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Static and Dynamic BEM Analysis of Strain Gradient
Elastic Solids and Structures
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Abstract: This paper reviews the theory and the numerical implementation of
the direct boundary element method (BEM) as applied to static and dynamic prob-
lems of strain gradient elastic solids and structures under two- and three- dimen-
sional conditions. A brief review of the linear strain gradient elastic theory of
Mindlin and its simplifications, especially the theory with just one constant (inter-
nal length) in addition to the two classical elastic moduli, is provided. The impor-
tance of this theory in successfully modeling microstructural effects on the struc-
tural response under both static and dynamic conditions is clearly described. The
boundary element formulation of static and frequency domain dynamic problems
of strain gradient elasticity is accomplished with the aid of reciprocal theorems
and corresponding fundamental solutions. Quadratic line and surface boundary el-
ements are developed for two- and three- dimensional problems, respectively. Spe-
cial crack tip or front, line and surface boundary elements of variable singularity
are also developed for fracture mechanics problems. A variety of strain gradient
elastic static and dynamic problems involving two- and three- dimensional solids
and structures with or without cracks as solved by the BEM are presented in order
to illustrate the method, demonstrate its advantages over the finite element method
(FEM) and assess and discuss the influence of the microstructure on the response.
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1 Introduction

When linear elastic solids and structures have extremely small dimensions (e.g., mi-
croelectronic mechanical systems – MEMS or nanoelectronic mechanical systems
– NEMS), which are comparable to their microstructural lengths, their response to
static or dynamic loading is significantly influenced by the microstructure of their
material. Microstructural effects are also important in problems of localization
of deformation, such as stress concentration or crack problems, where the stress
field is nonlocal in character. These microstructural effects appear in the form of
increased stiffness, size effects, elimination of singularities, increase of natural fre-
quencies and buckling loads and wave dispersion.

Classical linear elasticity cannot take these effects into account and one needs
higher order or generalized theories of elasticity with internal length scale param-
eters, which introduce microstructural effects in a macroscopic manner. Among
these theories, one can mention here the general elasticity with microstructure due
to Mindlin (1964), the micropolar elasticity due to Eringen (1966), which is similar
to that of the Cosserat brothers (1909) and the couple-stress elasticity due to Toupin
(1962) and Koiter (1964). A review on these higher-order theories of linear elas-
ticity can be found, e.g., in Tiersten and Bleustein (1974), Vardoulakis and Sulem
(1995), Exadaktylos and Vardoulakis (2001) and Askes and Aifantis (2011).

The most general and widely used of all these theories, especially during the last
15 years or so, is the form II version of Mindlin’s (1964) theory associated with
the second gradient of strain, the gradient elastic theory. This theory, even in its
simplified form contains five elastic constants for static problems and seven elastic
constants for dynamic problems in addition to the two classical elastic moduli.
For reasons of further simplicity, in most applications, usually only one additional
constant for static problems and two constants for dynamic problems are retained
in the theory.

Among the many existing applications of the above simple strain gradient the-
ory of elasticity with one or two elastic constants for static or dynamic prob-
lems, respectively, in addition to the classical ones, one can mention the analytical
works of, e.g., Altan and Aifantis (1992), Ru and Aifantis (1993), Vardoulakis et
al (1998), Tsepoura et al (2002), Papargyri-Beskou et al (2003), Lazar and Mau-
gin (2005), Giannakopoulos and Stamoulis (2007), Papargyri-Beskou and Beskos
(2008, 2009), Georgiadis and Anagnostou (2008), Gao and Ma (2009), Papargyri-
Beskou et al (2010) and Aravas (2011) involving static analysis of bars, beams,
plates, half-spaces, inclusions, dislocations and cracks and Altan et al (1996), Chang
and Gao (1997), Tsepoura et al (2002), Georgiadis et al (2000, 2004), Papargyri-
Beskou et al (2003, 2009), Askes and Aifantis (2006), Bennett et al (2007), Papargyri-
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Beskou and Beskos (2008), Vavva et al (2009), Papacharalampopoulos et al (2010,
2011) and Polyzos and Fotiadis (2012) involving dynamic analysis of strain gradi-
ent beams, plates, bones and lattice models.

Strain gradient elasticity problems with complex geometry and boundary condi-
tions can only be solved by using numerical methods, such as the finite element
method (FEM) or the boundary element method (BEM). Apparently, Shu et al
(1999) were the first to use the FEM for solving gradient elastic problems under
static conditions and they were followed by many others. The main problem with
a conventional FEM is the requirement of using elements with C(1) continuity be-
cause of the fourth order of the governing equation of equilibrium in terms of dis-
placements. Finite elements with C(1) continuity usually have many degrees of
freedom per node involving displacements and displacement gradients. This in-
creases considerably the total number of degrees of freedom and hence the compu-
tational effort. However, the method is conceptually simple and easy to implement.
One can mention here the works of Akarapu and Zbib (2006), Zervos (2008), Zer-
vos et al (2009), Papanicolopulos et al (2009) and Papanicolopulos and Zervos
(2010) and Fischer et al (2010, 2011) dealing mainly with two-dimensional prob-
lems. Only the works of Zervos (2008) and Papanicolopulos et al (2009) deal with
three-dimensional problems.

The requirement of C(1) continuity can be avoided by various other FEM formula-
tions. The most common such approach is the one employing mixed finite elements
in conjunction with Lagrange multipliers or penalty methods. In those FEM’s dis-
placements and displacement gradients are treated as independent unknowns pos-
sessing C(0) continuity. One can mention here the works of Shu et al (1999), Engel
et al (2002), Amanatidou and Aravas (2002), Imatani et al (2005), Giannakopoulos
et al (2006), Askes and Gutierrez (2006), Tsamasphyros et al (2007), Markolefas
et al (2007, 2008, 2009) and Tsamasphyros and Vrettos (2010) dealing with one-
and two-dimensional problems. The FEM of Soh and Chen (2004) and Zhao et al
(2011) combines one element with C(0) continuity with another one with C(1) con-
tinuity to solve two-dimensional strain gradient elasticity problems. Dessouky et al
(2006) combine the standard displacement FEM with the finite difference method
to determine the second derivatives of strain in terms of strains at the integration
points of the element. Another FEM that avoids C(1) continuity restrictions is the
one by Tenek and Aifantis (2002), Askes et al (2008), Gitman et al (2010) and
Askes and Aifantis (2011). This method is an operator split method as it decou-
ples the fourth order differential equations of equilibrium into two sets of second
order equations each requiring C(0) continuity. Finally, one can mention here the
meshless local Petrov-Galerkin method of Tang et al (2003), which by its nature
does not have any continuity requirements. Besides this method works with only
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displacement degrees of freedom.

The FEM has also been used to solve some one- and two-dimensional strain gra-
dient elastic dynamic problems. One can mention here the works of Bennett et al
(2007), Askes et al (2007), Askes et al (2008), Bennett and Askes (2009), Askes
and Aifantis (2011) based on the method of operator split and C(0) continuity and
of Filopoulos et al (2010) based on one-dimensional elements with C(1) continuity.

A general comment on FEM’s used for strain gradient elasticity problems is that,
irrespectively of the particular method employed, the number of degrees of freedom
is very large and hence the computational cost is very high. Messless methods also
require a high computational cost.

The BEM is the ideal numerical method for successfully solving linear elastic static
and dynamic problems (Beskos 1987, 1997, 2003). This is because the method i)
reduces the dimensionality of the problem by one there by restricting the discretiza-
tion to the boundary of the body, ii) provides highly accurate results, especially near
high stress gradients, iii) does not need absorbing boundaries for infinite or semi-
infinite domains and iv) does not require any continuity requirements. The old
efficiency problem due to the presence of non-symmetric matrices, has been over-
come in recent years with the use of highly efficient equation solvers, such as the
fast multipole method (Liu, 2009).

Tsepoura et al (2002) were the first to use the BEM for solving strain gradient elas-
tostatic problems. That work was followed by additional applications of the BEM
in gradient elastostatic (Tsepoura and Polyzos 2003, Polyzos et al 2003, Tsepoura
et al 2003 and Karlis et al 2007, 2008, 2010) and gradient elastodynamic (Polyzos
et al 2003, Tsepoura and Polyzos 2003, Polyzos 2005, Polyzos et al 2005, Karlis
et al 2007 and Papacharalampopoulos et al 2010) problems under two- and three-
dimensional conditions. At this point one could also mention the recent BEM’s
of Tsiatas (2009), Tsiatas and Katsikadelis (2011) and Hadjesfandiari and Dargush
(2011) for the solution of plate flexure, bar torsion and two-dimensional elasto-
static problems involving modified couple stress theories to take into account mi-
crostructural effects. The aforementioned basic advantages of the BEM become
more pronounced when the method is used for solving strain gradient elastic prob-
lems rendering the method a better choice than the FEM.

The present paper reviews all the work that has been done on the development and
application of the BEM to strain gradient elastic problems associated with static
or dynamic load and two- (2D) and three-dimensional (3D) conditions. The for-
mulation of the method with the aid of the reciprocal theorem and the fundamental
solution of the strain gradient elastic problem are first presented. The numerical im-
plementation of the method is presented next. A special crack-tip (front) boundary
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element is also presented for fracture mechanics problems. Characteristic numeri-
cal examples are presented to illustrate the method and demonstrate its advantages
over the FEM. A section of conclusions is finally provided to summarize the results
of this work.

2 Strain gradient elastostatic theory

Mindlin (1964), in the Form-II version of his strain gradient elastic theory, consid-
ered that the potential energy density W is a quadratic form of the strains εi j and
the gradients of strains, κi jk, i.e.

W =
1
2

λ̃ εiiε j j + µ̃εi jεi j + α̂1κiikκk j j + α̂2κi j jκikk + α̂3κiikκ j jk + α̂4κi jkκi jk + α̂5κi jkκk ji

(1)

where

εi j =
1
2

(∂iu j +∂ jui) , κi jk = ∂iε jk =
1
2

(∂i∂ juk +∂i∂ku j) = κik j (2)

with ∂i denoting space differentiation, ui being displacements and λ̃ , µ̃ and α̂1−
α̂5 being elastic constants. It should be noted here that for static problems the
constants λ̃ , µ̃ in Form-II Mindlin’s theory are the same with the corresponding
Lame constants λ , µ of classical elasticity. Both λ̃ , µ̃ have units of N/m2, whereas
α̂1− α̂5 have units of force. Thus, this particular case of Mindlin’s theory has in
total seven elastic constants instead of the 18 constants of his general theory.

Strains εi j and gradients of strains κi jk are dual in energy with the Cauchy-like and
double stresses, respectively, defined as

τi j =
∂W
∂εi j

= τ ji (3)

µi jk =
∂W

∂κi jk
= µik j (4)

which implies that

τi j = 2µ̃εi j + λ̃ εllδi j (5)

and

µi jk =
1
2

α̂1
[
κkllδi j +2κlliδ jk +κ jllδki

]
+2α̂2κillδ jk + α̂3

(
κllkδi j +κll jδik

)
+ 2α̂4κi jk + α̂5

(
κki j +κ jki

)
(6)
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The total stress tensor σi j is then defined as

σi j = τi j−∂iµi jk

or

σ=τ−∇ ·µ (7)

with −∇ · µ representing the relative stresses and σ the total stress tensor. Taking
the variation of (1) and equilibrating with the work done by external and body
forces fk, one obtains the equilibrium equation

∂ j
(
τ jk−∂iµi jk

)
+ fk = 0 (8)

accompanied by the classical essential and natural boundary conditions where the
displacement vector u and/or the traction vector p have to be defined on the global
boundary S of the analyzed domain, the non-classical essential and natural bound-
ary conditions where the normal displacement vector q=∂u/∂n and/or the double
traction vector R are prescribed on S. The non-classical double traction boundary
condition at non-smooth boundaries involves the jump traction vector E defined at
corners and edges.

Traction vectors p, R, E are defined as

pk = n jτ jk−nin jDµi jk− (n jDi +niD j)µi jk +(nin jDlnl−D jni)µi jk (9)

Rk = nin jµi jk (10)

Ek =
∥∥nim jµi jk

∥∥ (11)

where n is the unit vector normal to the global boundary S, D = nl∂l and D j =(
δ jl−n jnl

)
∂l . The non-classical boundary condition (11) exists only when non-

smooth boundaries are considered. Double brackets ‖•‖ indicate that the enclosed
quantity is the difference between its values taken on the two sides of a corner,
whereas m is a vector being tangential to the corner line.

Finally, taking into account the form of τ and µ , the equilibrium equation (8) in
terms of displacements is written as(

λ̃+2µ̃

)(
1−l21∇

2)
∇∇ ·u+µ̃

(
1−l22∇

2)
∇×∇×u+f=0 (12)

where

l2
1 = 2(α̂1 + α̂2 + α̂3 + α̂4 + α̂5)/

(
λ̃ +2µ̃

)
(13)
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l2
2 = (α̂3 +2α̂4 + α̂5)/2µ̃ (14)

l2
1 and l2

2 have units of m2 and as it is discussed in Ben Amoz (1976) and Vavva
et al (2009), both can be considered as internal length-scale parameters, which
correlate the microstructure with the macrostructure in irrotational and solenoidal
deformations, respectively.

For the particular case of α̂1 = α̂3 = α̂5 = 0, α̂2 = (1/2)λg2, α̂4 = µg2, λ̃ = λ and
µ̃ = µ one obtains the simple strain gradient elasticity theory with just one constant,
g, with dimensions of length in addition to the two classical elastic moduli λ and µ

(Lamé constants). In this case one has from Eqs (13) and (14) that l2
1=l2

2=g2, while
Eq. (12) takes the form(
1−g2

∇
2)[

µ∇
2u+(λ+µ)∇∇ ·u

]
+f=0 (15)

The only nonclassical constant g is called volumetric gradient elastic constant or
simply gradient coefficient.

3 Fundamental solution and integral representation

For an infinitely extended gradient elastic space, the fundamental solution of Eq.
(12) is represented by a second-order tensor U∗ (x,y) satisfying the partial differ-
ential equation(

λ̃+2µ̃

)(
1−l21∇

2)
∇∇ ·U∗ (x,y)−µ

(
1−l22∇

2)
∇×∇×U∗ (x,y)=−δ (x,y) Ĩ

(16)

where δ is the Dirac delta function and x is the point (field point) where the dis-
placement U∗ (x,y) is obtained due to a unit force at point y (source point).

It can be proved (Karlis et al 2010) that the solution of Eq. (16) has the form

U∗ij=
1

16πµ (1−ν)
[
Ψ(r)δij−X(r) r̂îrj

]
(17)

where ν=λ̃/
(

2
(

λ̃+µ̃

))
is the Poisson ratio, r = |x−y| , r̂=(x−y)/(|x−y|) and

X(r) =−1
r +2(1−2ν)

[(
3l2

1
r3 + 3l1

r2 + 1
r

)
e−r/l1− 3l2

1
r3

]
−4(1−ν)

[(
3l2

2
r3 + 3l2

r2 + 1
r

)
e−r/l2− 3l2

2
r3

] (18)

Ψ(r) = (3−4ν) 1
r +2(1−2ν)

[(
l2
1

r3 + l1
r2

)
e−r/l1− l2

1
r3

]
−4(1−ν)

[(
l2
2

r3 + l2
r2 + 1

r

)
e−r/l2− l2

2
r3

] (19)
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for three dimensions and

X(r) =−1+2(1−2ν)
[

K2

(
r
l1

)
− 2l2

1
r2

]
−4(1−ν)

[
K2

(
r
l2

)
− 2l2

2
r2

]
(20)

Ψ(r) =−(3−4ν) ln(r)+2(1−2ν)
[

l1
r K1

(
r
l1

)
− l2

1
r2

]
−4(1−ν)

[
K0

(
r
l2

)
+ l2

r K1

(
r
l2

)
− l2

2
r2

] (21)

for two dimensions, with Kn (r/li) being the modified Bessel functions of the sec-
ond kind and nth order.

Utilizing the expansions of e−r/li and Kn (r/li), it is easy to prove that both functions
X, Ψ given by relations (18) – (21) are regular as r→ 0 according to the asymptotic
relations

X(r)= O
(
r2lnr

)
, Ψ(r)= O(1) for the 2D case

X(r)= O(r) , Ψ(r)= O(1) for the 3D case (22)

Consider the two elastostatic states u, P, R, E and u*, P*, R*, E* of a gradient elas-
tic finite body with volume V and surface S. For this body the following reciprocity
identity holds true (Polyzos et al 2003, Karlis et al 2010) :∫

V {f∗ ·u− f ·u∗} dV +
∫

S {P∗ ·u−P ·u∗} dS =
∫

S

{
R · ∂u∗

∂n −R∗ · ∂u
∂n

}
dS+

∑Ca

∮
Ca
{E ·u∗−E∗ ·u} dC

(23)

In the above, f represent body forces and P, R, E are traction, double traction and
jump traction vectors, respectively, defined in (9) – (11), while Ca represents the
edge lines formed by the intersection of two surface portions when the boundary
S is non-smooth. For a plane non-smooth boundary, where parts of the global
boundary form Ca corners one has again Eq. (23) but with the last term in its right
hand side replaced by ∑Ca

{E ·u∗−E∗ ·u}.
Assume that the displacement field u∗, appearing in the reciprocity identity (23), is
the result of a body force having the form

f∗ (y)=δ (x−y) ê (24)

with ê being the direction of a unit force acting at point y. Recalling the definition
of the fundamental solution, it is easy to see that the displacement field u* due to
f* can be represented by means of the fundamental displacement tensor U∗ (x,y)
given by Eqs (17) and (18) – (21), according to the relation

u∗ (y)= U∗ (x,y) · ê (25)
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Inserting the above expression of U* in (23) and assuming zero body forces f=0,
one obtains the boundary integral equation

c̃(x) ·u(x)+
∫

S
{P∗(x,y) ·u(y)−U∗(x,y) ·P(y)} dSy =∫

S
{Q∗(x,y) ·R(y)−R∗(x,y) ·q(y)} dSy+

∑
Ca

∮
C
{U∗(x,y) ·E(y)−E∗(x,y) ·u(y)} dCy (26)

where c̃(x) is the well-known jump-tensor of classical boundary integral repre-
sentations (Polyzos et al 2003) and the symbols Q∗,q have been used instead of
∂U∗/∂n, ∂u/∂n, respectively.

Of course, for plane problems there is no integral sign in the last right hand side
term of Eq. (26) and Ca refers to corners.

In case the boundary S is smooth and the point x belongs to S, then the integral
equation (26) reduces to

1
2

u(x)+
∫

S
{P∗(x,y) ·u(y)−U∗(x,y) ·P(y)} dSy =∫

S
{Q∗(x,y) ·R(y)−R∗(x,y) ·q(y)} dSy (27)

Observing Eq. (27), one easily realizes that it contains four unknown vector fields,
u(x) , P(x) , R(x) and q(x) while the boundary conditions are two (classical and
non-classical). Thus, the evaluation of the unknown fields requires the existence
of one more integral equation. This integral equation is obtained by applying the
operator ∂/∂nx on (27) and has the form

1
2

q(x)+
∫

S

{
∂P∗(x,y)

∂nx
·u(y)− ∂U∗(x,y)

∂nx
·P(y)

}
dSy =∫

S

{
∂Q∗(x,y)

∂nx
·R(y)− ∂R∗(x,y)

∂nx
·q(y)

}
dSy (28)

The pair of integral equations (27) and (28) accompanied by the classical and non-
classical boundary conditions form the integral representation of any Mindlin’s
Form-II strain gradient elastic boundary value problem with 3D or 2D smooth
boundary. Full expressions of the integral equations for non-smooth boundaries
can be found in Karlis et al (2010).
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4 BEM formulation

The goal of the BEM is to solve numerically the boundary integral representation
of the problem presented in the previous section. To this end, the boundary S is
discretized into E quadratic continuous isoparametric elements each of which has
A(e) nodes, with A(e)= 3, 8, 6 when line, quadrilateral and triangular elements,
respectively, are considered. For the boundary of the domain B, three noded line
quadratic elements have been taken into account. For a nodal point k, the dis-
cretized integral equations (27) and (28) for the 3D case have the form

1
2

u
(

xk
)

+
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1
P∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·ue
a

+
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1
R∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·qe
a

=
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1
U∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Pe
a

+
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1
Q∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Re
a (29)

1
2

q
(

xk
)

+
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1

∂

∂nx
P∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·ue
a

+
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1

∂

∂nx
R∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·qe
a

=
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1

∂

∂nx
U∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Pe
a

+
E

∑
e=1

A(e)

∑
a=1

∫ 1

−1

∫ 1

−1

∂

∂nx
Q∗
(

xk,ye (ξ1,ξ2)
)

Na (ξ1,ξ2)J (ξ1,ξ2)dξ1dξ2 ·Re
a (30)

with Na representing shape functions, the first summation is over the elements,
the second summation over the element nodes and J is the Jacobian of the trans-
formation from the global coordinate system to the local coordinate system of the
element. Finally, ue

a, qe
a, Pe

a and Re
a are the values of the unknown fields at the

nodes of element e.

When the source point does not coincide with the field point, all the above integrals
are non-singular and can be easily computed by Gauss quadrature. In case these
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two points coincide, the integrals become singular and are computed by the special
method of Guiggiani (1998), as described in detail in Tsepoura et al (2003).

Collocating the boundary integral equations (29) and (30) at nodal boundary points,
one can obtain a linear system of equations of the form[

1
2 Ĩ+H̃ K̃

S̃ 1
2 Ĩ+T̃

]
·
[

u
q

]
=

[
G̃ L̃
Ṽ W̃

]
·
[

P
R

]
(31)

where the various matrices H̃, K̃, S̃, etc. contain elements which are integrals with
integrands the various kernels coming from the fundamental solution.

This system after application of the classical and the non-classical boundary con-
ditions and rearrangement results into a linear system of equations of the form
A ·x=b, where A is a non-symmetric and fully populated matrix, whereas the vec-
tors x and b contain all the unknown and known nodal components of the boundary
fields, respectively. Finally, the above linear system is solved via a typical LU-
decomposition algorithm and the vector x, comprising all the unknown nodal values
of u, q, R and P, is evaluated. As soon as the boundary parameters are known, the
internal displacement field is easily evaluated with the aid of (26) with c̃(x) = 1.

5 Special crack tip (front) boundary elements

According to Exadaktylos et al (1996), Vardoulakis and Exadaktylos (1997), Ex-
adaktylos (1998), Zhang et al (1998), Fannjiang et al (2002), Georgiadis (2003),
Aravas and Giannakopoulos (2009) and Gourgiotis and Georgiadis (2009), who
have studied analytically the asymptotic behavior of displacements and stresses
around the tip of a crack under plane conditions, the fields u, q, R and P near the
crack tip vary as r3/2, r1/2, r−1/2 and r−3/2, respectively, with r being the distance
from the crack tip. As it is well known, the elements used in a classical BEM formu-
lation interpolate the unknown fields either linearly or quadratically and therefore
the behavior of the fields around the crack tip can never be represented correctly.
Adoption of the idea of Lim et al (2002) of using variable-order singularity bound-
ary elements around the tip of the crack for the description of the near tip behavior
and the evaluation of the corresponding stress intensity factors (SIFs), can lead to
a new special variable order of singularity discontinuous element. The advantage
of this approach is that the fields around the tip of the crack are treated in a unified
manner.

In this special element, the functional nodes are identical to those of a classical
discontinuous three-noded quadratic line element, with the geometrical node resid-
ing always at the crack tip. The main advantage of using discontinuous elements
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is that no functional nodes are located at the tip of the crack and thus, despite the
singularity of R and P at the tip, their nodal values are finite and can be computed.
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Figure 1: Variable-order singularity discontinuous boundary element and its trans-
formation.

As shown in Fig. 1, the tip of the crack can be located either at ξ =−1 or at ξ = 1
for the special element being to the left or right of the tip. In order to unify these
two possible cases, a new variable p is introduced via the linear transformation

p = (1+ cξ )/2 (32)

with c =±1 for the tip located at ξ ∓1, respectively,. Thus, the tip of the crack is
always located at p = 0 and the interval ξ ∈ [−1, 1] is transformed into the interval
p ∈ [0, 1]. The fields, in terms of the asymptotic solutions, can be expressed as

F=K1rλ1+K2rλ2+C (33)

where K1, K2 and C are constant vectors to be determined, the symbol F represents
u, q, R or P and λ1 and λ2 take the values of Table 1.

Writing Eq. (33) for the three functional nodes of the variable-order of singularity
discontinuous element one obtains the linear system of equations

r = pd1L : K1 (Lpd1)
λ1 +K2 (Lpd1)

λ2 +C = F1

r = L
2 : K1

(L
2

)λ1 +K2
(L

2

)λ2 +C = F3

r = L : K1Lλ1 +K2Lλ2 +C = F2

(34)
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where F1, F2 and F3 are the nodal values of field F, pd1 is the local coordinate of
the discontinuous functional node and L is the length of the element. In the present
work pd1 is considered to be equal to 1/6. The solution of the linear system (34)
yields the parameters K1, K2 and C as functions of the nodal values F1, F2 and
F3. Substituting K1, K2 and C into Eq. (33), rearranging with respect to the nodal
values F1, F2 and F3 and taking into account that the distance from the tip of the
crack is r = Lp, the field F can be written as

F= N1F1+ N2F2+N3F3 (35)

where the interpolation functions Ni = Ni (p, λ1, λ2) can be found explicitly in
Karlis et al (2007). These interpolation functions for the fields R and P become
singular when approaching the tip of the crack (p→ 0).

Table 1: Orders of magnitude of the asymptotic fields

F λ1 λ2

u 3/2 1
q 1/2 1
R -1/2 1
P -3/2 -1/2

In Eqs. (29) and (30), the integrals involving the fields P and R and defined over
the special boundary elements, in addition to the usual fundamental solution type of
singularities, exhibit an extra singularity due to the singular behavior of the interpo-
lation functions near the tip of the crack. Thus, even in cases where the source point
does not reside in the element, i.e. in cases where a so-called regular integration is
performed, there is always present a singularity near the tip of the crack.

The methodology for the treatment of these integrals deals first with the handling of
the singularities coming from the interpolation functions of the special element and
then addresses any possible singularities that are introduced by the fundamental
solutions (in case the source point resides in the element). For more details one
should consult Karlis et al (2007).

Once the boundary value problem has been solved, the calculation of SIFs is done
via the three nodal traction values of the special elements.

Approaching the crack tip (r→ 0), the traction P, according to Eq. (33), admits a
representation of the form

P =
K1 (P1,P2,P3)√

2π
lim
r→0

r−3/2 +
K2 (P1,P2,P3)√

2π
lim
r→0

r−1/2 (36)
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where the components of the vectors K1 and K2, obtained by solving the system
(34), stand for the stress intensity factors corresponding to x and y directions, re-
spectively, according to the relations

K1 =
{

K1x

K1y

}
= L3/2

√
2π pd1

√pd1(2−
√

2)P1+(
√

2−2√pd1)P2−(
√

2−
√

2pd1)P3

2−
√

2+(−4+
√

2)pd1+2p3/2
d1

K2 =
{

K2x

K2y

}
=
√

L
√

2π
p3/2

d1
(
√

2−4)P1+
(

4p3/2
d1
−
√

2
)

P2+
√

2
(

1−p3/2
d1

)
P3

2−
√

2+(−4+
√

2)pd1+2p3/2
d1

(37)

where P1, P2 and P3are the nodal values of P.
Near the crack front of a three-dimensional crack problem, the fields u, q, R and P
vary with the distance r from that front in the same way as in the plane case. For
this case special discontinuous quadrilateral, eight-noded boundary elements with
variable order singularity are constructed for the treatment of the fields around the
crack front by following the idea of Zhou et al (2005). More details about these
elements and their implementation in the BEM for solving three-dimensional crack
problems can be found in Karlis et al (2008).

6 Strain gradient elastodynamics by BEM

Consider the case of strain gradient elastodynamics, which is governed by the equa-
tion of motion (Papacharalampopoulos et al 2010)

(λ̃ +2µ̃)(1− l2
1∇

2)∇∇ ·u+ µ̃(1− l2
2∇

2)∇×∇×u+ f =

ρ
(
ü−h2

1∇∇ · ü+h2
2∇×∇× ü

)
(38)

where h2
1,h

2
2 are intrinsic microinertia coefficients, explicitly defined in Mindlin

(1964), while overdots denote time differentiation. Assuming for all the fields in-
volved a harmonic time dependence, e.g.,u(x, t) = ū(x)eiωt , where ω is the fre-
quency and t the time, Eq. (38) takes the form

(λ +2µ)
(
1− l2

1∆
)

∇∇ · ū−µ
(
1− l2

2∆
)

∇×∇× ū

+ρω
2 (ū−h2

1∇∇ · ū+h2
2∇×∇× ū

)
+ f̄ = 0 (39)

The fundamental solution U∗ (r) of Eq. (39) is defined for the case of f=δ (x−y)I
and for the 3D case has the form (Papacharalampopoulos et al 2010)

U∗(x,y) =
1

2α−1πρω2

[
Ψ(r) Ĩ−X(r)(r̂⊗ r̂)

]
(40)
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where r = |x−y| , r̂=(x−y)/(|x−y|), α is the dimensions number (2 or 3) and X
and Ψ are scalar functions given by the relations

X(r) =
1+L2

1k2
1

1+2L2
1k2

1
(k2

1−
3ik1

r
− 3

r2 )
e−ik1r

r
− 1+L2

2k2
2

1+2L2
2k2

2
(k2

2−
3ik2

r
− 3

r2 )
e−ik2r

r

− L2
1k2

1

1+2L2
1k2

1
(a2

1 +
3a1

r
+

3
r2 )

e−a1r

r
+

L2
2k2

2

1+2L2
2k2

2
(a2

2 +
3a2

r
+

3
r2 )

e−a2r

r

Ψ(r) =
1+L2

1k2
1

1+2L2
1k2

1
(
ik1

r
+

1
r2 )

e−ik1r

r
− 1+L2

2k2
2

1+2L2
2k2

2
(−k2

2 +
ik2

r
+

1
r2 )

e−ik2r

r

− L2
1k2

1

1+2L2
1k2

1
(
a1

r
+

1
r2 )

e−a1r

r
− L2

2k2
2

1+2L2
2k2

2
(a2

2 +
a2

r
+

1
r2 )

e−a2r

r
(41)

for 3D and

X(r) =
1+L2

1k2
1

1+2L2
1k2

1
k2

1K2 (ik1r)− 1+L2
2k2

2

1+2L2
2k2

2
k2

2K2 (ik2r)

− 1+L2
1k2

1

1+2L2
1k2

1
k2

1K2 (a1r)+
1+L2

2k2
2

1+2L2
2k2

2
k2

2K2 (a1r)

Ψ(r) =− 1+L2
1k2

1

1+2L2
1k2

1

k2
1

2
[K2 (ik1r)−K0 (ik1r)]

+
1+L2

2k2
2

1+2L2
2k2

2

k2
2

2
[K2 (ik2r)+K0 (ik2r)]

− 1+L2
1k2

1

1+2L2
1k2

1

k2
1

2
[K0 (a1r)−K2 (a1r)]

+
1+L2

2k2
2

1+2L2
2k2

2

k2
2

2
[K0 (a2r)+K2 (a2r)]

(42)

for 2D , where

k2
1
(
1+L2

1k2
1
)

= k2
P, k2

2
(
1+L2

2k2
2
)

= k2
S

kP =

√
ρω2

λ +2µ−ρω2h2
1
, kS =

√
ρω2

µ−ρω2h2
2

L1 = l1

√
λ +2µ

λ +2µ−ρω2h2
1
, L2 = l2

√
µ

µ−ρω2h2
2

a1 =

√
1
L2

1
+ k2

1, a2 =

√
1
L2

2
+ k2

2

(43)
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Following exactly the same procedure as in the elastostatic case, one can finally
obtain the boundary integral representation of the frequency domain elastodynamic
problem, which is of the same form as that of Eqs (27) and (28) but with all func-
tions involved being functions of space coordinates as well as of the frequency
ω . This means that the final system of equations of the form of Eq. (31) has to
be solved for a sequence of values of ω in order to produce the solution in the
frequency domain as a function of ω in a discrete manner. If the external load is
harmonic, then this frequency domain solution represents the amplitude of the solu-
tion and one has simply to multiply that solution by eiωt in order to obtain the time
domain solution. If the external load is transient, this load is Fourier transformed,
the problem is solved in the frequency domain and the time domain solution is
finally obtained by a numerical inversion of the transformed solution. Both direct
and inverse Fourier transforms are done numerically by the FFT algorithm (Polyzos
et al 2005).

7 Numerical examples

In this section some representative numerical examples are presented in order to
illustrate the BEM as applied to static and dynamic strain gradient elastic problems
and demonstrate its advantages.

7.1 Example 1

Consider a 3D/2D problem dealing with the tension of a cylindrical / rectangular
strain gradient elastic bar as shown in Fig. 1. This example has been taken from
Karlis et al (2010). The height of the cylinder / rectangle is much smaller than its
diameter / width (d = 4.2m, h = 1.2m). It is assumed that the Poisson’s ratio ν =
0 and that there is only one gradient elastic constant in the model. Thus, one can
compare numerical results across the axis of symmetry with one-dimensional (1D)
analytical results (Tsepoura et al 2002).

The bar is subjected to a tension To = 2.1 GPa on its top and bottom sides, the
modulus of elasticity E = 2.1 GPa and the gradient coefficient g takes the values
0.001, 0.05 and 0.1. The non-classical boundary condition applied at the top and
bottom faces of the bar is(qx,qy,qz) = (0,0,0), while for all edges (in 3D) and
corners (in 2D) the jump traction is(Ex,Ey,Ez) = (0,0,0). The side surface of the
bar is left traction free by imposing there (Px,Py,Pz) = (0,0,0)and(Rx,Ry,Rz) =
(0,0,0).
The 3D problem has been solved with octant symmetry, whereas in the 2D case of
the rectangular bar only one quarter of the domain has been discretized. For the
2D case, approximately 50 elements have been used, whereas for the 3D case, up
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to 150 elements have been utilized. A set of internal points has been placed along
the central vertical axis of the bar. In Fig. 2, the axial displacements of the internal
points are presented together with the 1D analytical results of Tsepoura et al (2002)
having the form

w(z) =
T0

E

|z|−g
sinh

(
|z|
g

)
cosh

(
|z|
2g

)
 , |z| ≤ h

2
(44)

For all the displayed results, the relative error with respect to the analytical solution
is below 0.5%.

 

Figure 2: Geometry of the strain gradient elastic bar in three and two dimensions

 

Figure 3: Axial displacements of internal points for (a) the 3D case and (b) the 2D
case
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8 Example 2

Consider a spherical cavity of radius α into an infinite strain gradient elastic 3D
space subjected to a radially applied pressure P0 and determine the resulting radial
displacement. This problem has been taken form Tsepoura et al (2003).

The boundary conditions of the problem are

P(a)=P0 , R(a)=P0 (45)

and its analytical solution reads (Tsepoura et al 2003)

u(r)= B
1
r2 +D

√
π

2(r/g)
K3/2 (r/g) (46)

B =
−P0 (1−2ν)(1+ν)a3

(
6g3 +6g2a+3ga2 +a3

)
2E [3g3 (−3+4ν)+3g2 (−3+4ν)a+3g(−1+2ν)a2 +(−1+2ν)a3]

D =−
6ea/gP0 (−1+2ν)(1+ν)

√
g/ra4

Eπ
√

r/g [3g3 (−3+4ν)+3g2 (−3+4ν)a+3g(−1+2ν)a2 +(−1+2ν)a3]
(47)

with K3/2 being the modified Bessel function of the second kind and 3/2 order.
Assuming α = 1, P0/E = 1 and ν = 0 one can use the BEM to determine the radial
displacement u(r) and depict its variation with the distance r for various values of g
as in Fig. 4. Due to the symmetry of the problem, only one octant of the sphere is
discretized using 38 quadratic quadrilateral boundary elements. Figure 4 indicates
an excellent agreement between the numerical results and those of the analytical
solution.

8.1 Example 3

Consider a square strain gradient elastic plate of side L = 16α in a state of plane
strain, as shown in Fig. 5. The plate contains a central horizontal line crack of
length 2α and is subjected to a uniform tensile traction P0 applied normal to its
top and bottom sides. The corners of the plate are rounded with very small radii of
curvature in order to have a smooth boundary. The applied traction P0 = 100 MPa,
the Young’s modulus and Poisson’s ratio of the strain gradient elastic plate are E =
210 GPa and ν = 0.2, respectively, while the length α = 0.5m. Due to the double
symmetry of the problem, only one quarter of the plate is discretized, as shown
in Fig. 5, with the following boundary conditions along the axes of symmetry:
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Figure 4: Radial displacement ur versus radial distance of the spherical cavity of
radius α , for various values of g

P(x,0)= 0 and R(x,0) = 0 for 0≤ x < α, uy (x,0) = 0 and R(x,0) = 0 for α ≤ x≤
L/2 and ux (0,y) = 0 and R(0,y) = 0 for 0≤ y≤ L/2.

This problem and its solution have been taken from Karlis et al (2007). Its solution,
obtained by the BEM in conjunction with the use of the special crack tip element
described in section 5, consists mainly of the crack opening displacement profile
and the stress intensity factors (SIF’s). Extensive convergence studies in Karlis et
al (2007) have shown that a ratio of α/`e = 8 leads to very good results, where α

is the half length of the crack and `e the length of the special crack-tip boundary
elements.

Figure 6 displays the upper-right-quarter of the crack opening displacement profile
obtained by the present BEM for four different values of the gradient coefficient g
(0.01, 0.1, 0.3, 0.5). In the same figure, the crack profile provided by the classical
elasticity theory (g = 0) is also shown. The main conclusion here is that the crack
profile of the gradient elastic case remains sharp at the crack tip and is not blunted
as in the classical case. This cusp type of profile is identical to the one coming out
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Figure 5: Strain gradient elastic plate with a central horizontal line crack

of Barenblatt’s (1962) cohesive zone theory. Also, it should be noticed that as the
gradient coefficient g increases, the crack becomes stiffer.

The two mode I SIFs for the gradient elastic case, (KI)1 and (KI)2, are plotted versus
the gradient coefficient g in Fig. 7. The interesting remark here is that the SIF (KI)1
tends to zero as the gradient coefficient g tends to zero. As a result of that, Eq. (36)
becomes Py = (KI)2/

√
2πlimr→0r−1/2 with (KI)2 being the mode I SIF as defined

in classical elasticity theory. Furthermore, all SIFs decrease for increasing values
of the gradient coefficient g. However, the most important observation here is that
the SIF (KI)1 takes only negative values. This means that in gradient elasticity
the stresses near the crack tip not only go to infinity with a different order (r−3/2)
than that of classical elasticity (r−1/2), but are also compressive and not tensile
as in classical elasticity. This explains the different shapes of the crack profile in
gradient and classical elasticity theories, as shown in Fig. 6.

8.2 Example 4

Consider a spherical cavity of radius α into an infinite gradient elastic medium
subjected to a radial pressure P of magnitude P0 i) harmonically varying with time
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Figure 6: Shape of mode I crack for different values of the gradient coefficient g.
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(
P = P0eiωt

)
and ii) suddenly applied (P = P0H (t− τ) with τ = 3sec) . In the

above, ω represents frequency and H(t) stands for the Heaviside function. One
is interested in the radial displacement u(r, ω) and u(r, t) for the two above kinds
of applied loading. This example has been taken from Polyzos et al (2005).

The boundary conditions of the problem are of the same form as Eqs. (45) of the
corresponding static version of the problem. The problem associated with the har-
monic time variation of the load can be easily solved analytically in the frequency
domain and its solution has the form (Polyzos et al 2005)

ur (r) =
A1

A2a
h(1)

1 (k1r)+
B1

B2a

√
π

2(m1r)
K 3

2
(m1r) (48)

where

A1 =−(k2
1P0a3(3gc1(a2 +g2(2+a2k2

1))+ c2
1a(a2 +g2(6+a2k2

1)))) (49)

B1 =−((e
c1a

g gc2
1P0a3(−6i+ k1a(−6+ k1a(3i+ k1a)))) (50)

B2 = (µ π(−18ig3c2−18g2c2c3a−6igc2a2 +2c3(−3−10c2
3−6c4

3)a
3+

3ic3k1(1+3c2
3 +2c4

3)a
4 + c3

3k2
1c2

1a5+
c1a(−18ig2c2−18gc2c3a−2i(1−2c2

3−6c4
3)a

2−2k1c2a3 + i(k1 + k1c2
3)

2a4))))
(51)

In the above, m1 =
√

1+g2k2
1/g, c1 =

√
1+g2k2

1, c2 = 1+2g2k2
1, c3 = gk1, b1 =

1+3c2
3 +2c4

3, b2 = 1−2c2
3−6c4

3, µ = E/2(1+ν) , i =
√
−1 while h(1)

1 (k1r) and√
π/(2m1r)K3/2 (m1r) are, the third order spherical Bessel function of the first

kind and the first order modified Bessel function of the second kind, respectively.

Assuming α = 1 and P0 = 1 and discretizing only one octant of the spherical cavity
(due to the symmetry), displacement amplitudes for different values of the gradient
coefficient g and for the excitation frequencies ω = 0.002rad/s and ω = 40rad/s,
are evaluated by the BEM and depicted in Figs. 8 and 9, respectively, as functions
of distance r form the centre of the spherical cavity. As it is evident from Figs. 8
and 9 the agreement between the BEM and the analytical solutions is excellent. It
is also observed that, while for very small frequencies the solution almost coincides
with the static one (Fig. 4), as expected, for higher frequencies there are oscillations
with amplitude decreasing with distance.
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Figure 8: Displacement ur versus distance r for various values of g and ω =
0.002rad/s

When the load is transient (suddenly applied) the problem is solved in the Fourier
transform (frequency) domain and the time domain response is obtained by a nu-
merical inversion of the transformed solution through the Fast Fourier Transform
(FFT) algorithm. Figure 10 shows the axial displacement versus time at the point
r = 1.05 for various values of g. The classical solution of the problem (for g = 0)
taken from Timoshenko and Goodier (1970) is also depicted in Fig. 10 for rea-
sons of comparison. From Fig. 10 one can observe that the response decreases for
increasing values of g.

9 Conclusions and future developments

On the basis of the material presented in the preceding sections, the following con-
clusions and suggestions for future developments can be stated:

1. The fundamental solution, the reciprocity identity and the integral represen-
tation of the strain gradient elastic problem in the context of Mindlin’s form
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Figure 9: Displacement ur versus distance r for various values of g and ω =
40rad/s

II strain gradient elastic theory and its simplifications have been developed.

2. An advanced and accurate boundary element method for solving two and
three dimensional static and frequency domain dynamic strain gradient elas-
tic problems has been proposed.

3. A special boundary element method for solving two and three dimensional
strain gradient elastic fracture mechanics problems has also been developed.
This works with special crack-tip (front) elements resulting in a direct de-
termination of stress intensity factors via the nodal traction values of these
elements.

4. The boundary element method is the ideal tool for solving strain gradient
elastic problems of complex geometry and boundary conditions because, un-
like the finite element method, i) reduces the dimensionality of the problem
by one thereby restricting the discretization to the boundary of the domain,
ii) provides highly accurate results, especially near high stress gradients, iii)
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Figure 10: Displacement ur versus time for various values of g

does not need absorbing boundaries for infinite or semi-infinite domains and
iv) does not require any continuity requirements. Finally, the old efficiency
problem due to the presence of non-symmetric matrices has been resolved
with the use of highly efficient equation solvers.

5. Use of the boundary element method in strain gradient elastic problems un-
der static or dynamic loading conditions can help one to easily assess the
importance of microstructural effects, such as size effects, reduction or elim-
ination of singularities, wave dispersion and appearance of a cohesion zone
in cracks.

6. In spite of all the above advantages of the method, there are some limitations
at its present stage of development, which should be taken care of in the
near future. These are the numerical evaluation of internal and near to the
boundary stresses as well as the proper treatment of non-smooth boundaries
(corners and edges).
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