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Variational Iteration Method for the Time-Fractional
Elastodynamics of 3D Quasicrystals

H. Çerdik Yaslan1

Abstract: This paper presents the approximate analytical solutions to the time
fractional differential equations of elasticity for 3D quasicrystals with initial con-
ditions. These equations are written in the form of a vector partial differential
equation of the second order. The time fractional vector partial differential equa-
tions with initial conditions are solved by variational iteration method (VIM). The
fractional derivatives are described in the Caputo sense. Numerical example shows
that the proposed method is quite effective and convenient for solving kinds of time
fractional system of partial differential equations.
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1 Introduction

Fractional differential equations have been the focus of attention of researchers due
to describe of many phenomena in engineering physics, chemistry, other sciences
by differential equations of fractional order [Miller and Ross (1993); Samko, Kil-
bas, and Marichev (1993); Podlubny (1974); Iovane (2006)]. Hence, considerable
attention has been given to finding the solutions of fractional differential equations.
In general, there exists no method that yields an exact solution for a fractional dif-
ferential equation. Only approximate solutions can be derived using the lineariza-
tion or perturbation method. Recently, variational iteration method [ He (1999)]
has been widely applied to analytically solve fractional differential equations [Wu
(2011); Wu and Lee (2010); Nawaz (2011); Molliq, Noorani, and Hashim (2009);
Molliq, Noorani, Hashim, and Ahmad (2009); Khan, Faraz, Yildirim, and Wu
(2011); Inc (2008); Elsaid (2010); Das (2009); Odibat and Momani (2009); Odibat
and Momani (2008); Momani and Odibat (2007); Abbasbandy (2007); Yang, Xiao,
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and Su (2010); Sakar, Erdogan, and Yildirim (In press); Song, Wang, and Zhang
(2009)].

The quasicrystal as a new structure of solids was first discovered in 1984. [ Shecht-
man, Blech, Gratias, and Cahn (1980)] found an icosahedral structure with five-fold
symmetry in AlMn alloys. Three-dimensional quasicrystals, such as icosahedral
quasicrystals (e.g., Al-Cu-Fe and Al-Li-Cu) are quasiperiodic in three dimensions,
without periodic direction. They play a central role in the study of quasicrystalline
solids. The elasticity problems of 3D quasicrystals are more complicated than those
of 1D and 2D quasicrystals. It is more difficult to obtain rigorous analytic solu-
tions. The time-dependent elastic problems in QCs have been studied in [ Fan
and Mai (2004); Wang (2006); Akmaz and Akinci (2009); Akmaz (2009); Yakhno
and Yaslan (2011b); Yakhno and Yaslan (2011a)]. Using PS method related with
polynomial presentation of data 3D elastic problems in 3D QCs have been solved
in [Akmaz (2009)]. A new method for the derivation of the time-dependent fun-
damental solution with three space variables in 3D QCs with arbitrary system of
anisotropy have been studied in [Yakhno and Yaslan (2011a)].

In this paper, time fractional differential equations of elasticity for 3D quasicrystals
with initial conditions are solved by variational iteration method.

2 The basic equations for 3D QCs

Let x = (x1,x2,x3) ∈ R3 be a space variable, t ∈ R be a time variable. The general-
ized Hooke’s laws of the elasticity problem of 3D QCs are [ Ding, Yang, Hu, and
Wang (1993); Hu, Wang, and Ding (2000); Gao and Zhao (2006)]

σi j = Ci jklεkl +Ri jklwkl, (1)

Hi j = Rkli jεkl +Ki jklwkl, i, j,k, l = 1,2,3, (2)

and the time fractional dynamic equilibrium equations are

ρ
∂ αui(x, t)

∂ tα
=

3

∑
j=1

∂σi j(x, t)
∂x j

+ fi(x, t), (3)

ρ
∂ αwi(x, t)

∂ tα
=

3

∑
j=1

∂Hi j(x, t)
∂x j

+gi(x, t), i = 1,2,3, 1 < α ≤ 2, (4)

where fi(x, t), gi(x, t) all are continuous functions and α is a parameter describing
the order of the time fractional derivative.

Besides, geometry equations are given by

εi j =
1
2
(

∂ui

∂x j
+

∂u j

∂xi
), wi j =

∂wi

∂x j
, i, j = 1,2,3. (5)
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Here ui and wi, i = 1,2,3, are the phonon and phason displacements, σi j and Hi j, i, j =
1,2,3, are phonon and phason stresses, εi j(x, t), wi j(x, t), i, j = 1,2,3, are phonon
and phason strains, fi(x, t) and gi(x, t), i = 1,2,3, are body forces for the phonon
and phason displacements, respectively. And the constant ρ > 0 is the density.

Ci jkl are the phonon elastic constants, Ki jkl are the phason elastic constants, Ri jkl are
the phonon-phason coupling elastic constants. Moreover, they satisfy the following
symmetric properties [ Ding, Yang, Hu, and Wang (1993); Hu, Wang, and Ding
(2000); Gao and Zhao (2006)]

Ci jkl = C jikl = Ci jlk = Ckli j, Ki jkl = Kkli j, Ri jkl = R jikl. (6)

The positivity of elastic strain energy density requires that the elastic constant ten-
sors Ci jkl, Ki jkl , Ri jkl must be positive definite.

In this study we consider (3) and (4) subject to initial conditions

ui(x,0) = ϕi(x),
∂ui

∂ t
(x,0) = φi(x), wi(x,0) = ξi(x),

∂wi

∂ t
(x,0) = ψi(x), i = 1,2,3. (7)

Here ϕi(x), φi(x), ξi(x) and ψi(x) are all continuous functions.

3 Basic definitions

We give some basic definitions and properties of the fractional calculus theory
[Podlubny (1974); Oldham and Spanier (1974)] which are used in this paper.

Definition 2.1.A real function f (y),y > 0, is said to be in the space Cµ ,µ ∈ R if
there exists a real number p(> µ), such that f (y) = yp f1(y), where f1(y)∈C[0,∞),
and it is said to be in the space Cm

µ iff f (m) ∈Cµ , m ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0,
of a function f ∈Cµ ,µ ≥−1, is defined as

Jα f (y) =
1

Γ(α)

y∫
0

(y− t)α−1 f (t)dt, α > 0, y > 0,

J0 f (y) = f (y).

Definition 2.3. The fractional derivative of f (y) in Caputo sense is defined as

Dα f (y) = Jm−αDm f (y) =
1

Γ(m)

y∫
0

(y− s)m−α−1 f (m)(s)ds,

f or m−1 < α ≤ m, m ∈ N, y > 0, f ∈Cm
−1.
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Definition 2.4. For m to be the smallest integer that exceeds α , the Caputo time-
fractional derivative operator of order α > 0 is defined as

Dαu(y, t) =

 1
Γ(m−α)

y∫
0
(t− τ)m−α−1 ∂ mu(y,t)

∂τm dτ, m−1 < α < m,

∂ mu(y,t)
∂ tm , α = m ∈ N.

4 Variational iteration method

Equations (3) and (4) with together (1) and (2) can be written in the vector form
[Akmaz (2009)]

ρ
∂ αV
∂ tα

=
3

∑
j,l=1

P jl
∂ 2V

∂x j∂xl
+F(x, t),x ∈ R3, t ∈ R, 1 < α ≤ 2, (8)

where V = (u1,u2,u3,w1,w2,w3), F = ( f1, f2, f3,g1,g2,g3), matrices P jl are

P jl =
1
2
×

C1 j1l +C1l1 j C1 j2l +C1l2 j C1 j3l +C1l3 j R1 j1l +R1l1 j R1 j2l +R1l2 j R1 j3l +R1l3 j
C2 j1l +C2l1 j C2 j2l +C2l2 j C2 j3l +C2l3 j R2 j1l +R2l1 j R2 j2l +R2l2 j R2 j3l +R2l3 j
C3 j1l +C3l1 j C3 j2l +C3l2 j C3 j3l +C3l3 j R3 j1l +R3l1 j R3 j2l +R3l2 j R3 j3l +R3l3 j
R1 j1l +R1l1 j R2 j1l +R2l1 j R3 j1l +R3l1 j K1 j1l +K1l1 j K1 j2l +K1l2 j K1 j3l +K3l1 j
R1 j2l +R1l2 j R2 j2l +R2l2 j R3 j2l +R3l2 j K2 j1l +K2l1 j K2 j2l +K2l2 j K2 j3l +K2l3 j
R1 j3l +R1l3 j R2 j3l +R2l3 j R3 j3l +R3l3 j K3 j1l +K3l1 j K3 j2l +K3l2 j K3 j3l +K3l3 j

 .

The initial conditions (7) can be written in the vector form

V(x,0) = H(x),
∂V
∂ t

(x,0) = G(x), (9)

where H(x) = (ϕ1(x),ϕ2(x),ϕ3(x),ξ1(x),ξ2(x),ξ3(x)), G(x) = (φ1(x),φ2(x),
φ3(x),ψ1(x),ψ2(x),ψ3(x)). To solve IVP (8)-(9) by means of VIM, the correction
functional for system (8) can be written as follows

Vn+1(x, t) = Vn(x, t)+
t∫

0

λ (τ){ρ ∂ 2Vn(x,τ)
∂ t2 −

3

∑
j,l=1

P jl
∂ 2Ṽn(x,τ)

∂x j∂xl

− F(x,τ)}dτ,

where λ is a general Lagrange multiplier [Inokuti, Sekine, and Mura (1978)],
∂ 2Ṽn(x,τ)

∂x j∂xl
is considered as restricted variations. Making the above functional sta-

tionary, noticing that δ Ṽn = 0,

δVn+1(x, t) = δVn(x, t)+δ

t∫
0

λ (τ)
{

ρ
∂ 2Vn(x,τ)

∂ t2 −F(x,τ)
}

dτ,
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yields the following Lagrange multiplier λ (τ) = τ−t
ρ

. Therefore, the following
variational iteration formula can be obtained

Vn+1(x, t) = Vn(x, t)+
1
ρ

t∫
0

(τ− t){ρ ∂ αVn(x,τ)
∂ tα

−
3

∑
j,l=1

P jl
∂ 2Vn(x,τ)

∂x j∂xl

− F(x,τ)}dτ, (10)

In this case, we begin with the initial approximation

V0(x) = H(x)+ tG(x). (11)

5 Application

Example. In this example we consider icosahedral quasicrystals. For three-dimensional
icosahedral quasicrystals [Ding, Yang, Hu, and Wang (1993)], Ci jkl has the expres-
sion

Ci jkl = λδi jδkl + µ(δ jlδik +δilδ jk),

where λ and µ are Lame constants. The nonzero phason elastic constants are

K1111 = K2222 = K1212 = K2121 = K1,

K1131 = K1113 = K2213 = K2312 =−K2231 =−K2321 =−K1232 =−K3221 = K2,

K3333 = K1 +K2, K2323 = K3131 = K3232 = K1313 = K1−K2.

The nonzero phonon-phason coupling elastic constants are

R1111 = R1122 = R1133 = R1113 = R2233 = R2332 = R3111 = R3131 = R1221 = R,

R2211 = R2222 = R2213 = R2312 = R2321 = R3122 = R1223 = R1212 =−R,

R3333 = −2R.

For our calculations we choose ρ = 1, λ = 4.51, µ = 1.25, K1 = 1.35, K2 =
0.4, R =−0.57 [Akmaz (2009)]. And initial conditions and nonhomogenous terms
are given as

ϕi(x) = ξi(x) = (1+ x1)(2+ x2)(3+ x3), φi(x) = ψi(x) = 0,

fi(x, t) = gi(x, t) = 0, i = 1,2,3.
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Using the formula (10) with initial approximation (11) we can obtain the following
approximations

V0(x, t) = H(x),

V1(x, t) = H(x)+
1
ρ

t2

2

3

∑
j,l=1

P jl
∂ 2H(x)
∂x j∂xl

,

V2(x, t) = H(x)+
1
ρ

t2
3

∑
j,l=1

P jl
∂ 2H(x)
∂x j∂xl

+
1

ρ2

3

∑
j,l=1

P jl
∂ 2

∂x j∂xl

3

∑
j,l=1

P jl
∂ 2H(x)
∂x j∂xl

t4

24

− 1
ρ

3

∑
j,l=1

P jl
∂ 2H(x)
∂x j∂xl

t4−α

Γ(5−α)
.

Here components of the second order approximation V2(x, t) are found explicitly
as follows

u2
1(x, t) = (1+ x1)(2+ x2)(3+ x3)+ t2(21.96+4.62x3 +4.48x2 +1.14x1)

− t4−α(21.96+4.62x3 +4.48x2 +1.14x1)
Γ(5−α)

,

u2
2(x, t) = (1+ x1)(2+ x2)(3+ x3)+ t2(28.74+6.9x3 +1.14x2 +5.76x1)

− t4−α(28.74+6.9x3 +1.14x2 +5.76x1)
Γ(5−α)

,

u2
3(x, t) = (1+ x1)(2+ x2)(3+ x3)+ t2(2.07+1.14x3 +5.76x2 +5.76x1)

− t4−α(2.07+1.14x3 +5.76x2 +5.76x1)
Γ(5−α)

,

w2
1(x, t) = (1+ x1)(2+ x2)(3+ x3)+ t2(4.68+1.14x3−0.34x2 +1.94x1)

− t4−α(4.68+1.14x3−0.34x2 +1.94x1)
Γ(5−α)

,

w2
2(x, t) = (1+ x1)(2+ x2)(3+ x3)+ t2(0.22−0.8x3 +0.34x2 +1.94x1)

− t4−α(0.22−0.8x3 +0.34x2 +1.94x1)
Γ(5−α)

,

w2
3(x, t) = (1+ x1)(2+ x2)(3+ x3)+ t2(−5.82−0.8x3−1.14x2−1.14x1)

− t4−α(−5.82−0.8x3−1.14x2−1.14x1)
Γ(5−α)

.

This problem has been solved in the polynomial form explicitly [Akmaz (2009)].
In Table 1 we compare the second order approximation V2(x, t) for α = 2 with the
polynomial solution and we obtain same results. And we calculate all components
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for the second order approximation V2(x, t) for α = 1.7,1.5,1.1, respectively. In
Table 1 we take x1 = 1, x2 = 2, x3 = 3 and t = 5.

Table 1: The components of V2(x, t) for x1 = 1,x2 = 2,x3 = 3, t = 5.

V2(x, t) Polynomial solution α = 2 α = 1.7 α = 1.5 α = 1.1

u2
1(x, t) 597 597 482.8651137 407.2267976 264.0288056

u2
2(x, t) 766.5 766.5 617.1267472 518.1356176 330.7262238

u2
3(x, t) 565.5 565.5 457.9138367 386.6154239 251.6337102

w2
1(x, t) 165 165 140.6761718 124.5565306 94.03892579

w2
2(x, t) 53.5 53.5 52.35657218 51.59881127 50.16422301

w2
3(x, t) −97.5 −97.5 −67.25113669 −47.20491629 −9.253535921

In Figure 1 shows the second order approximation w2
3(1,2,3, t) for values α = 2,

α = 1.7, α = 1.5 and α = 1.1 for different values of t.

Figure 1: w2
3(1,2,3, t) for different values of α and t.

6 Conclusion

Variational iteration method has proven as an efficient tool to solve the time frac-
tional equations of anisotropic elasticity for 3D quasicrystals. The method has been
used in a direct way without using linearization, perturbation or restrictive assump-
tions. The result shows that a few iterations of the Variational iteration method
recursive formula can yield a good solution. The basic idea described in this work
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can be employed to solve kinds of system of partial differential equations with time
fractional order.
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