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Simulation of Multi-Option Pricing on Distributed
Computing

J.E. Lee1 and S.J. Kim2

Abstract: As the option trading nowadays has become popular, it is important to
simulate efficiently large amounts of option pricings. The purpose of this paper is
to show valuations of large amount of options, using network distribute comput-
ing resources. We valuated 108 options simultaneously on the self-made cluster
computer system which is very inexpensive, compared to the supercomputer or the
GPU adopting system. For the numerical valuations of options, we developed the
option pricing software to solve the Black-Scholes partial differential equation by
the finite element method. This yielded accurate values of options and the Greeks
with reasonable computational times. This was executed on the single node and
then extended on the cluster computer system.

We can infer our research for large amounts options on the distributed computing
will be a highly attractive alternative to devising hedging strategies or developing
new pricing models.

Keywords: option pricing model, Black-Scholes equation, finite element method,
distributed computing, cluster computer system.

1 Introduction

Since the introduction of the option pricing model by Black and Scholes (1973),
various option products based on the Black-Scholes equation have been developed.
In general, option products preclude a closed-form solution except for the well-
known classical cases, such as the European options. When a closed-form solution
does not exist, numerical approaches are common way to proceed. Over the past
years, several numerical methods have been introduced and applied to the option
pricing models. Generally, binomial tree method and finite difference method are
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in favor, as they are intuitive and easy; the Monte Carlo simulation is also popu-
lar. More recently, the finite element method (FEM), which is widely used in others
fields of science and engineering for decades, is becoming popular in financial engi-
neering applications, by the number of articles being published on the subject, such
as Topper (2005a, 2005b), Achdou and Pironneau (2005), Seydel (2009), Tomas III
and Yalamanchili (2001), Sapariuca, Marcozzib and Flahertyc (2004) and Foufas
and Larson (2008).

The FEM is advantageous over other numerical methods when properly applied
to the problems of financial modeling. For example, Seydel (2009; chap 5) il-
lustrated triangular elements for the double barrier option to show the flexibility
of domain discretization, which is offered by the FEM. Tomas and Yalamanchili
(2001) presented the advantages of the FEM, showing non-uniform mesh construc-
tion and direct derivative valuation. Various option products applied FEM can be
found in Topper (2005a). Topper also pointed out the FEM can incorporate dif-
ferent kinds of boundary conditions in an easy way and can easily deal with high
curvature and irregular shapes of the computational domain, compared to other nu-
merical techniques. These are important advantages, in practice, in the field of
financial modeling. On the other hand, various new techniques have been studied
to improve the computational efficiency. For example, Jackson and Süli (1997) in-
troduced an adaptive mesh refinement technique for the option pricing, based on a
posteriori error estimation, and Foufas and Larson (2008) developed it, calculating
optimal meshes for each type of option. More information about the mesh adaption
can be found in Achdou and Pironneau (2005; chap 5). Zvan, Forsyth and Vetzal
(1998) proposed the penalty method by adding a penalty term to the Black-Scholes
equation, and Nielsen, Skavhaug and Tveito (2002, 2008) extended and refined it.
Khaliq, Voss and Kazmi (2006, 2008) developed an efficient implicit scheme us-
ing the penalty method. Other techniques are the MQ-RBF (Choi and Marcozzi
(2004)), the LDQ method (Young, Sun and Shen (2009)), PSM (Suh (2009)), the
spectral element method (Zhu and Kopriva (2010)), STS technique (O’sullivan and
O’sullivan (2011)), etc. Some articles compared existing numerical schemes, con-
ducting a computational study based on the speed of computation and the accu-
racy of the result (Broadie and Detemple (1996), Rogers and Talay (1997), Cooney
(2000) and Wallner and Wystup (2004)).

We used the FEM to solve numerically the Black-Scholes partial difference equa-
tion for the option pricing. Our approach is general, practical and easily imple-
mented for the numerical modeling, and the computation performance is very pos-
itive. This means that our approach is very easy to use and convenient in real
simulations.

Meanwhile, a lot of financial companies are handling various types of complex fi-
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nancial products using high performance computing, accelerated by GPGPU (General-
Purpose computing on Graphics Processing Units) technique or supercomputing
systems. They valuate worldwide market option products or compute hedge strate-
gies for hundreds of thousands of policy holders in its portfolio. The finance is
one of the fast growth fields for high performance computing systems, driven by
increasing data volumes, greater data complexity.

In this paper, instead of building a supercomputer or installing more powerful
GPUs, which is expensive and sometimes not possible, we suggest the cluster com-
puter system by connecting many low-cost standard computers. This system is easy
to improve the performance by adding nodes and can use the out of date computers.
This could be the most economical way to take the high performance computing.

The main contributions and findings in this paper are following.

We developed the option pricing software applying the FEM. This program pro-
vides option prices and the corresponding Greeks. This is supporting both one-
underlying asset option and two-underlying assets option, and the computation per-
formance is very positive as the desired level of accuracy is achieved.

About one hundred options’ valuations were performed simultaneously on the clus-
ter computer system developed by our lab, with a CPU time of a few seconds. Our
results could be very useful to study how option pricings are changing with vari-
ous conditions, which will be able to take great promise for improving the finance
modeling and analysis

Option pricing on the distributed computing is for the first time in the financial
fields, to our knowledge, and this is a very economical way, compared to other
high performance systems such as the supercomputer or the GPU adopting system.

The remainder of this paper is organized as follows. Section 2 presents the option
pricing model defined by a partial differential equation and its boundary conditions.
This model is based on the Black-Scholes equation. Section 3 introduces the FEM
for the option pricing numerical model and Section 4 shows the development of the
option pricing program based on the FEM. Section 5 describes the cluster computer
system we used. Section 6 presents the numerical results on the single node and 108
nodes in the cluster system, which is the main contribution of this paper. Finally,
conclusions are made in Section 7.

2 The option pricing model

Option is the right to buy or sell an asset. This gives its holder the right for a
transaction of a certain asset at a given time for a given price. The holder does
not have to exercise this right. This fact distinguishes options from forwards and
futures where the holder is obligated to buy or sell the underlying asset. There
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are two types of options. A call option allows its owner to buy and a put option
to sell its underlying asset at a certain time for a fixed certain price. The price
is known as the exercise price or strike price. The date is known as the expiration
data, exercise date or maturity (Hull (2008)). Options on stocks were first traded on
an organized exchange in 1973. Since then there has been a dramatic growth in the
option markets. Options are now traded on many different exchanges throughout
the world.

Not every option can be exercised at any time. European options can only be exer-
cised at one given maturity date, whereas American options can be exercised at any
time prior to their maturity date. “European” and “American” options are names
for different types of the exercise right and not a geographical classification, i.e.
American options can be traded in Europe and vice versa. The price of the option,
also called premium, depends on the value of one entity of its underlying asset,
which can be one or more stocks, an index (e.g. S&P500), a foreign currency, a fu-
ture contract, etc. Due to this dependency on the underlying value, options belong
to the group known as financial derivatives.

The option pricing model introduced by Black and Scholes was the first, and is still
the most widely used, for the valuation of options. Black and Scholes observed a
lognormal behavior of asset prices and derived a partial differential equation that
describes the option’s value.

The well-known Black-Scholes model for the option price is:

∂

∂ t
V (S, t)+

1
2

σ
2S2 ∂ 2

∂S2V (S, t)+(r−δ )S
∂

∂S
V (S, t) = rV (S, t), (1)

where S is the asset price underlying the option, S≥0, V is the option price, r is
the risk-free rate, t is the time since the option was issued, 0≤t≤T, T is the time to
maturity, δ is the dividend and σ is the volatility.

In other to solve this equation, it is necessary to set appropriate final and boundary
conditions. These conditions depend on the option products. Different products
have different conditions. For instance, the European Call and Put options have the
payoff function (the final condition):

V (S,T ) =

{
max(S−K,0),
max(K−S,0),

and the boundary conditions:
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V (0, t)≈

{
0,

Ke−r(T−t),

V (Smax, t)≈

{
S,

0,

where K is strike price and T is maturity date.

American options can be exercised before maturity date. The early exercise con-
straint means that the value of an American option at each time-step in the numer-
ical computation is compared with the value of the payoff. When the value of the
payoff is higher (it is optimal to exercise early), the value of the option is replaced
by the value of payoff (Hull (2008); p.431).

In the case of the option on two underlying assets, the Black-Scholes equation is
extended to two-dimensional equation:
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where ρ is the correlation of two assets.

Many types of two-asset options with various payoff functions are traded in finan-
cial markets. Some example payoffs include:

Options on a basket

V (S1,S2,T ) =

{
max((S1 +S2)−K,0),
max(K− (S1 +S2),0),

Options on the minimum

V (S1,S2,T ) =

{
max(min(S1,S2)−K,0),
max(K−min(S1,S2),0),

Options on the maximum
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V (S1,S2,T ) =

{
max(max(S1,S2)−K,0),
max(K−max(S1,S2),0),

These options are most commonly traded multi-asset options. Options on stocks
are traded as mostly American style (Seydel (2009)). At present these options have
no known analytical solution, therefore, these are usually priced with numerical
methods. The study of efficient numerical approaches for option pricing with regard
to the speed of computation and accuracy is still active field of research.

In the Section 3, the FEM has been applied to the Eq.1 and Eq.2 and numerical
results by the FEM are shown in section 6.

3 Finite element applied to option pricing

With the finite element method, the method of weighted residuals is used to con-
struct an integral formulation called a variational form. Several different weighted
residual methods exist. We follow the popular method, Galerkin’s method. This
method is helpful in the computational effort as it produces systematic matrices.
We also follow a common technique, called the method of lines, which uses finite
elements in space and finite differences in time.

Eq.1 and Eq.2 are backward moving equations, i.e. these are solved from future to
present. It might be convenient to replace the time variable t by the time to maturity
T−t. Doing so, we get the linear parabolic equation forwards in time.

In 1D problem, Eq.1 is to be of the following form:

∂

∂ t
V (S, t)− 1

2
σ

2S2 ∂ 2

∂S2V (S, t)− (r−δ )S
∂

∂S
V (S, t) =−rV (S, t). (3)

To apply Galerkin’s method, we first multiply Eq.3 by the weight function and
minimize the residual, say R. The residual R = L(v)− f , where v is an approximate
solution, L is the differential operator and f is a function of independent variables.
The residual R is minimized to zero by weighting it with the so-called weight or
test function w(S).

This result in Eq.3 is

∫
wRds =

∫
w(L(v)− f )ds =

∫
w(
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∂S

+ rv)ds = 0,

(4)

where integration is over the domain of interest.
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With integration by parts to reduce the order of differentiation in the integrand,
which allows the use of linear shape functions, Eq.4 is to be following variational
form:∫

(
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where the nonintegral terms become zero, with the proper choice of weight func-
tion.

For the Galerkin method, the approximate solution v and the weighting function w
are given by

v(S, t) :=
N

∑
j=1

α j(t)φ j(S), w(S) :=
N

∑
i=1

φi(S), (6)

where φ is the basis functions on a suitable mesh where N is the number of interior
nodes.

We introduce Eq.6 into Eq.5 to obtain the system of N linear equations in the N
unknown functions of time α j(t) of the form:
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The symbol “” denotes the temporal derivative and “” denotes the spatial derivative.

The Eq.7 can be rewritten as follows:

N

∑
j=1

[Ti jα̇ j +Ki jα j] = 0, i = 1,2, . . . ,N, (8)

where Ti j =
∫

φ jφids, Ki j =
∫ 1

2 σ2S2φ ′jφ
′
i + rφ jφi +(σ2S− (r−δ )S)φ ′jφi)ds,i, j=

1, 2, . . . , N.

The system of Eq.8 is a semi-discrete finite element approximation. To obtain a
fully discrete approximation, for instance, we could use the explicit finite difference
approximation,

dα j

dt
∼=

α
k+1
j −αk

j

∆t
,αk

j ≡ α j(k∆t).
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To generalize, we use a weight average θ -scheme which is given by

α j(t)≡ (1−θ)αk
j +θα

k+1
j , where θ∈ [0, 1].

Then, the discrete scheme corresponding to Eq.8 is defined as follows:

N

∑
j=1

(
1
∆t

Ti j +θKi j)αk+1
j =

N

∑
j=1

(
1
∆t

Ti j− (1−θ)Ki j)αk
j , (9)

i= 1, 2, . . . , N,k= 1, 2, . . . , M,

where we partition the time domain 0 ≤ t ≤ T into M equal intervals of length
∆t=T /M.

For θ=0, 1 and 1/2, we respectively obtain the explicit, the implicit, and the Crank-
Nicolson schemes.

With the initial conditions and boundary conditions, depending on option products,
the algebraic system Eq.9 is solved for each time t and the approximate solutions
V (S, t) are obtained.

When considering the two-dimensional Black-Scholes Eq.2, similar procedures are
applied. Eq.6 is rewritten such as:
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∑
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And, Ti j and Ki jin Eq.8 are written such as:
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More information about option pricing using the FEM can be found in Achdou and
Pironneau (2005), Seydel (2009) and Topper (2005a, 2005b).

4 Development of an option pricing program

The actual finite element calculation starts to reduce the infinite number of degrees
of freedom of a continuum problem to a finite number of unknowns, defined at
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element nodes. After the calculation of local element contributions, it ends with
numerical solutions of the resulting system of algebraic equations.

In the procedures of finite element calculations, central part of computation is solv-
ing the system of equations derived from Eq.9. For this, we used our efficient
solver, IPSAP (Kim, Lee and Kim (2002, 2005)). IPSAP (Internet Parallel Struc-
tural Analysis Program) is the general purpose finite element analysis software,
developed by ASTL (Aerospace Structures Laboratory of Seoul National Univer-
sity). IPSAP solver has been developed focusing on large scale computations and
considered distributed memory environments so it shows high performance with
the standard PC, for general users, as well as with large-scale parallel computing
system. It also shows outstanding performance in various platforms, from portable
notebooks to a super computer. This has been verified through several international
dissertations and presentations. IPSAP is published in Windows (x86, x64, serial
and parallel), Linux (x86, x64, serial and parallel), and Mac OS (G4, G5, serial)
versions and is available as a free download (http:// ipsap.snu.ac.kr).

To efficiently solve the Black-Scholes equation for option pricing, we have de-
veloped the option pricing program, embedding IPSAP solver. The superiority of
performance of our program is shown in section 6.

The developed option pricing program has been implemented in C++ programming
language, based on the object-oriented architecture. Since the option products have
been developed with various boundary conditions, final conditions, number of as-
sets, the option pricing program should be easily extensible. This is the reason the
program has been designed according to object-oriented architecture. Additional
benefits of this architecture are maintenance, flexibility and reusability (Kromer,
Dufosse and Gueury (2005)).

Fig. 1 shows the class architecture of major classes with some methods and at-
tributes for the finite element modeling of the option pricing, using UML (Unified
Modeling Language). The UML is used for the description of relationships be-
tween classes.

In the Fig. 1, main purposes of class FemModel are reading data on the finite
element model, storing this data, and providing it for the class PDETimeParabolic.
Class FemModel has virtual functions, and these functions are implemented at class
Element, Node, OptionProperty.

Class Element gets information from class Node and class OptionProperty. Class
BSPDE associates with class shapeFunction and GaussianQuadrature to construct
element matrices, using the inheritance of methods and properties of the class Ele-
ment.

Class FemModel associates with class PDETimeParabolic through method Fem-
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FemModel

+List of nodes
+List of element
+List of coordinates
+List of boundarycondition

+GetNodeArray(): virtual
+GetElemenArray(): virtual
+GenerateModel(): virtual
+GeneratePorperty(): virtual
+FemInterface(): virtual

Element

+Number of nodes in element
+Degree of polynomial in element shape function
+Number of integration point used in element calculations

+NodeArray()
+ElementArray()
+Shape(): virtual
+Gauss(): virtual
+calculate element Matrix(): virtual

Node

+NodeID
+Number of nodes
+Node_coordinate

+setNid()
+getNid()

OptionProperty

+Interest Rate
+Volatility
+dividend

+setCoefficient()

BSPDE

+Set BoundaryCondition()
+Shape()
+Gauss()
+Calculate element Matrix()

Gaussian QuadratureShape Function

PDETimeParabolic

+Scheme
+Time_Step

+TimeIntegrate_Explicit()
+TimeIntegrate_Implicit()

FinanceAnalysis

+Interest Rate
+Volatility
+dividend
+Strike Price
+Type of Option

+Set InitialCondition()

SloverInterface

IPSAP Solver

SubClass BaseClass

SubClass BaseClass

Class 1 Class 2

Class 1 Class 2

Inheritance

Aggregation

Assosication

DirectedAssociation

 

Figure 1: A brief class diagram of the FEM modeling for option pricing

Interface, to solve the system of equation at each time step. Class FinanceAnalysis
inherits from class PDETimeParabolic and associates with class IPSAPSolver by
method SolverInterface.

This class architecture is very suitable to handle various option products, by ex-
tending classes.

5 Self-made cluster computer system

Due to the cost advantage for building a parallel system, one current trend is
building a self-made parallel computer in laboratories and academic departments.
The preferred and common configuration could be a Linux cluster system (Paik,
Moon and Kim (2006)). Our laboratory has developed the cluster computer sys-
tem; called Pegasus (http://astl.snu.ac.kr/ENG/Research/pegasus01.asp?tp1=022).
Pegasus consists of 260 nodes, 520 Intel Xeon 2.2/2.4/2.8/3.06 GHz processors.
Each node in Pegasus runs dual Intel Xeon processors on the E7500 chipset moth-
erboard with 2 (or 3, 4, 6) GB DDR RAM and 80/160 GB HDD. Gigabit net-
work system was utilized for parallel computing. The Nortel Baystack 380-24T
L2 switches were connected to 260 nodes and to Passport 8600 Routing switch at
the core of Gigabit Ethernet network system. For cluster management and NFS
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(Network File System) service, the Fast Ethernet network system was constructed.
The NetPIPE(a Network Protocol Independent Performance Evaluator) test (Snell,
Mikler, Gustafson and Helmer (1996)) was carried out to measure the network per-
formance. The tuned-up network bandwidth of two nodes is about 920 Mbps and
the latency time is about 21 µsec.

Our option pricing program was executed on this Pegasus cluster system. A specific
configuration of used nodes is presented in Tab. 1.

Table 1: Configuration of used cluster system for option pricing

System Red Hat Linux release 9 (Shrike) 108 nodes

CPU

Intel(R) XEON(TM) 2 CPU 2.20GHz 76 nodes
Intel(R) XEON(TM) 2 CPU 2.40GHz 23 nodes
Intel(R) XEON(TM) 2 CPU 2.80GHz 6 nodes
Intel(R) XEON(TM) 2 CPU 3.06GHz 3 nodes

RAM

1 GB 1 node
2 GB 1 node
3 GB 95 nodes
4 GB 3 node
6 GB 8 node

6 Numerical results

To numerically study the performance, it is necessary to apply it to known option
pricing problem found in the literature. The results are obtained and compared
with known results. We simulate the valuations of option on a single node and then
extend to the cluster computer system to handle a lot of valuations at once.

The numerical verification in this section shows the strength in computation time
as well as accuracy.

6.1 Run on Single Node

We consider the European and American option and the corresponding Greeks.
The European option doesn’t need to solve numerically because it has an analytic
solution. However, for showing the accuracy of our simulation, by comparison with
the analytical solutions, we employed the European option.

For the numerical valuations in this section, a single node with Intel(R) XEON(TM)
2 CPU 2.20GHz, 3 GB DDR RAM and Red Hat Linux release 9 (Shrike) was used.
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6.1.1 One underlying asset

Let’s consider the numerical solution of one dimensional Black-Scholes partial dif-
ferential equation. As we described in section 2, one dimensional equation means
one underlying asset option products.

Tab. 2 shows results of the European call and put option pricing and Tab. 3 is for
corresponding Greeks of European call option, compared with analytical solutions.
Greek is the sensitivity measure of option from its parameters. We calculated three
of the main Greeks: delta, gamma and theta. The Delta of option is defined as
the rate of change of the option price with respect to the price of the underlying
asset. Gamma is depending on the delta changes, that is, the rate of change of delta
with respect to the asset price. The Theta of option is the rate of time decay for an
option. All Greeks are hedge parameters. It is important to calculate, not only the
option price itself, but also the Greeks in a quick and stable way since they are used
when hedging the options. More information about Greeks can be found in Duffy
(2006) and Hull (2008).

All results in this section were computed employing the linear shape functions

Table 2: The Valuation of the European options Maturity=1 year, Strike=$50, risk-
free rate= 5%, Volatility=25%

S
Call Option Price Put Option Price

Analytic FEM Analytic FEM
46 3.91405 3.91367 5.47552 5.47532
50 6.16799 6.16713 3.72946 3.72928
54 8.90414 8.90185 2.46561 2.46544

RMSE 0.00143 0.00018
CPU(sec.) 0.268 0.253

Table 3: The Valuation of Greeks of the European call option Maturity=1 year,
Strike=$50, risk-free rate= 5%, Volatility=25%

S
Delta Gamma Theta

Analytic FEM Analytic FEM Analytic FEM
46 0.49660 0.49652 0.03469 0.03467 -0.00888 -0.00887
50 0.62741 0.62719 0.03027 0.03022 -0.00993 -0.00992
54 0.73658 0.73602 0.02419 0.02406 -0.01027 -0.01023

RMSE 0.00035 0.00008 0.00002
CPU(sec.) 0.365 0.370 0.457
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(refer to Eq. 5). In the Tab. 2 and Tab. 3, the first column “S” means the underlying
asset value (or stock price) and the row “RMSE” is Root Mean Square Errors.
“CPU” means the elapsed time in seconds. The data under the column “Analytic”
which means analytical solution are obtained from the Black-Scholes closed-form
solution. The column “FEM” means the data calculated, using our option pricing
program presented in section 4. This data are obtained using the explicit scheme
with the time step 12,000 and considering the rage of stock price 10∼110 and
number of nodes 400 on the uniform grid. Values are rounded off the numbers to
six decimal places.

Tab. 4 is for showing the convergence in the case of underlying asset S=$50 of the
Tab. 2.

Table 4: The convergence of European Put Option with underlying asset $50

Number of nodes Time Steps FEM Error Reduction Rate
25 2500 3.66645 0.06301
50 10000 3.71395 0.01551 2.02238

100 40000 3.72560 0.00386 2.00653
200 160000 3.72851 0.00096 2.02260
400 640000 3.72923 0.00023 2.04629

In the Tab. 4, “Error” is the absolute value of the difference between analytical
solution and FEM and “Reduction rate” is defined as:

Reduction rate ≡ log2
|u∆S−uexact |∣∣∣∣u ∆S

2
−uexact

∣∣∣∣ ,
where u∆S denotes the FEM solution with the spatial mesh size ∆S, and uexact is the
analytical solution.

We now consider the American option. Since the American option does not have
analytical solutions, the binomial method is used as a benchmark to calculate RMSE,
found in Wu and Kwok (1997) and Topper (2005b). The binomial method tends to
be used only for research purpose because it is computationally so intensive. So,
comparing elapsed time with this method is meaningless. Tab. 5 shows results of
the American put option pricing and the corresponding Delta.

The data under the column “Binomial” are obtained using the binomial method
with 1,000 time steps and “FEM” are obtained using the explicit scheme with the
time step 14,000 and considering the range of stock price 20∼200, number of nodes
360 on the uniform grid. Option price and Delta values are rounded off the numbers
to five decimal places and RMSEs are to six decimal places.

We can say that our option pricing program is very efficient and reliable.
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Table 5: The Valuation of the American put option and Delta Maturity=1 year,
Strike=$100, risk-free rate= 10%, Volatility=25%

S
Option Price Delta

Binomial FEM Binomial FEM
80 20.2687 20.2683 -0.8632 -0.8631
90 13.1228 13.1203 -0.5829 -0.5829

100 8.3348 8.3373 -0.3856 -0.3855
110 5.2091 5.2084 -0.2491 -0.2491
120 3.2059 3.2073 -0.1575 -0.1575

RMSE 0.00159 0.00008
CPU (sec.) 0.417 0.517

Next, we expend to multiple assets whose payoff is dependent on the values of
several underlying assets. The two asset option pricing problems are visited.

6.1.2 Two underlying assets

Let’s consider the option of two assets. Tab. 6 is the results for three types of
options: European call options on the maximum of the two assets, European put
options on the minimum of the two assets, and American put options on the mini-
mum of two assets. The results are compared to the results of the analytical formula
and to the results of the lattice method from Boyle (1988). The prices are rounded
off the numbers to four decimal places and RMSEs are to six decimal places.

In this table, “S” means the strike price, “RMSE” is Root Mean Square Errors and
“CPU” is the elapsed time in seconds. The data under the column “Analytical”
(analytical solution) and “Boyle” were from Boyle (1988). Boyle’s data were com-
puted using lattice approach with 50 time steps. Our results (“FEM”) were obtained
using the range of stock price 10∼90, number of nodes 120×120 on the uniform
girds, and time step 1,000 with explicit scheme.

To compare the elapsed time, we found Kargin (2004), which uses Boyle’s data and
shows the CPU times. However, difference computer language and specifications
of computer made it difficult to compare fairly. Kargin (2004) used the interpolated
lattice and irregular grid for Boyle’s examples. His pricing was done on a standard
IBM PC with Pentium microprocessor and Windows 2000 operating system. The
entire code is written in Matlab. The pricing times for European and American Put
on Minimum of two assets are shown as 8∼10 minutes.

Until now, we saw that our option pricing program yields accurate solutions with
speed-up computation. Although our program is very fast, if we need to calculate
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Table 6: The Valuation of two-asset options Maturity=7 months, risk-free rate=
4.8790%, Correlation=0.5 first asset price=$40, second asset price=$40, Volatility
for first asset=20%, Volatility for second asset=30%

European Call on the Maximum
S Analytical Boyle FEM
35 9.420 9.419 9.418
40 5.488 5.483 5.484
45 2.795 2.792 2.795

RMSE 0.00342 0.00258
CPU (Sec.) 3.26

European Put on the Minimum
S Analytical Boyle FEM
35 1.387 1.392 1.387
40 3.798 3.795 3.794
45 7.500 7.499 7.497

RMSE 0.00342 0.00289
CPU (Sec.) 3.26

American Put on the Minimum
S Boyle FEM
35 1.423 1.418
40 3.892 3.891
45 7.689 7.691

CPU (Sec.) 4.226

50 option prices, for example American put on the minimum of two assets de-
scribed Tab. 6, it takes more than 200 sec. Even if we can endure the computation
time, it is too much of a hassle to do job one by one. In the next section, we extend
to cluster system and handle a lot of valuations at once.

6.2 Run on Cluster System

We now consider the implementation on the cluster system. When the cluster sys-
tem is applied to the finance models, the advantages in two ways could be con-
sidered. First, this system can give the possibility to treat huge number of option
products with low cost of installation and maintenance. Many finance companies
and laboratories are using supercomputers or GPU systems to analyze worldwide
market option products. Instead of those expensive systems, the cluster system
would be an attractive alternative to handle easily large amount of data. Second,
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the analyses of option prices and Greeks on various conditions are available, since
option prices with respect to different volatilities, interest rates, correlations and
maturity dates could be calculated at once. These analyses allow faster reaction to
market conditions, enabling to take into account larger data.

The possibilities of those two advantages were reflected in the below implementa-
tion. Our option pricing program executed on the cluster system, using data of the
American put on the minimum of two assets in Tab. 6.

The results of option pricing on the cluster system were visualized as the 2D plot
in Fig. 2 and 3D plot in Fig. 3.

 

Figure 2: Option pricing on the cluster system with respect to the change of matu-
rities

Fig. 2 shows the numerical solutions of the option pricing with respect to the
change of the maturities from 1 month to 36 months for each strike price (K=35,40,45),
using the 108 nodes in Tab. 1.

The total elapsed time of the computation for 108 option prices is 15.024 seconds
(One option pricing on the single node is 4.226 sec.) like below:

The American put options become more valuable as the time to expiration in-
creases, as we know. But, we can see that the change in the price of the option
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Figure 3: Option pricing on the cluster system with respect to the change of volatil-
ities

decreases, in Fig. 2, which could be very helpful to choose the optimal investment
time.

Fig. 3 shows option prices with respect to the change of volatilities from 10% to
90% (strike price is $45 and maturity is 7 months).

Volatility is the key to understanding why option prices act the way they do. It is
the most important concept in the options analysis. Our results in Fig. 3 could help
get a handle on the relationship of volatilities to most options strategies.

We can infer that using the cluster computer system is very efficient and economical
for the analyses of option pricing models.

7 Conclusions

We have proposed and tested the option pricing program with the finite element
method and simulated it on the distributed computing system that is a self-made
cluster computer system. The novelty of our approach is not only solving option
pricing models accurately and efficiently, but also using the relatively cheap and
easy to implement clustering.

In the first part of this paper, we introduced the option pricing model applied to
the finite element technique and presented the developed option pricing program
and self-made Linux cluster system. The second part was devoted to the numerical
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simulations to demonstrate the superiority of our approach. Our option pricing pro-
gram gives option prices and the corresponding Greeks. The numerical solutions
of this program are accurate and the computation times are very positive, without
additional numerical techniques or algorithms. This program executed on the clus-
ter computer system, which is the very economical way, handle a lot of valuations
of option at once.

The option pricing on the distributed computing could afford the means of inves-
tigating how the pricing models change under various conditions. The model pa-
rameter estimation based on this investigation would drive improving the accuracy
of finance model and this is a very important issue in the field of financial research.

In conclusion, our research is a natural fit for running the numerous simulations
to efficiently analyze the valuations in stock portfolios, financial products, or other
investment vehicles. We could expect it brings new opportunities for pricing the
entire portfolios, analyzing the large scale models or performing the market com-
parisons. Also, it would be very useful to analyze the exotic option pricing models
including complex strategic decisions.
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