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A LBIE Method for Solving Gradient Elastostatic
Problems

E.J. Sellountos1, S.V. Tsinopoulos2 and D. Polyzos3

Abstract: A Local Boundary Integral Equation (LBIE) method for solving two
dimensional problems in gradient elastic materials is presented. The analysis is
performed in the context of simple gradient elasticity, the simplest possible case of
Mindlin’s Form II gradient elastic theory. For simplicity, only smooth boundaries
are considered. The gradient elastic fundamental solution and the corresponding
boundary integral equation for displacements are used for the derivation of the
LBIE representation of the problem. Nodal points are spread over the analyzed
domain and the moving least squares (MLS) scheme for the approximation of the
interior and boundary variables is employed. Since in gradient elasticity the equi-
librium equation is a partial differential equation of forth order, the MLS is ideal
for solving these problems since it holds the C(1) continuity property. The compan-
ion solution of displacements is explicitly derived and introduced in the LBIEs for
zeroing the tractions and double tractions on the local circular boundaries. Two rep-
resentative numerical examples are presented to illustrate the method, demonstrate
its accuracy and assess the gradient effect in the response.

Keywords: LBIE, meshless, gradient elasticity.

1 Introduction

It is well known that classical theory of elasticity fails to describe microstructural
and size effects in materials and structures due to the lack of internal length scale
parameters in its constitutive equations. This is possible with the use of other
enhanced elastic theories where intrinsic parameters correlating the microstruc-
ture with the macrostructure are involved in the constitutive equations as well
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as in the equilibrium equations of the considered elastic continuum. The most
general of these theories are known in the literature as Cosserat elastic theory
[Cosserat and Cosserat (1909)], Cosserat theory with constrained rotations or cou-
ple stresses theory [Mindlin and Tiersten (1962)],[Koiter (1964)] strain gradient
theory [Toupin (1964)], multipolar elastic theory [Green and Rivlin (1964)], higher
order strain gradient elastic theory [Mindlin (1964)], [Mindlin (1965)], micromor-
phic, microstretch and micropolar elastic theories [Eringen (1999)] and non-local
elasticity [Eringen (1992)].

A very attractive enhanced elastic theory is the strain gradient elasticity proposed
by Mindlin [Mindlin (1964)]. It is known as Form II gradient elasticity and it is
a special case of the general gradient theory that Mindlin addressed in the same
paper. It is characterized as attractive because i) in the static version only five
intrinsic parameters are needed ii) it can be simplified further to the simple gradient
elastic theory with only one internal length scale parameter and the most important
iii) strains and stresses appearing in the constitutive equations are symmetric as
in the classical case. Although elegant, even the simple gradient elastic theory is
mathematically much more complex than the classical theory of elasticity and the
solution of even very simple boundary value problems is very difficult. An obvious
solution is to resort to well-known numerical methods such as the Finite Element
Method (FEM) and the Boundary Element Method (BEM).

Undoubtedly the FEM is the most widely used numerical method for solving prob-
lems in applied mechanics. Oden et al. [Oden, Rigsby, and Cornett (1970)] were
the first who used FEM for solving gradient elastic problems in the framework
of Mindlin’s first gradient elastic theory [Mindlin (1964)] and, after almost three
decades, Shu et al. [Shu, King, and Fleck (1999)] demonstrated a mixed FEM
formulation to treat a modified version of Mindlin’s theory [Fleck and Hutchin-
son (1993)]. Since then, two main categories of FEM techniques have appeared
in the literature [Papanicolopulos, Zervos, and Vardoulakis (2010)]. The first deals
with displacement FEM formulations and the second with multi-field finite element
methodologies. Although simple and efficient, the displacement FEM formulation
requires C(1) continuous elements for the interpolation of the displacements. This
is due to the presence of higher order gradients of strains in the expressions of po-
tential energy that leads to an equilibrium equation represented by a forth order par-
tial differential operator in displacements. The use of C(1) elements appears prob-
lems dealing with the numerical evaluation of very complicated shape functions,
the introduction of many degrees of freedom per elements and inaccuracies com-
ing from the non- isoparametric interpolation of geometry. The alternative multi-
field FEM or other C(0) FEM formulations such as mixed formulations [Imatani,
Hatada, and Maugin (2005)], [Markolefas, Tsouvalas, and Tsamasphyros (2007)],
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Lagrange multipliers [Shu, King, and Fleck (1999)], [Matsushima, Chambon, and
Caillerie (2002)], penalty parameters [Zervos (2008)], implicit and explicit formu-
lations [Tenek and Aifantis (2002)], [Askes and Gutierrez (2006)], nonconforming
C(0−1) quadrilateral elements [Soh and Chen (2004)], [Zhao, Chen, and Lo (2011)]
and continuous-discontinuous finite element approximations [Engel, Garikipati,
Hughes, Larson, Mazzei, and Taylor (2002)] are also associated with drawbacks
coming from incompatibilities of the different approximated fields.

On the other hand, the BEM is a well-known and powerful numerical tool, suc-
cessfully used for solving various types of engineering problems [Beskos (1987)],
[Beskos (1997)]. Advantages it offers as compared to FEM is the reduction of
the dimensionality of the problem by one and the absense of C(1) continuity re-
quirements when gradient elastic problems are dealt with. Tsepoura et al. [Tse-
poura, Papargyri-Beskou, and Polyzos (2002)] were the first to use BEM for solv-
ing elastostatic problems in the framework of gradient elastic theories. This work
was followed by [Tsepoura and Polyzos (2003)], [Papacharalampopoulos, Karlis,
Charalambopoulos, and Polyzos (2010)], which are the only studies dealing with
two and three dimensional BEM solutions of static gradient elastic and fracture
mechanics problems. The works [Karlis, Charalambopoulos, and Polyzos (2010)],
[Papacharalampopoulos, Karlis, Charalambopoulos, and Polyzos (2010)] deal with
Mindlin’s Form II strain gradient elastic theory, while all the other papers imple-
ment simplified static versions of Mildlin’s theory like the simple strain gradient
elasticity and gradient elasticity with surface energy [Vardoulakis, Exadaktylos,
and Aifantis (1996)], [Vardoulakis and Sulem (1995)]. The main drawbacks with
the aforementioned BEM formulations are the use of two integral equations per
node (one for displacements and one for the normal derivative of displacements)
and the full populated matrices of the final system of algebraic equations, render-
ing the solution process time consuming.

Atluri and co-workers proposed the Local Boundary Integral Equation (LBIE) method
[Zhu, Zhang, and N.Atluri (1998)] and the Meshless Local Petrov- Galerkin (MLPG)
method [Atluri and Zhu (1998)] as alternatives to the BEM and FEM, respectively.
Both methods are characterized as "truly meshless" since no background cells are
required for the numerical evaluation of the involved integrals. Properly distributed
nodal points, without any connectivity requirement, covering the domain of interest
as well as the surrounding global boundary are employed instead of any boundary
or finite element discretization. All nodal points belong in regular sub-domains
(e.g. circles for two-dimensional problems) centered at the corresponding colloca-
tion points. The fields at the local and global boundaries as well as in the interior
of the subdomains are usually approximated by the Moving Least Squares (MLS)
approximation scheme. Owing to regular shapes of the sub-domains, both surface
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and volume integrals are easily evaluated. The local nature of the sub-domains
leads to a sparse linear system of equations. Both LBIE and MLPG methods are
ideal for treating gradient elastic problems since they utilize C(1) continuous MLS
interpolation functions. Details on LBIE and MLPG methods one can find in the
papers [Sellountos and Polyzos (2003)], [Sladek, Sladek, and Keer (2003)] and in
the books [Atluri and Shen (2002)] and [Atluri (2004)].

In the present work, the LBIE method is employed for the solution of 2D problems
in gradient elastic materials. The analysis is performed in the context of simple
gradient elasticity, the simplest possible special case of Mindlin’s Form II gradient
elastic theory [Karlis, Tsinopoulos, Polyzos, and Beskos (2007)]. For the sake of
simplicity only bodies with smooth boundaries are considered. In contrast to the
BEM formulations [Tsepoura, Papargyri-Beskou, and Polyzos (2002)], [Papachar-
alampopoulos, Karlis, Charalambopoulos, and Polyzos (2010)], only the displace-
ment LBIE is utilized throughout the analyzed domain. This is accomplished with
the aid of a companion solution, explicitly derived in Appendix, which zeroes both
tractions and double tractions on the boundary of the circular local domains. Thus,
the proposed LBIE method has the same philosophy with that of Sellountos and
Polyzos [Sellountos and Polyzos (2003)] used for the solution of classical elas-
tic problems. To the authors’ best knowledge, this is the first work dealing with
meshless LBIE solution of gradient elastic problems. It should be mentioned how-
ever, the MLPG methodologies of Tang et al. [Tang, Shen, and Atluri (2003)], and
Sun and Liew [Sun and Liew (2008)] for solving problems in the framework of
Mindlin’s general gradient elastic theory, the LBIE method of Sladek and Sladek
[Sladek, Sladek, and Keer (2003)] for treating micropolar elastic problems [Erin-
gen (1999)] and the Element Free Galerkin techniques of Askes and Aifantis [Askes
and Aifantis (2002)] and Pamin et al. [Pamin, Askes, and de Borst (2003)] for solv-
ing problems in implicit/explicit gradient elasticity and plasticity, respectively. The
paper consists of the following five sections: Section 2 presents in brief the simple
gradient elastic theory and how it is taken from Mindlin’s Form II gradient elastic-
ity. In Section 3 the LBIE of the problem is explicitly derived, while in Section 4
the numerical implementation of the proposed methodology is illustrated. Section
5 provides two numerical examples to demonstrate the accuracy of the method and
illustrate the microstructural effects. Finally, Section 6 consists of the conclusions
pertaining to this work.

2 Simple Gradient Elastic Theory

Mindlin in the Form II version of his general strain gradient elastic theory [Mindlin
(1964)] considered that the potential energy W of an isotropic elastic body with
microstructure of volume V is a quadratic form of the strains εi j and the gradient of
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strains, κi jk i.e.,

W =
∫

V

(
1
2

λεiiε j j + µεi jεi j + α̂1κiikκk j j + α̂2κi j jκikk+

α̂3κiikκ j jk + α̂4κi jkκi jk + α̂5κi jkκk ji
)

dV (1)

where

εi j =
1
2

(∂iu j +∂ jui) (2)

κi jk = ∂iε jk =
1
2

(∂i∂ juk +∂i∂ku j) = κik j (3)

with ∂i denoting space differentiation, ui displacements, λ ,µ the Lamé constants
and â1, ..., â5 intrinsic microstructural parameters, explicitly defined in [Mindlin
(1964)].

Strains εi j and gradient of strains κi jk are dual in energy with the Cauchy-like and
double stresses, respectively, defined as

τi j =
∂W
∂εi j

= τ ji (4)

µi jk =
∂W

∂κi jk
= µik j (5)

which implies that

τi j = 2µεi j +λεllδi j (6)

and

µi jk =
1
2

α̂1
[
κkllδi j +2κlliδ jk +κ jllδki

]
+2α̂2κillδ jk+

α̂3
(
κllkδi j +κll jδik

)
+2α̂4κi jk + α̂5

(
κki j +κ jki

)
(7)

For a static problem, the equilibrium equation of the considered gradient elastic
body as well as the possible boundary conditions that establish a well-posed bound-
ary value problem can be determined with the aid of energy variational principle,
written as

δ (W −W1) = 0 (8)
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where δ denotes variation and W1 represents the work done by external forces.

By inserting Eq. 1 into Eq. 8 and taking into account the body forces Fk, the fol-
lowing equation of equilibrium is obtained

∂ j
(
τ jk−∂iµi jk

)
+Fk = 0 (9)

accompanied by the classical essential and natural boundary conditions where the
displacements uk and/or tractions pk have to be defined on the global boundary S of
the analyzed domain, the non- classical essential and natural boundary conditions
where normal strains qk = ∂uk/∂n and/or double tractions Rk are prescribed on S,
and the non- classical boundary condition satisfied only when non-smooth bound-
aries are dealt with, where the jump traction vector Ek has to be defined at corners
and edges. Traction vectors pk,Rk,Ek are defined as

pk = n jτ jk−nin jDµi jk− (n jDi +niD j)µi jk +(nin jDlnl−D jni)µi jk (10)

Rk = nin jµi jk (11)

Ek =
∣∣∣∣nim jµi jk

∣∣∣∣ (12)

where ni is the unit vector normal to the global boundary S, D = nl∂l and D j =(
δ jl−n jnl

)
∂l is the surface gradient operator.

The non-classical boundary condition Eq. 12 exists only when non-smooth bound-
aries are considered. Double brackets ||·|| indicate that the enclosed quantity is the
difference between its values taken on the two sides of all corners while mi is a
vector being tangential to the corner line.

Finally, by taking into account relations Eq. 6 and Eq. 7, the equilibrium equation
Eq. 9 in terms of displacements is written as

µ∂iuk +(λ + µ)∂k∂iui +
[
µl2

2 − (λ +2µ) l2
1
]

∂
2
j ∂k∂iui−µl2

2∂
2
j ∂

2
i uk +Fk = 0 (13)

where

l2
1 = 2(â1 + â2 + â3 + â4 + â5)

1
λ +2µ

(14)

and

l2
2 = (â3 +2â4 + â5)

1
2µ

. (15)



A LBIE Method for Solving Gradient Elastostatic Problems 151

The above intrinsic parameters l2
1 , l

2
2 have units of length square (m2) and represent

the effect of the stiffness of the microstructure on the macrostructural behavior of
the gradient elastic material. l2

1 is related to longitudinal deformations while l2
2 to

shear ones. Positive definiteness of the potential energy requires µ,λ + 2µ > 0,
l2
i > 0.

The simple gradient elastic theory considers that microstructural effects are the
same for both longitudinal and shear deformations, i.e. l2

1 = l2
2 = g2. The con-

sequence of this simplification is that â1 = â3 = â5 = 0 and â2 = λ

2 g2, â4 = µg2.
Thus, the equilibrium equation Eq. 13 and the double stress tensor Eq. 7 obtain the
simpler form, respectively(
1−g2

∂
2
j
)[

µ∂
2
i uk +(λ + µ)∂k∂iui

]
+Fk = 0 (16)

µi jk = ∂i
(
2µε jk +λεllδ jk

)
(17)

Equations Eq. 16 in conjunction with Eq. 6, Eq. 17 and the classical and non clas-
sical boundary conditions form a well posed boundary value problem, which can
be solved with the LBIE method as it is explained in the next section.

3 LBIEs for Gradient Elastic Material

Consider a finite gradient elastic body of volume Ω surrounded by a smooth bound-
ary S. Polyzos et al [Polyzos, Tsepoura, Tsinopoulos, and Beskos (2003)] have
proved that for two deformation states of the same gradient elastic body the follow-
ing reciprocal identity is valid∫

V
(F∗i ui−Fiu∗i ) dV +

∫
S
(p∗i ui− piu∗i ) dS =

∫
S

(
Ri

∂u∗i
∂n
−R∗i

∂ui

∂n

)
dS (18)

where Fi represents body forces and pi,Ri traction and double traction vectors de-
fined by Eq. 10 and Eq. 11, respectively.

Assume as "*" the deformation state, due to the fundamental tensor of the gradient
elastic problem, which satisfies the partial differential equation(
1−g2

∂
2
l
)[

µ∂
2
k u∗i j (r)+(λ + µ)∂i∂ku∗k j (r)

]
+δ (r)δi j = 0

and it has the form [Polyzos, Tsepoura, Tsinopoulos, and Beskos (2003)]

ũ∗i j =
1

8πµ (1−ν)
[Ψ(r)δi j−X (r)∂ir∂ jr]

X (r) =−1+
4g2

r2 −2K2

(
r
g

)
(19)

Ψ(r) =−(3−4ν) lnr +
2g2

r2 − (3−4ν)K0

(
r
g

)
−K2

(
r
g

)
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with δ (r) being Dirac δ -function, δi j Kronecker’s delta, ν Poisson’s ratio, K0 and
K2 zero and second order modified Bessel functions of second kind, respectively
and r = |x−y| where x, y are the observation and the source point.

By considering zero body forces (Fi = 0) and replacing F∗i by F∗i j = δ (r)δi j, iden-
tity Eq. 18 leads to an integral representation of the gradient elastic problem of the
form

1
2

ui (x)+
∫

S

{
p∗i j (x,y)u j (y)−u∗i j (x,y) p j (y)

}
dSy =∫

S

{
q∗i j (x,y)R j (y)−R∗i j (x,y)q j (y)

}
dSy (20)

where u∗i j is the fundamental solution given by Eq. 19, q∗i j = ∂u∗i j/∂n and p∗i j,R
∗
i j

fundamental traction and double traction tensors defined by Eq. 10 and Eq. 11,
respectively.

x(k)

x(k)

x(k)

Ω
(k)
s

Ω
(k)
s

Ω
(k)
s

∂Ω
(k)
s

∂Ω
(k)
s

∂Ω
(k)
s

Γ
(k)
s

Γ
(k)
s

Ω

S

Figure 1: Local domains and boundaries used for the LBIE representation of disc-
pacements at point xk

Adopting the meshless LBIE methodology of [Sellountos and Polyzos (2003)] both
the domain Ω and the global boundary S are covered by randomly distributed
points, as shown in Fig 1. Each point xk is the center of a circular area called
support domain. Taking into account that u∗i j is singular only when x ≡ y and ap-

plying the reciprocal identity Eq. 18 for the domain between S and ∂Ω
(k)
s (Fig 1),

one obtains a local integral representation of discplacements at point x(k) called
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LBIE written as

ui

(
x(k)
)

+
∫

∂Ω
(k)
s

{
p∗i j

(
x(k),y

)
u j (y)−u∗i j

(
x(k),y

)
p j (y)

}
dSy =∫

∂Ω
(k)
s

{
q∗i j

(
x(k),y

)
R j (y)−R∗i j

(
x(k),y

)
q j (y)

}
dSy (21)

when the support domain lies entirely in Ω and

cui

(
x(k)
)

+
∫

∂Ω
(k)
s ∪Γ

(k)
s

{
p∗i j

(
x(k),y

)
u j (y)−u∗i j

(
x(k),y

)
p j (y)

}
dSy =∫

∂Ω
(k)
s ∪Γ

(k)
s

{
q∗i j

(
x(k),y

)
R j (y)−R∗i j

(
x(k),y

)
q j (y)

}
dSy (22)

when the support domain intersects the global boundary S.

The constant c is equal to 1 for internal nodes x(k) ∈Ω and 0.5 for boundary points
x(k) ∈ S lying on smooth boundary, while Γ

(k)
s is the intersected part of S.

In order to get rid of tractions and double tractions in integrals defined on ∂Ω
(k)
s the

use of companion solution uc
i j is made. It is a regular function of r satisfying the

partial differential equation(
1−g2

∂
2
l
)[

µ∂
2
k uc

i j (r)+(λ + µ)∂i∂kuc
k j (r)

]
= 0 (23)

with the boundary conditions

uc
i j (r0) = u∗i j (r0)

qc
i j (r0) = q∗i j (r0) (24)

where r0 is the radius of the support domain Ω
(k)
s depicted in Fig 1, u∗i j is the

fundamental solution of the gradient elastic problem given by Eq. 20 and q∗i j =
∂u∗i j/∂n, i.e.

q∗i j =
1

8πµ (1−ν)

[(
dΨ

dr
− 2X

r

)
(nkrk)∂ ri∂ r j +

dΨ

dr
nkrkδi j−

X
r

(nir j +n jri)
]

The derivation of uc
i j is provided in Appendix. By considering displacements ui

and companion solution uc
i j as the two deformation states of identity Eq. 18, one

obtains∫
∂Ω

(k)
s

{
pc

i j

(
x(k),y

)
u j (y)−uc

i j

(
x(k),y

)
p j (y)

}
dSy =∫

∂Ω
(k)
s

{
qc

i j

(
x(k),y

)
R j (y)−Rc

i j

(
x(k),y

)
q j (y)

}
dSy (25)
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when the support domain lies entirely in Ω and∫
∂Ω

(k)
s ∪Γ

(k)
s

{
pc

i j

(
x(k),y

)
u j (y)−uc

i j

(
x(k),y

)
p j (y)

}
dSy =∫

∂Ω
(k)
s ∪Γ

(k)
s

{
qc

i j

(
x(k),y

)
R j (y)−Rc

i j

(
x(k),y

)
q j (y)

}
dSy (26)

when the support domain intersects the global boundary S.

By subtracting Eq. 25 and Eq. 26 from Eq. 21 and Eq. 22, respectively, and applying
the boundary conditions Eq. 24, the LBIEs for internal and intersected support
domains take the final form

ui

(
x(k)
)

+
∫

∂Ω
(k)
s

p̂∗i j

(
x(k),y

)
u j (y) dSy =

∫
∂Ω

(k)
s

R̂∗i j

(
x(k),y

)
q j (y) dSy (27)

cui

(
x(k)
)

+
∫

∂Ω
(k)
s

p̂∗i j

(
x(k),y

)
u j (y) dSy+∫

Γ
(k)
s

{
p̂∗i j

(
x(k),y

)
u j (y)− û∗i j

(
x(k),y

)
p j (y)

}
dSy =∫

Γ
(k)
s

{
q̂∗i j

(
x(k),y

)
R j (y)− R̂∗i j

(
x(k),y

)
q j (y)

}
dSy−∫

∂Ω
(k)
s

R̂∗i j

(
x(k),y

)
q j (y) dSy (28)

where âi j = a∗i j−ac
i j. Relations Eq. 27 and Eq. 28 provide the displacement LBIE

of any internal or boundary point x(k).

4 Numerical Implementation

Displacements ui
(
xk
)

defined at any point xk of the analyzed domain are interpo-
lated with the aid of Moving Least Square (MLS) approximation scheme, i.e.

ui

(
x(k)
)

=
n

∑
m=1

φi j

(
x(k),x(m)

)
û j

(
x(m)

)
(29)

where, due to the lack of delta property of the MLS interpolants, ûi
(
xk
)

represent
fictitious nodal displacements and not nodal displacements values [Atluri and Zhu
(1998)]. However, Gosz and Liu [Gosz and Liu (1996)] explained that for piece-
wise linear global boundaries and evenly distributed points MLS scheme possesses
delta property. Sellountos and Polyzos [Sellountos and Polyzos (2003)] have shown
that for uniformly distributed points the delta property of MLS interpolants remains
even for curved boundaries. Recently, that result has also been confirmed by the
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work of Skouras et al [Skouras, Bourantas, Loukopoulos, and Nikiforidis (2011)].
Thus for uniformly distributed points, ûi

(
xk
)

in Eq. 29 can be replaced by the nodal
displacements ui

(
xk
)
.

The normal derivative of displacements is given by

qi

(
x(k)
)

= N(1)
i j

n

∑
m=1

B(1)
jl

(
x(k),x(m)

)
ul

(
x(m)

)
(30)

with

N(1) =
[
N(1)

i j

]
=
[

n1 n2 0 0
0 0 n1 n2

]
(31)

B(1) =
[
B(1)

jl

]
=


∂1φ 0
∂2φ 0

0 ∂1φ

0 ∂2φ

 . (32)

n1, n2 are the two components of the normal vector and ∂1, ∂2 derivatives with
respect to the coordinate system x1,x2, respectively. Similarly tractions and double
tractions are interpolated as

pi

(
x(k)
)

= N(2)
i j D jl

n

∑
m=1

B(2)
lq

(
x(k),x(m)

)
uq

(
x(m)

)
(33)

Ri

(
x(k)
)

= N(2)
i j D jlN

(3)
l p

n

∑
m=1

B(3)
pq

(
x(k),x(m)

)
uq

(
x(m)

)
(34)

where

N(2) =
[
N(2)

i j

]
=
[

n1 0 n2
0 n2 n1

]
(35)

N(3) =
[
N(3)

l p

]
=

 n1 n2 0 0 0 0
0 0 0 0 n1 n2
0 n1 n2 n1 n2 0

 (36)

D =
[
D jl
]
=

 λ +2µ λ 0
λ λ +2µ 0
0 0 µ

 (37)
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B(2) =
[
B(2)

lq

]
=

 ∂1φ 0
0 ∂2φ

∂2φ ∂1φ

 (38)

B(3) =
[
B(3)

pq

]
=



∂ 2
1 φ 0

∂1∂2φ 0
∂ 2

2 φ 0
0 ∂ 2

1 φ

0 ∂1∂2φ

0 ∂ 2
2 φ

 (39)

By inserting Eq. 29, Eq. 30, Eq. 33 and Eq. 34 into Eq. 27 and Eq. 28 one obtains
in vector form, respectively

u
(

x(k)
)

+
∫

∂Ω
(k)
s

p̂∗
(

x(k),y
)
·

n

∑
m=1

φ

(
y,x(m)

)
dSy ·u

(
x(m)

)
+

∫
∂Ω

(k)
s

R̂∗
(

x(k),y
)
·N(1)(y) ·

n

∑
m=1

B(1)
(

y,x(m)
)

dSy ·u
(

x(m)
)

= 0 (40)

cu
(

x(k)
)

+
∫

∂Ω
(k)
s

p̂∗
(

x(k),y
)
·

n

∑
m=1

φ

(
y,x(m)

)
dSy ·u

(
x(m)

)
+

∫
Γ

(k)
s

p̂∗
(

x(k),y
)
·

n

∑
m=1

φ

(
y,x(m)

)
dSy ·u

(
x(m)

)
−

∫
Γ

(k)
s

û∗
(

x(k),y
)
·N(2) ·D ·

n

∑
m=1

B(2)
(

y,x(m)
)

dSy ·u
(

x(m)
)

= (41)∫
Γ

(k)
s

q̂∗
(

x(k),y
)
· R̄(y) dSy−∫

Γ
(k)
s

R̂∗
(

x(k),y
)
·N(1)(y) ·

n

∑
m=1

B(1)
(

y,x(m)
)

dSy ·u
(

x(m)
)
−

∫
∂Ω

(k)
s

R̂∗
(

x(k),y
)
·N(1)(y) ·

n

∑
m=1

B(1)
(

y,x(m)
)

dSy ·u
(

x(m)
)
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when double tractions R = R̄ are prescribed on Γ
(k)
s and

cu
(

x(k)
)

+
∫

∂Ω
(k)
s

p̂∗
(

x(k),y
)
·

n

∑
m=1

φ

(
y,x(m)

)
dSy ·u

(
x(m)

)
+

∫
Γ

(k)
s

p̂∗
(

x(k),y
)
·

n

∑
m=1

φ

(
y,x(m)

)
dSy ·u

(
x(m)

)
−

∫
Γ

(k)
s

û∗
(

x(k),y
)
·N(2) ·D ·

n

∑
m=1

B(2)
(

y,x(m)
)

dSy ·u
(

x(m)
)

= (42)

∫
Γ

(k)
s

q̂∗
(

x(k),y
)
·N(2) (y) ·D ·N(3) (y) ·

n

∑
m=1

B(3)
(

y,x(m)
)

dSy ·u
(

x(m)
)
−∫

Γ
(k)
s

R̂∗
(

x(k),y
)
· q̄(y) dSy−∫

∂Ω
(k)
s

R̂∗
(

x(k),y
)
·N(1)(y) ·

n

∑
m=1

B(1)
(

y,x(m)
)

dSy ·u
(

x(m)
)

when q = q̄ is prescribed on the boundary Γ
(k)
s .

By collocating equations Eq. 40, Eq. 41 and Eq. 42 at all points, the following
system of algebraic equations is obtained

K ·u = f (43)

where vector u comprises all the unknown internal and boundary nodal values of
displacements and f the known nodal values imposed by the classical and non-
classical boundary conditions. Matrix K contains integrals defined on the surface
of support and global boundaries, evaluated numerically with a technique explained
in detail in [Sellountos and Polyzos (2003)]. Also, it should be mentioned that K is
sparse and not full populated as in the case of BEM. Finally, by solving Eq. 43 with
a typical LU decomposition algorithm, nodal values of displacements are obtained.
As soon as displacements are known, normal derivatives, tractions and double trac-
tions are evaluated with the aid of relations Eq. 30, Eq. 33 and Eq. 34, respectively.

5 Numerical Examples

The achieved accuracy of the LBIE method illustrated in the previous two sections
is demonstrated with the solution of some representative benchmark problems. The
first problem concerns a solid cylinder subjected to an external radial displacement
u0 (classical boundary condition), while the radial deformation vanishes on the
surface of the cylinder (non-classical boundary condition). The analytical solution
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of this problem is given in [Tsepoura, Tsinopoulos, Polyzos and Beskos (2003)]
and has the form

ur =
u0 [I0 (α/g)+ I2 (α/g)]

2aI2 (α/g)
r− gu0

αI2 (α/g)
I1 (r/g) (44)

where ur represents radial displacements, r is the distance from the center of the
cylinder, α is cylinder’s radius and In is the modified Bessel function of the first
kind and nth order. This problem has been solved numerically by the proposed
LBIE method for u0 = 0.001m and α = 1m. The intrinsic parameter has been taken
equal to g = 0.0,0.1,0.5 and 1509 uniformly distributed points have been used for
the discretization of the cylinder with their support domain being equal to 0.45m.
The obtained results are displayed in Fig 2 and as it is observed they are in very
good agreement with the analytical ones. For all the values of g, the maximum
error is below 0.5%.

Figure 2: Radial displacement versus radial distance of the solid cylinder of radius
α = 1m, for g = 0.0,0.1,0.5. The classical boundary condition is ur (α) = u0 and
the non-classical one q(α) = ∂ur/∂ r = 0.
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The same cylinder is subjected to an external pressure P0, while the radial double
stresses Rr vanish at the boundary. The analytical solution of this problem is also
provided in [Tsepoura, Tsinopoulos, Polyzos and Beskos (2003)] and it is

ur =−P0 (1−2ν)
E

r (45)

where E,ν stand for Young modulus and Poisson ratio, respectively.

Equation Eq. 45 indicates that the response of the cylinder is as in classical elastic-
ity, i.e. independent of the material characteristic length g2. Although the analytical
solution of that problem is identical to the classical one, it is a useful benchmark
since all the kernels of the considered LBIEs are expressed in terms of double
stresses and it is not apparent how do they provide classical solution for different
values of g. Assuming again α = 1m, P0/E = 1 and g = 0.0,0.1,0.5, the radial
displacements are evaluated and depicted in Fig (3), as function of r and compared
to the corresponding free of g analytical ones. As it is evident from these figures,
the agreement between the solutions is very good.

The next problem deals with the tension of a 4m x 4m supported rectangle by a
uniform traction T = 1.4GPa. The supported and the loaded sides correspond to
y=0 and y=4m, respectively, while the free of stresses sides are symmetrical to y
defined by the lines x =±2m. The material properties are µ=0.7GPa, Poisson ratio
ν = 0.3 and g = 0.1, 0.5, 0.8. The considered classical and non-classical boundary
conditions are: px = uy = Rx = Ry = 0 for the side y = 0, px = py = Rx = Ry = 0 for
the sides x = 2m and x =−2m and px = qy = Rx = 0 , py = T for the side y = 4m.
The analytical solution of the problem has been derived by the authors and it is

ux =−ν
T

2µ
x

uy = (1−ν)
T

2µ
y−g

(1−ν) T
2µ

cosh
(

h
g

) sinh
(

y
g

)
(46)

and

εxx =−ν
T

2µ

εyy = (1−ν)
T

2µ
−

(1−ν) T
2µ

cosh
(

h
g

) cosh
(

y
g

)
(47)

εxy = εyx = 0
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Figure 3: Radial displacement versus radial distance of the solid cylinder of radius
α = 1m, for g = 0.0,0.1,0.5. The classical boundary condition is pr (α) = P0 and
the non-classical one Rr (α) = 0.

This is a gradient elastic boundary value problem with non-smooth boundary. In
order to be solved with the present LBIE methodology, all corners are rounded with
arcs of radius re = 0.04. 485 uniformly distributed points with support domains
equal to r0 = 0.51 have been used. Both displacements and strains defined along
the axis of symmetry x = 0 are calculated and compared to analytical ones in Figs
(4) and (5). In both figures the agreement is good, while the gradient effect on the
response is apparent. The maximum error for g=0.8 is 4.52% for displacements and
4.54% for strains while, the errors become smaller for smaller g. The explanation
for that error is the numerical solution of a slightly different problem (rectangle
with rounded corners) from that corresponding to analytical solutions Eq. 46 and
Eq. 47. The error becomes much smaller by considering Poisson ratio equal to ν =
0.0, which introduces smaller side effects. Indeed, in that case the numerical results
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depicted in Figs (6) and (7) appear maximum error 0.42% in both displacements
and strains.

Figure 4: Displacements along the axis of symmetry x = 0, for a gradient elastic
rectangle (µ=0.7GPa, ν = 0.3) subjected to a uniform tension T.

Finally, the same problem has been solved with the boundary conditions px = uy =
Rx = Ry = 0 for the side y = 0, px = py = Rx = Ry = 0 for the sides x = 2m and
x =−2m and px = Rx = Ry = 0, py = T for the side y = 4m. For this problem the
analytical solution is identical to the classical elastic one, i.e.

ux =−ν
T

2µ
x

uy = (1−ν)
T

2µ
y (48)
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Figure 5: Strains εyy along the axis of symmetry x = 0, for the same gradient elastic
rectangle of Figure 4.

εxx =−ν
T

2µ

εyy = (1−ν)
T

2µ
(49)

εxy = εyx = 0

As in the case of the cylinder, the aim of the present benchmark is twofold: first
to assess if the LBIE methodology provides classical solution for different values
of g and second to examine if the corners affect the solution of the problem as in
Figs (4) and (5). For the numerical solution of the problem, again 485 uniformly
distributed points have been uzed with a support domain being equal to 0.51m. The
obtained numerical results are compared to analytical ones and the maximum error
in both displacements and strains is 2.1% and 0.17% for Poisson ratios ν = 0.3 and
ν = 0.0, respectively.
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Figure 6: Displacements along the axis of symmetry x = 0, for a gradient elastic
rectangle (µ = 0.7GPa, ν = 0) subjected to a uniform tension T.

6 Conclusions

A meshless Local Boundary Integral Equation (LBIE) method for solving two
dimensional gradient elastic problems has been proposed. Uniformly distributed
points are utilized for the interpolation of the involved fields. Only the LBIE rep-
resentation of displacements is employed and the Moving Least Square (MLS) ap-
proximation scheme is introduced for the meshless representation of displacements
throughout the analysed domain. This is possible with the use of a companion so-
lution, explicitly derived in the present work, which zeroes tractions and double
tractions on the boundary of support domains. Normal derivatives of displace-
ments, tractions and double tractions on all boundaries are approximated with the
derivatives of MLS interpolation functions. The proposed method is an excellent
alternative to Finite Element Method (FEM) since it utilizes MLS approximation
scheme for the interpolation of the fields avoiding thus elements with C(1) conti-
nuity requirements or mixed formulations with many degrees of freedom. Also
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Figure 7: Strains εyy along the axis of symmetry x = 0

appears significant advantages over the Boundary Element Method (BEM) because
it utilizes for every node only one integral equation and not two as in the case of
BEM, and the most important is that it concludes to a final system of algebraic
equations which is sparse and not full populated. Two representative numerical ex-
amples have been provided to illustrate the method, demonstrate its high accuracy
and confirm the effect of the microstructure to macrostructure.
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Appendix A: Gradient elastostatic companion solution

In this appendix the 2D gradient elastostatic companion solution uc used for the
derivation of LBIEs Eq. 23 and Eq. 24 is explicitly derived. uc is a second order
tensor and regular function of r satisfying the boundary value problem(
1−g2

∇
2) [(λ +2µ)∇∇ ·uc−µ∇×∇×uc] = 0,r ≤ r0 (50)

uc (r0) = u∗ (r0)
qc (r0) = q∗ (r0) (51)

where r0 is the radius of the support domain, u∗ the fundamental solution of gradi-
ent elastic problem given by Eq. 19 and q∗ = ∂u∗/∂n, i.e.

q∗i j =
1

8πµ

[(
∂X
∂ r
− 2X

r

)
(nkrk)∂ ri∂ r j +

∂Ψ

∂ r
nkrkδi j−

X
r

(nir j +n jri)
]

(52)

Since the partial differential equation Eq. 50 is a multiplication of two partial dif-
ferential operators, the solution uc can be written as

uc = ue +g2ug (53)
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where ue and uc are solutions of the equations, respectively

(λ +2µ)∇∇ ·ue−µ∇×∇×ue = 0 (54)(
1−g2

∇
2)ug = 0 (55)

By utilizing cylindrical coordinates and using only the r dependency, one can find
that the regular solutions of Eq. 54 and Eq. 55 are

ue
i j =

3−4ν

4µ (1−ν)
C1r2

∂ir∂ jr−
5−4ν

8µ (1−ν)
C1r2

δi j +
4−5ν

4µ (1−ν)
C2δi j (56)

ug
i j = C3I2 (r/g)∂ir∂ jr +

[
C4I0 (r/g)− 1

2
C3I2 (r/g)

]
δi j (57)

with In being the modified Bessel function of the first kind and n th order and
C1,C2,C3,C4 constants to be determined. In view of Eq. 53, Eq. 56 and Eq. 57 the
companion solution uc is written as

uc
i j =

1
8πµ (1−ν)

[Ψc (r)−Xc (r)∂ir∂ jr]

Xc (r) =−2(3−4ν)C1r2−8πµ (1−ν)g2C3I2 (r/g) (58)

Ψ
c (r) = (5−4ν)C1r2 +2(4−5ν)C2−4πµ (1−ν)g2C3I2 (r/g)+

8πµ (1−ν)g2C4I0 (r/g)

where the coefficients C1,C2,C3,C4 satisfy the following simple algebraic system
of equations taken from the boundary conditions Eq. 51,

1
8πµ (1−ν)

(
dX
dr
− 2X

r

)
r=r0

−C3

(
gI′2 (r0/g)−g2 2I2 (r0/g)

r0

)
= 0 (59)

− 1
8πµ (1−ν)

X (r0)−
3−4ν

8πµ (1−ν)
C1r2

0−g2C3I2 (r0/g) = 0 (60)

1
8πµ (1−ν)

dΨ

dr

∣∣∣∣
r=r0

− 5−4ν

4µ (1−ν)
C1r0 +

1
2

gC3I′2 (r0/g)−gC4I′0 (r0/g) = 0 (61)

1
8πµ (1−ν)

Ψ(r0)+
5−4ν

4µ (1−ν)
C1r2

0−
4−5ν

4µ (1−ν)
C2+

1
2

g2C3I2 (r0/g)−g2C4I0 (r0/g) = 0 (62)

with I′n (z) meaning dIn/dz.




