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Suppressing Gray-Scale Elements in Topology
Optimization of Continua Using Modified Optimality

Criterion Methods

Yixian Du1,2 and De Chen1,3

Abstract: This study proposes a new topology optimization method for contin-
uum structures, which includes modified heuristic optimality criteria in conjunc-
tion with the SIMP scheme to suppress gray-scale elements occurred in topology
optimization of continua through smoothed Heaviside function. In the process of
numerical implementation, the gray scale elements are suppressed to approach the
binary bounds of 0 or 1 by utilizing the proposed approach and the corresponding
convergence criterion. Two typical numerical examples are used to demonstrate the
effectiveness of the proposed method in suppressing the gray-scale elements with
intermediate densities, as well as the efficiency of this method in the numerical
procedure.

Keywords: Topology optimization; Continuum structure; Optimality Criterion;
Gray-scale elements; SIMP method.

1 Introduction

Since one of the pioneering works in the area of topology optimization for contin-
uum structures using the homogenization method by Bendsøe and Kikuchi (1988),
topology optimization has become one of the most important but challenging tech-
niques in the area of structural optimization of topology, shape and size. Topology
optimization [Bendsøe and Sigmund (2003)] is essentially a numerical procedure
to iteratively distribute a given amount of material in the design space to search
its best configuration to bear loads effectively, so as to determine the best mate-
rial layout by optimizing the prescribed objective function subject to specific con-
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straint(s). The design of topological optimization has drawn much consideration
over the past two decades, and many different methods have been developed for a
number of engineering applications, such as [Maute and Frangopol (2003); Luo,
Yang and Chen (2006); Dühring, Jensen and Sigmund (2008); Kang and Tong
(2008); Luo, Tong and Ma (2009)]. The typical methods for topology optimization
include the homogenization [Bendsøe and Kikuchi (1988)], SIMP (solid isotropic
microstructures with penalization) [Zhou and Rozvany (1991); Bendsøe and Sig-
mund (1999)], and level set-based methods [Wang, Wang and Guo (2003); Allaire,
Jouve and Toader (2004)]. With the development of modern computational meth-
ods, topology optimization is becoming a more preferred industrial design tool in
the stage of conceptual design.

In fact, the topology optimization of continua belongs to a family of integer pro-
gramming problems with 0 and 1 discrete design variables, to which many gradient-
based optimization algorithms cannot be directly applied. To overcome this short-
coming, the original discrete optimization problem can be relaxed to allow the dis-
crete design variables to continuously take intermediate densities from 0 to 1. As
an extension of the homogenization method, SIMP is becoming popular because
of its conceptual and numerical simplicity. However, an exponential ‘power-law’
scheme [Bendsøe and Sigmund (1999)] is usually included to penalize the inter-
mediate densities. To ensure a meaningful solution of the relaxed problem close to
the original 0 and 1 design, additional schemes, including the sensitivity filter [Sig-
mund (2001)], density-sensitivity filter [Luo, Chen, Yang, Zhang and Abdel-Malak
(2005)] or morphology-based filter [Sigmund (2007)], are included to the problem
to avoid numerical instabilities, e.g. checkerboards and mesh-dependences [Diaz
and Sigmund (1995); Sigmund and Petersson (1998)].

Although the above mentioned schemes can be used to overcome the typical nu-
merical instabilities, it is common to generate designs involving gray-scale ele-
ments, because a portion of material with intermediate densities will appear sur-
rounding structural boundaries. This makes it hard to interpret the final topological
design accurately due to the blur boundaries, as an under or over evaluated struc-
tural boundary is undesirable. In order to suppress gray-scale elements, there have
been a lot of research endeavors with a view to solving this problem. For instance,
Xu, Cai and Cheng (2010) proposed a nonlinear filtering method to satisfy the vol-
ume constraint and got clear boundary of the topology optimization. Groenwold
and Etman (2009) proposed a heuristic criterion method to suppress the gray-scale
elements. However, it is difficult to determine the relevant parameters and the it-
eration procedure is computationally expensive. Some popular filtering schemes,
such as [Bourdin (2001); Sigmund (2001); Luo, Chen, Yang, Zhang and Abdel-
Malak (2005); Sigmund (2007)], can be applied to eliminate numerical instabilities
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including checkerboards. However, most of the above methods cannot be used to
effectively suppress the gray-scale elements around the boundary of structures.

To suppress the gray-scale elements, this paper proposed two heuristic Optimality
Criterion (OC) formulas based on the Logistic regression analysis function through
a regression analysis model to estimate the corresponding parameters, namely, a
Modified Optimality Criterion (MOC) method. OC methods have been widely
employed in the area of topological optimization due to its advantages [Zhou and
Rozvany (1991); Rozvany, Bendsøe and Kirsch (1995)]. In combination with the
conventional SIMP model and a special convergence criterion, the MOC method
is expected to create better optimal designs in topology optimization. The typical
numerical examples are used to showcase the effectiveness of the proposed method,
which possesses the advantages to effectively suppress the gray-scale elements,
with a fast convergence, and a unified and simple form of iteration formula.

2 Structure topology optimization model

Topology optimization is often formulated as a material distribution problem, in
which solid and void phases are indicated by discrete values 1 and 0, respectively.
As aforementioned, the discrete model is usually required to be relaxed to make
material properties continuously dependent on the local amount of material. SIMP
[Zhou and Rozvany (1991); Bendsøe and Sigmund (1999)] has been widely used
for synthesizing optimal topology of structures, due to its conceptual simplicity, im-
plementation easiness and computational efficiency. The key procedure of SIMP is
to regularize the original optimization problem with 0 and 1 discrete design vari-
ables into a relaxed one with design variables ranging from 0 to 1 continuously. In
doing so, more efficient gradient-based optimization algorithms can be applied to
solve topology optimization problems of structures.

2.1 SIMP interpolation scheme

In SIMP, a density-stiffness interpolation scheme is used to represent the nonlinear
dependency between elemental densities and material properties. To recover the
original 0 and 1 discrete material distribution, a power-law scheme [Bendsøe and
Sigmund (1999)] is usually applied to penalize the intermediate densities to push
the intermediate densities towards its binary bounds (0/1). In most engineering
applications, the SIMP method can be generally written as

Ee(xe) = xp
e E0 (1)

ρe (xe) = xeρ0 (0≤ xe ≤ 1) (2)



56 Copyright © 2012 Tech Science Press CMES, vol.86, no.1, pp.53-70, 2012

where Ee and E0denote the actual and initial Young’s Modulus, respectively, p is
the penalty factor. ρ0 is the material’s density of solid state, ρe is the element
material’s density, and xe is the element’s relative density. In addition, the design
variables ρe need to be iteratively updated, and so the Young’s Modulus is also
reevaluated for the structural analysis of the next iteration.

However, E0 is a constant value (the relative value is 1.0) in a given topology op-
timization problem, so Eq. (1) is an exponential function. With the increasing of
the penalty factor p, the result value of Ee(xe) will become better. If the penalty
factor p is too big or too small, it will lead to numerical instabilities, including the
porous materials, the checkerboard phenomenon, difficulty of convergence and so
on. So the penalty factor is an important element in SIMP, which should be taken
into consideration for a relative good value in a given problem.

 
Figure 1: SIMP model with different penalty factors

Fig. 1 shows different shapes of the penalty factor when p is given different values.
From the graph, one can see that in SIMP scheme, the penalty factor should not
be too small or too big. For example, it will not reach the goal if the value is 1.0.
When the penalty factor is 9.0, the result will become worse because of deleting
too many high-relative-density elements. In general, p is 3.0 in SIMP scheme.

From Fig. 1, it can be seen that most elements’ relative densities are located be-
tween 0.4 and 0.9. When the relative density is less than 0.4, Eq. (1) will make
the corresponding Young’s Modulus of relative materials close to 0, which can be
solved efficiently. But the penalty curve shows that just a small number of high-
relative-density elements (between 0.9-1.0) are pushed to 1.0. In addition, when
the relative densities are between 0.4 and 0.9, Eq. (1) will produce many interme-
diate relative Young’s Moduli ranging from 0.08 to 0.72. This phenomenon will
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produce a great number of porous material elements in the final topology, namely,
gray-scale elements.

2.2 Optimization formulation with SIMP

In the SIMP method, the design domain is discretized into a finite element (FE)
mesh defined by Nx, which is the set of elements in the x-axis (Nx = {1, 2, . . . ,
|Nx |}) and Ny, which is the set of elements in the y-axis (Ny={1, 2, . . . , |Ny |}).
The relative density of every element in the mesh (xe, e ∈ Nx×Ny) is considered
as a design variable (0≤ xe ≤1). SIMP method assumes that the stiffness matrix
of each element depends on the relative density raised to some penalization power,
p. Thus, the optimization problem for obtaining the minimum compliance can be
written as:

Find : x = (x1,x2,x3, ...,xN)T

Min : C(x) = UTKU =
N
∑

e=1
(xe)puT

e k0ue

s.t. : V (x)/V0 ≤ f
KU = F

(3)

where x = (x1,x2, . . . ,xN)T is an N-dimensional vector of design variables, in which
0 < xmin ≤ xe ≤ xmax ≤ 1. C(x) is the mean compliance of the structure, defined
by the density vector x of design variables xe; K is the global stiffness matrix,U
and F are the global displacement and force vectors, respectively. N(N=Nx×Ny)
is the number of elements used to discretize the design domain.ue is the element
displacement vector, k0 is the element stiffness matrix; f is the prescribed volume
fraction; xmin and xmax are the lower and upper bounds of the relative densities (non-
zero to avoid numerical singularity); V (x) and V0 is the given material volume and
the design domain volume, respectively.

2.3 Numerical instabilities

Checkerboard, mesh-dependences and local minima are the common numerical in-
stabilities in the topology optimization of continuum structures. For example, the
checkerboard problem refers to the formation of regions of alternating solid and
void elements arranged in a checkerboard-type fashion. Many approaches [Sig-
mund and Petersson (1998)] have been proposed to handle these problems. For
the checkerboard, the widely used methods include higher-order finite elements,
filters, nodal-density projection methods and geometric constraints and so on. In
particular, the filter method is a simple but effective heuristic method to overcome
checkerboards and mesh-dependences. The merit of this method is that it will not



58 Copyright © 2012 Tech Science Press CMES, vol.86, no.1, pp.53-70, 2012

add any constraints to the optimization problem, easy to implement in the numeri-
cal procedure.

Based on filtering techniques from image processing, the sensitivity filtering scheme
[Sigmund (2001)] has been widely used to achieve a checkerboard-free and mesh-
independency design in the topology optimization of continua, which modified the
design sensitivities during iterations as follows:

∧
∂c
∂xe

=
1

xe
N
∑

f =1

∧
H f

N

∑
f =1

∧
H f x f

∂c
∂x f

(4)

where the subscript f satisfies {f∈N|dist(e, f)≤rmin}, e=1, . . . , N. dist(e, f ) is de-
fined as the distance between the center of element e and center of element f , rmin

is the filter radius.
∧

H f is written as

∧
H f = rmin−dist(e, f ) (5)

This method makes the design sensitivity of a specific element depend on a weighted
average around the element’s neighbors that located within the scope of the radius
dist(e, f). Because of the weighted average operation, a specific element’s density
will be repeatedly evaluated many times. The direct side-effect is it will lead to
gray-scale elements, although is it can avoid the checkerboards efficiently. In par-
ticular, with the increasing of the radius dist(e, f), the gray-scale becomes more
serious.

3 Modified optimality criterion methods

3.1 Optimality criterion method to update element densities

One of the difficulties in topology optimization of continua is a large-scale number
of design variables to be updated iteratively. An efficient optimization algorithm
is important for a given problem. Many methods have been developed as the op-
timizers for topological optimization problems, including the Optimality Criterion
(OC) methods [Rozvany, Bendsøe and Kirsch (1995)]. The OC method realizes the
optimization through establishing the optimality criterion and the iteration formula,
with advantages including the fast convergence, as well as the complexity level has
no association with the structural re-analysis and the number of variables. In this
paper, the scheme of updating element densities is based on the OC method, which
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can be written as

xnew =



max(xmin,xe−m)
if xeBη

e ≤max(xmin,xe−m)
xeBη

e

if max(xmin,xe−m)≤ xeBη
e ≤min(1,xe +m)

min(1,xe +m)
if min(1,xe +m)≤ xeBη

e

(6)

where m is a positive small constant to be used as a move-limit. η is a numerical
damping coefficient (typically the value is 1/2), and Be is defined as follows:

Be =
− ∂c

∂xe

λ
∂V
∂xe

(7)

where λ is a Lagrangian multiplier that can be found by a bi-sectioning algorithm.
The sensitivity of the objective function is found as

∂c
∂xe

=−p(xe)p−1uT
e k0ue (8)

In order to ensure existence of solutions to the topology optimization, Eq. (6) will
be in association with the OC method to update elemental densities, in order to ob-
tain a meaningful solution without experiencing the typical numerical instabilities.

3.2 Modified optimality criterion method

From Section 2, it can be seen that it is improper to delete too many elements of
relative densities between 0.5 and 1.0. In order to get a better result, it is important
to find a penalty function that makes the elements whose relative densities are lower
than 0.5 close to 0, and the elements with relative densities higher than 0.5 close to
1.0. This will reduce the gray-scale elements somewhat.

Based on this concept, this paper proposes two different heuristic formulas for con-
struct modified OC methods to suppress gray-scale elements. The main idea is to
weaken the effect of low-relative-density elements and enhance the contribution
of high-relative-density elements. In each optimization step, one of the heuristic
methods will be included after updating the elements’ densities by Eq.(6). The re-
sult is to make design variables close 0 or 1. These methods can not only suppress
the gray-scale elements, but also accelerate the convergence.
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The mathematical formulas of these two methods can be written as

x′new =
e(− a

2 +axnew)

1+ e(− a
2 +axnew) (9)

x′new =
2.55arctan[b(2xnew−1)]

4(1+ e−
xnew

b )
+

1
2

(10)

where xnewand x′neware the element densities after using the OC method, given in
Eq. (6) and Eq. (9) or Eq. (10), respectively. a or b is the parameter that controls
the polarization level (steepness parameter). Fig. 2 is the graphs of Eq. (9) and Eq.
(10) with different steepness parameters a and b.

       
(a) Different factors for Eq.(9)   (b) Different penalty Eq.(10) 

 

Figure 2: Graphs of the two heuristic formulas

As Fig. 2 shows, these two methods can make the intermediate densities materials
approach to 0 or 1. With the increasing of the steepness parameters, the curves
are approximately close to a smoothed Heaviside step function. The smoothed
Heaviside function can get better results when they are included to update the el-
ement densities. In this way, the low-relative-density elements are weakened and
the corresponding stiffness matrixes are weakened, so the inference to the global
stiffness matrix can be ignored because of the relative density contribution is very
lower. For the high-relative-density elements, the effect is opposite, which means
that their corresponding stiffness matrixes are enhanced.

3.3 Convergence criterion

The choice of convergence criterion is also important to the topology optimiza-
tion. Based on the Modified OC methods, convergence strategy of this paper is
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introduced as follows:∣∣∣∣∣C(k+1)−C(k)

C(k)

∣∣∣∣∣≤ ε (11)

where C(K+1) and CK are the compliance of the (K +1)th and Kth iteration, respec-
tively. This convergence strategy contains two stages:

(1) At early stage of the iteration, in order to prevent the subsequent optimization
being influenced by low-relative-density elements, a lower-relative steepness pa-
rameter (for example, a=8 or b=3) is applied until Eq. (11) is satisfied, where the
value of ε is 0.3%.

(2) After the first stage, most elements’ densities approximate to either 1 or the
lowest density value, to get a faster convergence speed, adopting a higher-relative
steepness parameter (for example, a=18 or b=8), until the convergence condition
given in Eq. (11) is satisfied, where ε is 0.1%.

4 Flowchart of modified optimality criterion method

The flowchart of the modified optimality criterion method is displayed in Fig. 3.
As indicated in Fig. 3, the whole process contains five steps, and each step will be
explained as follows:

(1) Set the initial value. Define the design domain, material’s property and load
parameters, and then discretize the design domain with finite elements.

(2) Structural analysis. Finite Element Method is applied to structural numerical
analysis. Set boundary conditions, define loads, construct elemental stiffness ma-
trix, assemble the global stiffness matrix, and then solve the state equation.

(3) Optimization. In this step, the optimization is performed using one of the Mod-
ified OC methods. During the optimization, the variables are updated, and the
process is being processed until the corresponding convergence criterion is satis-
fied.

(4) Convergence. If the design meets the convergence criterion, the design is con-
vergent and the optimization will stop. Otherwise, it will return to the second step
to continue the optimization.

5 Numerical examples

Numerical examples are presented in this section to demonstrate the availability and
efficiency of the Modified OC method in topology optimization. The following will
present two typical numerical examples. One is the cantilever and the other is the
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Figure 3: Flowchart of modified optimality criterion method

half MBB. In each example, three methods will be used to solve the given problem:
the conventional OC and the two Modified OC methods. These examples are based
on the 99 line topology optimization MATLAB code by [Sigmund (2001)].

5.1 Numerical example 1: The optimization of the cantilever

As indicated in Fig. 4, the design domain of the problem is a 0.4m×0.25m rectangle
with a thickness of 0.01m, discretized with 80×50 quadrilateral finite elements of
low order. The load P is 1000 N, located at the middle point of the right side of the
structure. The left side of the structure is fixed. All necessary parameters for the
optimization are listed in Table 1.

Table 2 shows the optimal topologies and corresponding steps with different meth-
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Figure 4: Design domain with working conditions of the cantilever

Table 1: Parameters for topology optimization

Parameter Value Meaning
E 2.10×1011 Young’s module
µ 0.3 Poisson’s ratio
p 3.0 penalty factor
r 2.5 filter radius
f 0.5 volume fraction

ρ0 [1,1,. . . ,1] Initial values

ods. From Table 2, it can be seen that the Modified OC methods can produce better
optimal topologies: lower compliance and lesser iterations. As mentioned in Sec-
tion 3.2, in the process of updating elemental densities, Eq. (9) and Eq. (10) can
reasonably make the design variables close to 0 or 1, instead of deleting too many
elements of relative densities between 0.5 and 1.0. Furthermore, since the strat-
egy of different convergence criteria are employed in this paper at different stages,
the Modified OC methods can automatically choose different predefined steepness
parameters. These might be the reason why the compliances are lower and the
iteration numbers are lesser than the conventional OC method.

In addition, the major merit is the boundary of final topological designs is distinct
because of the gray-scale elements are greatly suppressed, when the Eq. (9) or Eq.
(10) are combined with the OC method to solve the problem. As shown by Fig. 6,
the conventional OC method lead to 508 gray-scale elements with intermediate ma-
terial densities (relative density between 0.2 and 0.8) in total, while the modified
two OC methods are 0 in this given problem, respectively. Table 3 is the snap-
shots of the topological designs obtained at different design stages. It shows that
both Modified OC methods can generate good topology designs with faster speed
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compared to the conventional OC method.

This example exhibits that the two Modified OC methods can be used to solve
topology optimization problems subject to single constraints with higher numerical
accuracy and fast convergence.

Table 2: Comparison between OC method and two Modified OC methods

Method The OC method 
The first Modified 

OC method 

The second Modified 

OC method 

Optimal topologies 

  

Volume fraction 0.5 0.5 0.5 

Steepness parameters  a1=7.0 a2=20.0 b1=3.5 b2=10.0 

Compliance (×103/J) 192.266 177.837 190.809 

Iteration steps 20 15 17 

 

Table 3: Snapshots of the topology obtained at different iteration steps.

Method The OC method 
The first Modified 

OC method 

The second Modified 

OC method 

t=5 

  

t=10 

  

t=15 

  

 

5.2 Numerical example 2: The optimization of the half MBB-beam

The second example is shown in Fig. 6, which is further used to demonstrate the
effectiveness of the proposed OC methods. The design domain is a 0.45m×0.15m
rectangle area with a thickness of 0.01m, discretized by 90×30 quadrilateral finite
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Figure 5: The histogram of elements number in different relative density interval

 
Figure 6: Design domain of the half MBB-beam
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elements for structural analysis. The load P is 1000 N, located at the middle point of
the upper side. In the numerical implementation, only half “MBB-beam” is used to
take advantage of structural symmetry. In the symmetric design domain, the load
is applied vertically in the upper left corner and the lower right corner is simply
supported, and the left edge is regarded as the symmetric boundary condition. All
parameters are listed in Table 4.

Table 4: Parameters for the problem in Fig. 6

Parameter Value Meaning
E 2.10×1011 Young’s module
µ 0.3 Poisson’s ratio
p 3.0 penalty factor
r 3.75 filter radius
f 0.5 volume fraction

ρ0 [1,1,. . . ,1] Initial values

Table 5 displays the results using different OC methods in the optimization. The op-
timal topologies and the corresponding iterations indicate that the proposed method-
ology can lead to topological designs with distinct boundaries and the optimization
converges relatively fast. So the number of gray-scale elements (relative densities
between 0.2 and 0.8) are less than that of the conventional OC method. That is, the
conventional OC method produced 629 gray-scale elements, while the proposed
first and the second Modified OC methods are 2 and 27, respectively, as denoted by
Fig. 7. Table 6 shows that the Modified OC methods can converge relatively fast.

Table 5: Comparison between OC and two Modified OC methods

Method The OC method The first Modified OC method
The second Modified OC 

method 

Optimal 

topologies 
   

Volume 0.5 0.5 0.5 
Steepness  a1=9.0 a2=22.0 b1=4.9 b2=15.0 

Compliance 

(×103/J) 
1059.822 923.831 1052.229 

Iteration steps 27 20 25 
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Figure 7: The histogram of elements number in different relative density interval

Table 6: Topologies obtained at different iteration steps (t)

Method The OC method 
The first Modified OC 

method

The second Modified OC 

method 

t=5 

t=10 

t=15 

t=20 

 

From the above discussions, it can be seen that the Modified OC methods can
efficiently suppress the gray-scale elements in the topology optimization of con-
tinuum structures, which is greatly beneficial to designers in reasonably extracting
black-white boundaries without over or under estimations. Both methods can lead



68 Copyright © 2012 Tech Science Press CMES, vol.86, no.1, pp.53-70, 2012

to better topological designs with lower compliances (or higher stiffness), and the
numerical convergence is relatively fast than the conventional OC method. Our on-
going research is to achieve topological designs with distinct but more smoothed
boundaries.

6 Discussion and conclusions

The unique characteristic of the proposed methodology is it can create topological
designs with distinct boundaries with materials either close to 0 (void) or 1 (solid),
besides its abilities to avoid typical numerical instabilities including checkerboards
and mesh-dependency. From the numerical results, it can be found that the two
Modified OC methods can efficiently suppress gray-scale elements in the final de-
signs. The optimal designs can be obtained only through relatively a small number
of iterations in terms of the explicit approximation and sensitivity analysis involved
in OC methods.

It should be pointed out that each Modified OC method employs a steepness pa-
rameter to ensure the convergence of the iteration, and the parameter has a direct
effect on the convergence and accuracy of the algorithm. More or less, it is a matter
of numerical experience to properly choose a or b to make the convergence quicker
and more accurate. The methods proposed in this study can be extended to handle
more complex topology optimization problems of continua.
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