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Multiple Time Scale Algorithm for Multiscale Material
Modeling

Jiaoyan Li', Xianqiao Wang? and James D. Lee'

Abstract: This paper presents a novel multiple time scale algorithm integrated
with the concurrent atomic/atom-based continuum modeling, which involves molec-
ular dynamic (MD) simulation and coarse-grained molecular dynamic (CG-MD)
simulation. To capture the key features of the solution region while still consid-
ering the computational efficiency, we decompose it into two sub-regions in space
and utilize the central difference method with different time steps for different sub-
regions to march on in time. Usually, the solution region contains a critical field and
a non-critical far field. For the critical field (named atomic region) modeled by MD
simulation, a relatively small time step is used to update the solutions; for the far
field (named atom-based continuum region) modeled by CG-MD simulation, we
adopt a relatively large time step to reduce the computational efforts and thereby
it leads to an acceleration of such simulations. Here, we solve a wave propagation
problem to demonstrate the capability and feasibility of this algorithm. The results
show that the wave can propagate across the interface between atomic region and
atom-based continuum region smoothly without inducing any spurious wave reflec-
tion. Also, the effects of nonlocality and nonlinearity, introduced unintentionally
by the interatomic potential, will be discussed.

Keywords: Multiple time scale algorithm; Multiple length scale modeling; Molec-
ular dynamic simulation; Wave propagation; Nonlocality and nonlinearity

1 Introduction

Molecular dynamic (MD) simulation has established itself as a widely employed
simulation technique for the study of material behaviors at nanoscale. Unfortu-
nately, the extension of MD into computational science over a realistic range of
length and time is limited, due to the large number of particles involved as well
as the complex nature of their interactions. The limitations are also imposed by

! The George Washington University, Washington, DC 20052
2 University of Georgia, Athens, GA 30602



464 Copyright © 2012 Tech Science Press ~ CMES, vol.85, no.5, pp.463-480, 2012

the requirement of smallness of the time step, even though one may be primarily
interested in events that occur over a much longer time scale. The emergence of
multiple length and time scale approach, along with the development of massively
parallel computers, remarkably expands the realm of modeling and simulation from
nanoscale to microscale.

The past several years have witnessed the explosive growth of interest in multiple
length scale theories and simulations. One common approach is named concurrent
multiscale modeling method, which incorporates MD with continuum theory and
addresses the problem in a single theoretical framework. Among the concurrent
multiscale methods, the coupling of length scale method (CLSM) was a pioneer-
ing work developed by Abraham et al. (Abraham and Broughton 1998), and by
Rudd and Broughton (Rudd 2001), which incorporated the coupling of quantum
mechanics approximation, MD, and FE method. Xiao and Belytschko (Xiao and
Belytschko 2004) developed the bridging-domain method (BDM), in which the
continuum and molecular domains were overlapped in a bridging sub-domain. The
bridging scale method (BSM), developed by Wagner and Liu (Wagner and Liu
2003), used a form of the Langevin equation to constrain the interface between
the fine and coarse scales. Shen and Atluri (S.P. Shen and Atluri 2004) developed
the multiscale simulation technique based on the meshless local Petrov-Galerkin
method, in which several alternate time-dependent interfacial conditions, between
the atomic and continuum regions, are systematically studied by decomposing the
displacement of atoms in the equivalent continuum region into long and short wave-
length components. Ma et al. (J. Ma et al. 2006) used the generalized interpola-
tion material point method (GIMP) and the coupling between GIMP and MD is
achieved by enforcing compatible deformation, force and energy fields in the tran-
sition region between GIMP and MD. Quasicontinuum (QC) method, developed by
Tadmor et al. (Tadmor, Ortiz and Phillips 1996) and extended by Knap and Oritz
(Knap and Ortiz 2001), aims to reproduce the results of standard lattice statics
based on energy minimization. It is worthwhile to mention that the Atomistic Field
Theory (AFT) proposed by Chen (Chen and Lee 2005, Chen 2006, Chen 2009),
with its corresponding numerical algorithm (Lee, Wang and Chen 2009, Wang and
Lee 2011), is another successful example in concurrent multiscale material model-
ing and simulation.

Accompanying the multiple length scale study, a great deal of interest has been
focused on increasing the time step in MD simulation. Anderson (Andersen 1983)
and Ryckaert et al. (Ryckaert, Ciccotti and Berendsen 1977) proposed SHAKE
and RATTLE algorithms based on the constrain of bond lengths. Although the
application of these algorithms allows for a modest increase in the time step, the
accuracy of the solutions may be adversely affected. Another idea is to introduce a
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hierarchy of time steps corresponding to the hierarchy of frequencies in the system.
Teleman and Jonsson (Olle Teleman and Jonsson 1986) introduced an algorithm
whereby the slower degrees of freedom are held constant for a number of smaller
time steps which are used for the faster degrees of freedom. However, this method
has been shown to lead to a loss of accuracy as time marching on. The Ewald
summation method is a well-known technique for computing electrostatic interac-
tions. It is worthwhile to mention that Procacci et al. (Procacci et al. 1997) and
Kawata and Mikami (Kawata and Mikami 2000) have proposed efficient multiple-
time-step methods for Ewald summations. For the system consisting of light and
heavy particles, the maximum time step that can be used to integrate the equations
of motion must be chosen to insure accurate integration for the light particles. This
implies that a very small time step is needed. Tuckerman and Berne (Mark E. Tuck-
erman, Glenn J. Martyna and Berne 1990, Mark E. Tuckerman, Bruce J. Berne and
Rossi 1991) propose a reference system propagator algorithm (RESPA), which al-
lows one to use a time step appropriate for the heavy particles. These methods
have been shown to reach a simulation time much longer than that in direct MD
while preserving full atomic detail. However, the advantages and efficiencies of
these methods are still questionable when they are extended into a realistic range
of length and time.

In this paper, we propose a novel multiple-time-scale algorithm based on the split-
ting of the solution space into an atomic region and an atom-based continuum
region, following by solving a wave propagation problem in multi-element crys-
talline solid, which has more than one kind of atom in the unit cell. Accordingly,
the atomic region is modeled by MD simulation; the atom-based continuum region
is modeled by CG-MD simulation, in which the interatomic forces are calculated as
in MD simulation, instead of the nodal forces integrated from the stress-strain re-
lation. The nonlocal force-calculation procedure overcomes the force mismatch at
the interface and enables a seamless scale transition from fully atomic resolution to
continuum description. This procedure will be described in detail in the following
sections.

2 Multiple Length Scale Modeling

Our previous works (Wang and Lee 2010, Wang et al. 2012) have presented the
theoretical framework for the concurrent atomic/atom-based continuum modeling.
Compared with many other multiscale methods, ours is naturally suitable for the
multi-physics analysis of multi-element crystal material. Here, we only briefly
review our multiscale method and its corresponding numerical implementation.

The idea is to bridge MD and CG-MD simulations, and employ them to model the
critical field and the non-critical far field respectively. The governing equations of
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MD simulation and CG-MD simulation may be expressed symbolically as
m'ii' = f'(u, U, 1) (D
M{Uf =¥/ (Uu,1) )

The key point here is how to calculate the interatomic force for these two governing
equations.

Atom-Based Continuum Region Atomic Region

a unit cell; a unit cell; an atom
which is also a node but not a node

Figure 1: The schematic of multiple length scale modeling

Consider a crystalline material system consisting of two regions: an atomic region
and an atom-based continuum region, as shown in Figure 1. Since the crystalline
material is distinguished from other states of matter by a periodic arrangement of
the atoms, it can then be represented as a collection of repeated unit cells and a
group of discrete and distinct atoms situated within each unit cell. As depicted in
Figure 1, the atomic region is shown with colorful points which are atoms, and of
course as a special case, atoms may be grouped as unit cells; the atom-based con-
tinuum region is shown with a mesh filled with unit cells (although the problem is
three-dimensional (3D), only a 2D mesh is shown here for simplicity). It is em-
phasized that, although this region is coined as the atom-based continuum region,
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we never lose the sight of atoms. In the atom-based continuum region, it is seen
that there are: (1) a finite element mesh constructed by elements and nodes (for
example, Nodes 1,J,K,L,G,H, P,Q); (2) a cluster (the grey circle) associated with
each node (for example, clusters yp and Yp); (3) representative unit cells which
belong to certain clusters (for example, unit cell /and m); (4) unit cells which do
not belong to any clusters (for example, unit cell k).

CG-MD simulation is the foundation of our multiple length scale modeling. In the
atom-based continuum region, an atom in general does not have its individuality —
it only serves as a messenger, i.e., it transfers the force to its surrounding nodes. By
borrowing the idea from finite element method, we adopt an assumption

ute =Y o Uy 3)
N

where u** is the displacement vector of the o — th atom in the k — th unit cell; @’,ﬁ,
is the N —th shape function evaluated at the location of the k — th unit cell; Uy is
the nodal value of the displacement vector of the & — th atom in the N — th node
of the element where the k — th unit cell resides. In other words, the o« — th atom
in the k — th unit cell is just a follower unless the k — ¢/ unit cell is a node. At this
junction, let f**be the interatomic force acting on the o — th atom in the k — ¢/ unit
cell. The virtual work done by f*%is

fo . Syl :#“-6{2@’5,@‘2‘,} :Z{cb’;vf"“}.w“ LY F%-8UG )
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Therefore, the nodal force contributed by the atomic force can be obtained as
F$ = ok £t 5)

To balance the computational efficiency and the numerical accuracy, we adopt the
cluster-based summation rule (Knap and Ortiz 2001, Eidel and Stukowski 2009)
for force calculations. Cluster yp can be expressed as yp = {l : |X; — Xp| < Rp},
where [ represents a generic unit cell whose distance from Node P is less than or
equal toRp, the radius of cluster wp. There is a weight associated with each cluster,
e.g., wp is the weight of yp. For each node (for example Node P), one may find the
number of unit cells, Np and np, which belong to Node P through shape functions
and cluster yp, respectively. Then, we can calculate the weight as wp = Np/np.
It is noticed that, in the calculation of interatomic forces, there are two extreme
cases: (1) nodal integration - np = 1 = wp = Np and (2) all pair calculation -
np=N p = wWp= 1.
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Between two distinct atoms in the atom-based continuum region, at least one of
them must belong to a cluster, i.e., in the representative unit cell, the interatomic
force acting on atoms ko and /fBcan be calculated respectively as wpfc@—1Band
wpflB— e — _yypfk@=IB and then the nodal forces can be obtained from (5) (cf.
Figure 1).

On the other hand, any atom in the atomic region has its own degree of freedom, and
hence it takes the force and then follows the Newton’s law. Between two distinct
atoms & and 7 in the atomic region, the interatomic force is calculated and treated
as in MD simulation, i.e., the derivation from the interatomic potential with respect
to position.

Between two atoms, one in the atom-based continuum region and the other in the
atomic region, the interatomic force acting on atoms ma and {can be calculated
respectively aswof"®*~¢ and wof® "% = —wof"*~%. Then wof"*~¢ multiplied by
the shape functions will be distributed to the corresponding nodes (cf. Figure 1).
The governing equations (1) and (2) are second order nonlinear ordinary differen-
tial equations and therefore we can implement central difference method to approx-
imate the solutions by marching on with large and small time steps in atom-based
continuum region and atomic region, respectively. In the following section, we will
illustrate the multiple time scale algorithm step by step.

3  Multiple Time Scale Algorithm

Actually, in the arena of continuum mechanics, many researchers have explored
the use of different time steps based on FE domain decomposition for large-scale
structural dynamics. Since the time step of the explicit time integration is usually
governed by either a stability condition (Cauchy condition) or an accuracy require-
ment determined by At < Af., = Lyin/v (Where Ly, is the minimum size of all
elements; v is the longitudinal wave speed), the minimum time step is forced to
be used for the entire domain with a consequence of a huge computational waste.
Belytschko et al. (Belytschko, Yen and Mullen 1979, P. Smolinski, S. Sleith and T.
Belytschko 1996, Liu and Belytschko 1982) were the first to propose the multi-time
step integration method, also referred to as the sub-cycling method. They used dif-
ferent time steps to update the kinematic quantities in different sub-domains. Along
the boundary between two sub-domains, an interface condition is required to en-
sure a match of displacement fields on both sides of the two sub-domains. In this
work, we use different time steps for atomic region and atom-based continuum re-
gion. However, there is no overlapping between these two regions, which means
there is no single atom belonging to both regions, and therefore there is no need to
have an interface condition. Here we formulate a multiple time scale algorithm for
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the central difference method and couple it with the previously mentioned multiple
length scale modeling.

Atom-based
Continuum Region Atomic Region Time
{U,V,A F} and{u,v,af} are updated t" = (n+1)AT
A
At
Positions are I tmmT +mAt
AT At (Mm=0,l.k:k=AT/At)
to each other I Y S
aalt™m At
— B
At
{U,V,A,F} and{u,v,a,f} areknown t"° = nAT

Figure 2: Representation of time steps for the Atom-based Continuum region and
the Atomic region

Figure 2 shows the time steps, AT and At, and the marching for both atom-based
continuum region and atomic region, respectively. Let U, V, A and F represent
the position, velocity, acceleration and force, respectively, in the atom-based con-
tinuum region; similarly, let u, v, a and f represent the position, velocity, accel-
eration and force, respectively, in the atomic region. Let the large time step be
k times the small time step, i.e., AT = kAt. The superscript n and m of """ are
used to number the updated steps in the atom-based continuum region and the
atomic region, respectively. Therefore, time can be calculated as """ = nAT +mAt,
where m = 0, ..., k. At each time step in atom-based continuum region, the current
time can be simplified as 1" = nAT and the updated time can be simplified as
"k = " +10 = yAT + kAt = (n+1)AT. The algorithm can now be implemented as
follows:

Step 0: Initial conditions

Assume U0, V00 300 and vO0 are known at time r = %% = 0. Then, F°°, {00,
A%9 and a%° can be obtained from eq. (1) and eq. (2).

Step 1: Time update for the atom-based continuum region
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At time ¢ = "9 = nAT, U0, V0 A™0 and w0, v*0, a™0 are known from the
previous step or from Step 0.

Step 2: Time update for the atomic region, t = """ = nAT + mAt
Step 3: Update the displacement vectors for both regions

In the atom-based continuum region, we perform the Taylor series expansion for
the displacement vector, i.e.,

U(r) = U(nAT + 1)

. 1 . 1
= U(nAT) + tU(nAT) + 5rZU(nAT) + §T3U(nAT) 4. ©6)

~ UM 4 Tv0 4 %TZAn,O
Then we may express U"" = U (nAT + mAt) as
U = U0+ mArv™O 4 %(mAt)ZA”’O (7)
Similarly, we may express the displacement vector in the atomic region as
ut = g A %(At)za”’m (3)

Step 4: Compute the interatomic force and acceleration for atomic region

Recall that the two force vectors Fand f, as well as the two acceleration vectors
Aand a, are the functions of both Uand u. Also, it is noticed that the two displace-
ment vectors are updated at the same time for each small time step, which means
they are transparent to each other at all . Then, the acceleration vector can be
written as

an,m+1 — a(un,m-i-l 7[Jmm-"—l ’tn,rn—i-l) (9)

Step 5: Update the velocity vector for atomic region

According to the procedure of central difference method, the velocity vector can
march on as

1
Vn,m+1 — ym + EAt<an7m + an,m+1) (10)

Step 6: Update counter: m «— m+1
Step 7: Go to step 2 unless m =k, i.e.,t = (n+ 1)AT
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Step 8: Compute the interatomic force and acceleration vectors for atom-
based continuum region

Following the same idea in Step 4, the acceleration vector can be obtained as

An+1,0 — A(UnJrl,O un+1,0 tn+1,0) (1 1)
Step 9: Update the velocity vector for the atom-based continuum region

1
Vn+l,0 — Vn,O + 5A]ﬂ(lgn.o +An+l,0) (12)

Step 10: Update counter: n «— n+1
Step 11: Qutput the results; if simulation not complete, go to Step 1

4 Wave Propagation

To test the performance of the schemes described above, we simulate wave prop-
agation across the interface between the atomic region and the atom-based contin-
uum region.

The interatomic potential is the only "constitutive equation" needed here, which
renders almost all material properties accessible and involves the interaction be-
tween all atoms. For MgO, the typical single crystal in the class of rocksalt, we
employ the Coulomb-Buckingham potential, i.e.,

12

LD i (9) D () 3

V=22
rtJ
where A B/ C/ | and D/ are material constants between atom i and atom j, and
ri = Hri — 7 H In eq. (13), the first term on the right hand side is the Coulomb
potential, which is a long range potential, and all the other three terms describe
the Buckingham potential, which is a short range potential. Table 1 lists the cor-
responding numerical values in the Buckingham potential. It is clarified here that
all of the units used in this paper are atomic units. Figure 3 depicts the variations
of interatomic potentials as a function of position, including long range interac-
tion and short range interaction. The first cross symbol points the range for short
interaction and the second one for long interaction. This clearly exhibits how the
nonlocal procedure introduced by the calculation of the interatomic potential.

Figure 4 illustrates three models (including the cross-sectional view, front view,

and boundary conditions) studied in this paper. Model 1 is a pure MD model, con-
sisting only atoms, and simulated by MD simulation; model 2 and model 3 consist
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Figure 3: Interatomic potential for (a) Mg-O (b) O-O and (c) Mg-Mg.
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Figure 4: Computational models of a clamped MgO specimen under an impulsive
loading and the positions of the selected representative points.
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Table 1: Database for MgO

A B C D Short Range | Long Range
Mg-O 472 | 0.566 0 0
O-O | 350.88 | 0.414 | 54.09 | 2463.2 12%*a 4*12%a
Mg-Mg 0 0 0 0

both atoms and elements, simulated by the proposed multiple length scale model-
ing method (cf Section 2). For atom-based continuum region, when the finest mesh
is used, i.e., Model 2, any unit cell is a finite element node, which means there
is no unit cell within the elements and the model is identical to a full-blown MD
model (Model 1); when the coarse mesh is used, i.e., Model 3, the majority of the
degrees of freedom can be eliminated and hence the computational cost can be re-
duced. The sizes of these three models are the same, i.e., (4a,4a,41a), and a is the
lattice constant for MgO (a = 1.889726 Bohr). Here we select four representative
points: Point 1 (2a,2a,31a), Point 2 (2a,2a,21a), Point 3 (2a,2a,20a) and Point
4 (2a,2a,10a).

As verifications, the result obtained from MD simulation (Model 1) is considered
as a standard and "exact" solution. Consider five cases and define NTR as the time
step ratio, i.e., NTR = AT /At: (1) Case AT for Model 1, (2) Case MIX-1 for Model
2 with NTR = 1, (3) Case MIX-4 for Model 2 with NTR = 4, (4) Case CG-1 for
Model 3 with NTR =1, and (5) Case CG-4 for Model 3 with NTR = 4. The dis-
placement responses along z-axis of Point 1, Point 2 and Point 4 are shown in Fig.
5 (a)-(c), respectively; and the total energy (kinetic energy plus potential energy)
as function of time is plotted in Fig. 5(d). It is seen that the displacements of the
representative points for the last four cases are in good agreement with case 1 (MD
results). Moreover, the results demonstrate that the total energy is conserved as
long as the material system is free of external disturbances. These results unmis-
takably serve as verifications of our approach and the corresponding computer code
that we developed.

For case 5, characterized by multiple length scale (constructed by atomic region
and atom-based continuum region) and multiple time scale (NTR = 4), the dis-
placement responses of the representative points in acoustic mode are shown in
Fig. 6 (a) and the variations of kinetic energy, potential energy and total energy as
functions of time are shown in Fig. 6 (b). The results show that the displacement
responses of Point 2 and Point 3 (very close to each other but belong to different
regions, cf. Fig. 4) are almost identical with a slight time delay; this means the
wave in acoustic mode propagates through the interface between the atomic region
and atom-based continuum region smoothly without any reflection or dispersion.
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The reason is that the interatomic force calculation only depends on the positions
of atoms within the interaction range. This nonlocal procedure overcomes the force
mismatch at the interface and enables a seamless length scale transition from fully
atomic resolution to continuum description. Since our theory is ready for the sim-
ulation of material system with multi-elements, the wave propagation in optical
mode can also be investigated. Figure 7 (a)-(c) show the displacement responses of
the representative points in optical mode along x-axis, y-axis, and z-axis, respec-
tively. Compared with the responses in acoustic mode, the frequencies in optical
mode are much higher. Since the position of Point 1 is nearer than Point 4 to the
boundary where the input is applied, the response of Point 1 starts earlier than that
of Point 4. The magnitude of optical response along z-axis is larger than that along
the other two directions. The results along x-axis and y-axis are exactly the same
since there is a 90-degree rotational symmetry about the z-axis. Actually this veri-
fies our computer code again.

Furthermore, we explore the displacement responses subject to the impulse with
different magnitudes 1, 3, and 5, and the corresponding results are shown in Figure
8(a)-(c), respectively. When the input magnitude equals to 1, the wave at different
points can achieve as high as that of the input one by one in order (cf. Fig. 8(a)).
However, when the input magnitude increases to 3 or 5, the wave peaks decay more
and more (cf. Fig. 8(b)-(c)). Although the total energy is not depicted here, we want
to point out that it is still conserved after the input loading finished for these two
situations, which means there is no damping in the system. To explore this hidden
mechanism, we artificially reduce the ranges of short and long interactions from
12a to 6aand from 48a to 12a respectively; and the results are shown in Figure
8(A)-(C). It is seen that the decay phenomena disappear when the magnitude of
the input equals to 3, but the wave peaks in Figure 8(C) still cannot achieve the
same height as the input when the magnitude of the input equals to 5. It is because
the nonlocality and the nonlinearity have been unintentionally introduced in the
expression of interatomic potential. We may now conclude that the nonlocal and
nonlinear effects play a significant role in MD and CG-MD simulations.

5 Conclusions

In this paper, we have proposed a new theory which can handle the Multiple length
scale modeling coupled with Multiple time scale algorithm for Multi-physics sim-
ulation of Multi-elements material system. It may be abbreviated as 4M theory. By
employing the 4M theory, we investigate the wave propagation characteristics. The
results show that the wave can propagate across the interface between the atomic
region and the atom-based continuum region without any spurious reflection or dis-
persion. Although no versatile results shown here, our theory and its corresponding
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computer code are general enough. We will present more interesting phenomena in
the future.
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