exterior domain outside of the square with side length
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Table 2: The maximum error of Example 2, R = 6, η = 1.0

m N
iteration steps

n 1 2 3 4 5 6

k 14 13 8 5 3 2

8 16

E1(n) 4.8023E-3 3.0654E-3 1.2607E-3 1.0116E-3 8.1233E-4 6.5283E-4

E2(n) 4.8023E-3 3.0654E-3 1.2607E-3 1.0116E-3 8.1233E-4 6.5283E-4

Ep(n) 1.5489E-2 9.6173E-3 2.9424E-3 2.3247E-3 2.3247E-3 1.8374E-3

ε1(n) 1.7369E-3 1.1026E-3 4.4837E-4 3.5877E-4 2.8726E-4 2.3019E-4

ε2(n) 1.7369E-3 1.1026E-3 4.4837E-3 3.5877E-4 2.8726E-4 2.3019E-4

εp(n) 5.8720E-3 3.6361E-3 1.4011E-3 1.1053E-3 8.7221E-4 6.8820E-4

k 10 9 5 2 1 1

16 64

E1(n) 3.5749E-3 1.8478E-3 9.6059E-4 6.2481E-4 4.0722E-4 3.2902E-4

E2(n) 3.5749E-3 1.8478E-3 9.6059E-4 6.2481E-4 4.0722E-4 3.2902E-4

Ep(n) 1.2253E-2 6.7483E-3 3.7826E-3 2.5941E-3 1.7903E-3 1.4906E-3

ε1(n) 1.2731E-3 6.5593E-4 4.5631E-4 2.1759E-4 1.4122E-4 1.1383E-4

ε2(n) 1.2731E-3 6.5593E-4 4.5631E-4 2.1759E-4 1.4122E-4 1.1383E-4

εp(n) 4.0344E-3 2.1692E-3 1.6292E-3 8.0381E-4 5.4760E-4 4.5318E-4

2L, solve the following Stokes equation:
−η∆~u+∇p = 0 in Ωc

div~u = 0 in Ωc

~u = 0 on Γ0

(4.86)

with the exact solution

u1(r,θ) =
cos2θ

r2 =
x2− y2

(x2 + y2)2 ,

u2(r,θ) =
sin2θ

r2 =
2xy

(x2 + y2)2 ,

p(r,θ) = 0

(4.87)

Example 2. Let Ωc be the exterior domain outside of the square with side length
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Table 3: The maximum error of Example 3, R = 6, η = 1.0

m N
iteration steps

n 1 2 3 4 5 6

k 15 14 10 5 3 2

8 16

E1(n) 2.7909E-3 1.9393E-3 9.3822E-4 3.8010E-4 1.8513E-4 1.5474E-4

E2(n) 1.1149E-3 7.6882E-4 3.6803E-4 1.4819E-4 7.2142E-5 6.0321E-5

Ep(n) 8.9105E-3 6.1023E-3 2.8593E-3 1.1073E-3 5.1823E-4 4.2864E-4

ε1(n) 1.1739E-3 5.9094E-4 2.8494E-4 1.1494E-4 5.5773E-5 4.6264E-5

ε2(n) 4.7591E-4 2.3745E-4 1.1262E-4 4.4886E-5 2.1686E-5 1.8101E-5

εp(n) 3.8612E-3 1.9246E-3 9.0270E-4 3.4978E-4 1.6368E-4 1.3538E-4

k 12 11 8 4 3 2

16 64

E1(n) 1.1391E-3 7.6308E-4 3.8264E-4 1.8882E-4 1.2225E-4 9.1144E-5

E2(n) 1.1391E-3 7.6308E-4 3.4255E-4 1.5297E-4 9.6742E-5 7.1249E-5

Ep(n) 1.1933E-2 8.8453E-3 4.8368E-3 2.2625E-3 1.4322E-3 1.0557E-3

ε1(n) 2.0683E-4 2.2487E-4 9.3762E-5 4.7381E-5 1.6662E-5 1.2517E-5

ε2(n) 2.0683E-4 2.5182E-4 1.0092E-4 4.0254E-5 1.3717E-5 1.0108E-5

εp(n) 1.6571E-3 2.3001E-3 1.2658E-3 5.9433E-4 2.0264E-4 1.4941E-4

2L, R = 6, η = 1.0, solve the Stoke’s problem (4.86) with the exact solution

u1(r,θ) =
cos3θ + cosθ

r
=

2x3−2xy2

(x2 + y2)2 ,

u2(r,θ) =
sin3θ − sinθ

r
=

2x2y−2y3

(x2 + y2)2 ,

p(r,θ) =
4η

r2 cos2θ = 4η
x2− y2

(x2 + y2)2

(4.88)

Example 3. Let Ωc be the exterior domain outside of the square with side length
2L, solve the Stoke’s problem (4.86) with the exact solution

u1(x,y) = x2 + y2,

u2(x,y) =−2xy,

p(x,y) = 4ηx

(4.89)
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The results of the numerical examples in Table 1 - Table 3 show us Algorithm 3.1
is convergent for good relaxation factors θn,ρ and when θn ≈ 0.5 the convergence
is faster and the rate of convergence is independent of the parameter h of meshes.
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