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The Optimal Control Problem of Nonlinear Duffing
Oscillator Solved by the Lie-Group Adaptive Method

Chein-Shan Liu1

Abstract: In the optimal control theory, the Hamiltonian formalism is a famous
one to find an optimal solution. However, when the performance index is compli-
cated or for a degenerate case with a non-convexity of the Hamiltonian function
with respect to the control force the Hamiltonian method does not work to find the
solution. In this paper we will address this important issue via a quite different
approach, which uses the optimal control problem of nonlinear Duffing oscilla-
tor as a demonstrative example. The optimally controlled vibration problem of
nonlinear oscillator is recast into a nonlinear inverse problem by identifying the
unknown heat source in a nonlinear parabolic partial differential equation (PDE).
Then through a semi-discretization of the resultant PDE, the inverse problem is
further reformulated to be a system of n-dimensional ODEs with n unknown point-
wise sources, which allows a Lie-group adaptive method (LGAM) to recover the
point-wise sources. The present method has three-fold advantages: it can easily
minimize a complicated performance index to find an optimal control force of the
nonlinear vibration system, it is effective for highly nonlinear optimal control prob-
lem, and it does not resort on the classical Hamiltonian formulation, which provides
only a necessary condition, but not a sufficient condition, for the optimality of the
control law. Numerical examples show that the LGAM may find a better perfor-
mance than the classical one.

Keywords: Duffing oscillator, van der Pol oscillator, Optimal control problem,
Lie-group adaptive method, Nonlinear inverse problem

1 Introduction

The structural mechanics is to analyze, as well as to determine, the responses of
a given structure subject to external loading conditions. Based on the results an-
alyzed, the structural engineers are able to check whether a proposed structural
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design can meet the adequate resistance requirements to a combination of loading
conditions or not, and, if necessary, to revise the proposed design until all such
requirements are satisfied. When the loading is quite large, the structure will re-
spond non-linearly. Many nonlinear problems in structures can be modelled by
hard spring or soft spring of a Duffing system. On the other hand, the dissipation
of energy in a mechanical structure is often described by a viscous damping term,
while the conservative part is described by a nonlinear spring element. The result-
ing equation of vibration is attractive because it can be mathematically treated.

We are frequently desired to control the response of a nonlinear structure to remain
within a specified limit for the reason of safety. Sometimes we may encounter the
problem that the external forces are not yet known, but service for a specific purpose
of controlling the nonlinear structure to a desired state. Then the resulting problem
is an optimal control problem. In this class of control problems, the control forces
are intentionally designed such that a specified cost functional which weights the
cost of control versus the allowed response is minimized. The control of nonlinear
structural systems has gained much attention in the past several decades, and differ-
ent controllers were proposed for the applications to different areas of disciplines
[Suhardjo, Spencer and Sain (1992); Agrawal, Yang and Wu (1998)]. In the realm
of nonlinear structural control, Davies (1972) has studied the time optimal control
of the Duffing oscillator. Van Dooren and Vlassenbroeck (1982) have introduced a
direct method by the Chebyshev series expansion to solve the controlled problem
of the Duffing oscillator [El-Gindy, El-Hawary, Alim and El-Kady (1995); El-Kady
and Elbarbary (2002)]. Razzaghi and Elnagar (1994) have applied a pseudospec-
tral method to solve this problem, and Lakestani, Razzaghi and Dehghan (2006)
have applied a semi-orthogonal spline wavelets to solve this problem. As a result,
all the above methods required to solve a rather-complicated system of nonlinear
algebraic equations. Recently, Dai, Schnoor and Atluri (2012) have applied a sim-
ple collocation method to reveal the complex oscillation behavior of the Duffing
oscillator.

The Pontryagin’s Maximum Principle and Bellman’s Dynamic Programming had
been the two main methods for solving the optimal control problems. For a general
nonlinear system with specified minimized functional as being a performance in-
dex, the optimal state feedback control laws can be derived from the solution to the
Hamilton-Jacobian-Bellman (HJB) equation, or from solving a system of two-point
differential algebraic equations [Wang, Jhu, Yung and Wang (2011)]. In the above
formulations one needs to assume that the Hamiltonian function be a convex and
twice differentiable function of the control force. When the degenerate case is hap-
pened, the above optimal control theory becomes quite complicated. Moreover, the
optimal control law derived from the Hamiltonian formulation is only a necessary
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condition, not a sufficient condition. In an attempt to overcome these difficulties,
we present an alternative and yet useful approach based on the Lie-group adaptive
method (LGAM), where we view the governing equation of nonlinear system to be
the majority and the performance index as being a subsidiary target equation to be
matched with a minimization.

Liu (2006a, 2006b, 2006c) has extended the group-preserving scheme (GPS) devel-
oped by Liu (2001) for initial value problems of ODEs to solve the boundary value
problems (BVPs), namely the Lie-group shooting method (LGSM), and the nu-
merical results revealed that the LGSM is a rather promising method to effectively
solve the two-point BVPs.

In the construction of the Lie-group method for the solutions of BVPs, Liu (2006a)
has introduced the idea of one-step GPS by utilizing the closure property of the
Lie group. It needs to stress that this one-step transformation property of the Lie-
group cannot be shared by other numerical methods, because those methods do not
belong to the Lie-group types. This important property as first pointed out by Liu
(2006d) was employed to solve the backward in time Burgers equation. Liu (2008a,
2008b) has developed a Lie-group method to study the inverse vibration problem
for estimating both the time-dependent damping and stiffness coefficients.

The Lie-group method possesses a greater advantage than other numerical methods
due to its Lie-group structure, and it is a powerful technique to solve the direct prob-
lems and also the inverse problems of parameter identifications. Recently, Liu and
Atluri (2010) have solved the Calderón’s inverse problem by an effective combina-
tion of the Lie-group adaptive method (LGAM) and the finite-strip technique. By
using the same idea, Liu (2012a) has solved the inverse vibration problem of the
Euler-Bernoulli beam by identifying unknown external force. The LGAM views
the Lie-group equation developed in the LGSM as a two-point Lie-group equation
[Liu (2012b)], describing a nonlinear relation between the state quantities defined
at two different times or at two different positions of an one-dimensional space.
In this point of view of the LGAM we do not have a real target in the problem,
and thus we can employ the Lie-group equation as a supplementary equation. It
is interesting that Liu (2010) has applied the LGAM to identify the rigidity func-
tion of wave propagation problems without resorting on other data, besides those
needed for the direct wave problem, Liu (2011a) has identified unknown initial
condition and heat source by using the LGAM, and Liu (2011b, 2011c) has used
the LGAM to solve the non-homogeneous heat conductivity identification problem.
Liu and Chang (2011) have used the LGAM to identify the radiative coefficients in
parabolic partial differential equations.

This paper is arranged as follows. We introduce a novel approach of the optimal
control problem of a nonlinear mechanical oscillator in Section 2 by transforming it
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into a heat-source identification problem of a parabolic type PDE, and then wherein
by discretizing the PDE into a system of ODEs at the discretized times, we face a
problem with unknown point-wise sources for a system of n-dimensional ODEs. In
Section 3 we give a brief sketch of the GPS for the system of nonlinear ODEs. Due
to a good property of the Lie-group, we will propose an integration technique, such
that the one-step GPS can be used to identify the point-wise control forces appeared
in the resulting ODEs. The nonlinear algebraic equations are derived in Section 4
when we apply the one-step GPS to identify the control force. In Section 5 numeri-
cal examples are examined to test the Lie-group adaptive method (LGAM). Finally,
we draw some conclusions in Section 6.

2 Two mathematical transformations

The purpose of this article is to compute the control force u in the following equa-
tion of motion of a nonlinear mechanical oscillator:

φ̈ +H(φ , φ̇) = u(t), t0 < t < t f , (1)

φ(t0) = A0, φ̇(t0) = B0. (2)

Here, H can be a quite general nonlinear function of displacement φ and velocity
φ̇ . We select an optimal control force by satisfying the following minimization of
a specified performance index J:

min{J = g(x(t f ))+
∫ t f

t0
L(x(t),u(t), t)dt}, (3)

where t ∈ [t0, t f ] is a time interval we interest, and x = (φ , φ̇) is a state vector.

From this section on we start to develop a new method to compute the optimal con-
trol force u(t), t ∈ [t0, t f ]. Especially, when H = φ +βφ 3 we encounter an optimal
control problem of the Duffing oscillator.

2.1 Transformation into a PDE

If we begin with

v(x, t) = (1+ x)φ(t), (4)

then the ODE in Eqs. (1) and (2) can be transformed into a parabolic type nonlinear
PDE:

vx(x, t) = vtt(x, t)+h(x,v,vt)+
v(x, t)
1+ x

− (1+ x)u(t), (5)

v(x, t0) = A0(1+ x), vt(x, t0) = B0(1+ x). (6)
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In order to simplify the notations we let vt = ∂v(x, t)/∂ t, vtt = ∂ 2v(x, t)/∂ t2, vx =
∂v(x, t)/∂x, as well as

h(x,v,vt) := (1+ x)H
(

v(x, t)
1+ x

,
vt(x, t)
1+ x

)
. (7)

Eq. (5) is a nonlinear PDE of v, which is dependent on the function of h, and thus
on the nonlinear mechanical system we consider.

The above transformation technique was first proposed by Liu (2008c) to treat an
inverse Sturm-Liouville problem by transforming an ODE into a PDE. Then, Liu
(2008a, 2008b) and Liu, Chang, Chang and Chen (2008) have extended this idea to
develop new methods for estimating the parameters in the inverse vibration prob-
lems. Because u(t) in Eq. (5) is an unknown function, we have faced an inverse
heat source problem with overspecified left boundary conditions. Indeed, it is a
rather difficult inverse problem of PDE, giving no initial condition of v(0, t) and
no extra information of v(x, t), but we need to recover u(t) which minimizes the
functional J in Eq. (3).

2.2 Transformation into ODEs

Applying a semi-discrete procedure to the PDE in Eq. (5) yields a coupled system
of ODEs:

v′i(x) = Li +hi(x)+
vi(x)
1+ x

− (1+ x)ui, (8)

where ∆t = (t f − t0)/(n + 1) is a uniform time increment with vi(x) = v(x, ti) =
v(x, t0 + i∆t) and ui = u(ti) for simple notations. Also, hi(x) = h(x,vi(x),Ki) with
Ki denoting the discretization of vt at the point ti, and Li denoting the discretiza-
tion of vtt at the point ti, by using the Differential Quadratures introduced in the
Appendix.

Eq. (8) has totally n coupled ODEs for n variables vi(x), i = 1, . . . ,n. Therefore,
at the present time we have a set of underspecified conditions to solve the n-
dimensional ODEs system (8), and n unknown point-wise source terms ui. Below,
we will develop a Lie-group adaptive method to find ui.
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3 The GPS for differential equations system

3.1 Group-preserving scheme

Upon letting v = (v1, . . . ,vn)T and denoting the right-hand side of Eq. (8) by f, we
can write that equation as a vector form:

v′ = f(v,x), v ∈ Rn, x ∈ R. (9)

Liu (2001) has embedded Eq. (9) into an augmented differential equations system:

d
dx

[
v
‖v‖

]
=

 0n×n
f(v,x)
‖v‖

fT(v,x)
‖v‖ 0

[ v
‖v‖

]
, (10)

where the inclusion of the second row gives us a Minkowskian structure of the aug-
mented state variables of X := (vT,‖v‖)T, which automatically satisfies the cone
condition:

XTgX = 0, (11)

where

g :=
[

In 0n×1
01×n −1

]
(12)

is a Minkowski metric, In is the identity matrix of order n, and the superscript T

stands for the transpose. In terms of (vT,‖v‖)T, Eq. (11) becomes

XTgX = v ·v−‖v‖2 = ‖v‖2−‖v‖2 = 0, (13)

where the dot between two vectors denotes the inner product. Therefore, the aug-
mented state vector X is automatically located on the cone.

Consequently, we have an (n + 1)-dimensional augmented differential equations
system:

X′ = AX (14)

with a constraint (11), where

A :=

 0n×n
f(v,x)
‖v‖

fT(v,x)
‖v‖ 0

 (15)
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is a Lie algebra so(n,1) of the proper orthochronous Lorentz group SOo(n,1), be-
cause of

ATg+gA = 0. (16)

This prompts us to devise the group-preserving scheme (GPS), whose discretized
mapping G must exactly preserve the following properties:

GTgG = g, det G = 1, G0
0 > 0, (17)

where G0
0 is the 00th component of G.

Although the dimension of the new system (14) is raised one more than the original
system, it has been shown that the new system admits a group-preserving scheme
(GPS) given as follows [Liu (2001)]:

X`+1 = G(`)X`, (18)

where X` denotes the numerical value of X at x`, and G(`) ∈ SOo(n,1) is the group
value of G at x`. If G(`) satisfies the properties in Eq. (17), then X` automatically
satisfies the cone condition in Eq. (11).

The Lie-group element G(`) can be obtained from the constant A(`) ∈ so(n,1) by
an exponential mapping:

G(`) = exp[∆xA(`)] =

 In + (a`−1)
‖f`‖2 f`fT

`
b`f`
‖f`‖

b`fT`
‖f`‖ a`

 , (19)

where

a` := cosh
(

∆x‖f`‖
‖v`‖

)
, b` := sinh

(
∆x‖f`‖
‖v`‖

)
. (20)

Substituting Eq. (19) for G(`) into Eq. (18), we can obtain

v`+1 = v` +η`f`, (21)

‖v`+1‖= a`‖v`‖+
b`

‖f`‖
f` ·v`, (22)

where

η` :=
b`‖v`‖‖f`‖+(a`−1)f` ·v`

‖f`‖2 . (23)
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3.2 One-step GPS

Throughout this paper the superscript f denotes the value at x = x f , while the su-
perscript 0 denotes the value at x = 0. Assume that the total length x f is divided
into K steps, that is, the stepsize we use in the GPS is ∆x = x f /K.

Starting from X0 = X(0) and applying Eq. (18) step-by-step to integrate Eq. (14)
we can calculate the value X f at x = x f by

X f = GK(∆x) · · ·G1(∆x)X0. (24)

However, let us recall that each Gi, i = 1, . . . ,K, is an element of the Lie-group
SOo(n,1), and by the closure property of the Lie group, GK · · ·G1 is also a Lie-
group element of SOo(n,1) denoted by G. Hence, we have

X f = GX0. (25)

This is a one-step Lie-group transformation from X0 to X f , namely the one-step
GPS.

3.2.1 A Generalized mid-point rule

We can approximately solve G by a generalized mid-point rule, which is obtained
from an exponential mapping of a constant A by taking the values of the argument
variables of A at a generalized mid-point. The Lie-group element generated from
such a constant matrix A ∈ so(n,1) has a closed-form solution:

G =

 In + (a−1)
‖f̂‖2 f̂f̂T bf̂

‖f̂‖

bf̂T
‖f̂‖ a

 , (26)

where

v̂ = rv0 +(1− r)v f , f̂ = f(v̂, x̂), (27)

a = cosh

(
x f ‖f̂‖
‖v̂‖

)
, b = sinh

(
x f ‖f̂‖
‖v̂‖

)
. (28)

Here, we use the initial value v0 and the final value v f through a suitable weight-
ing factor r to calculate G, where r ∈ [0,1] is a parameter to be determined and
x̂ = (1− r)x f . The above method applied a generalized mid-point rule to derive
the solution of G, and the resultant is a single-parameter Lie-group element G(r).
After developing the LGAM in Section 4, we can determine the correct value of r
by adapting the given J to a minimization.
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3.2.2 A Lie-group mapping between two points on the cone

Let us define a new vector

F :=
f̂
‖v̂‖

, (29)

such that Eqs. (26) and (28) can also be expressed as

G =

 In + a−1
‖F‖2 FFT bF

‖F‖

bFT
‖F‖ a

 , (30)

a = cosh(x f ‖F‖), b = sinh(x f ‖F‖). (31)

From Eqs. (25) and (30) it follows that

v f = v0 +ηF, (32)

‖v f ‖= a‖v0‖+b
F ·v0

‖F‖
, (33)

where

η :=
(a−1)F ·v0 +b‖v0‖‖F‖

‖F‖2 . (34)

Substituting Eq. (32), which is written as

F =
1
η

(v f −v0), (35)

into Eq. (33) and dividing both sides by ‖v0‖ we can obtain

‖v f ‖
‖v0‖

= a+b
(v f −v0) ·v0

‖v f −v0‖‖v0‖
, (36)

where

a = cosh
(

x f ‖v f −v0‖
η

)
, b = sinh

(
x f ‖v f −v0‖

η

)
(37)

are obtained from Eq. (31) by inserting Eq. (35) for F.

Let

cosθ :=
[v f −v0] ·v0

‖v f −v0‖‖v0‖
, S := x f ‖v f −v0‖, (38)
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and from Eq. (36) it follows that

‖v f ‖
‖v0‖

= cosh
(

S
η

)
+ cosθ sinh

(
S
η

)
. (39)

By defining

Z := exp
(

S
η

)
, (40)

and from Eq. (39) we can obtain a quadratic equation for Z:

(1+ cosθ)Z2− 2‖v f ‖
‖v0‖

Z +1− cosθ = 0. (41)

On the other hand, by inserting Eq. (35) for F into Eq. (34) we can obtain

‖v f −v0‖2 = (a−1)(v f −v0) ·v0 +b‖v0‖‖v f −v0‖. (42)

Dividing both sides by ‖v0‖‖v f − v0‖ and using Eqs. (37), (38) and (40) we can
obtain another quadratic equation for Z:

(1+ cosθ)Z2−2
(

cosθ +
‖v f −v0‖
‖v0‖

)
Z + cosθ −1 = 0. (43)

From Eqs. (41) and (43), the solution of Z is found to be

Z =
(cosθ −1)‖v0‖

cosθ‖v0‖+‖v f −v0‖−‖v f ‖
, (44)

and then from Eqs. (40) and (38) we can obtain

η =
x f ‖v f −v0‖

lnZ
. (45)

Therefore, between any two points (v0,‖v0‖) and (v f ,‖v f ‖) on the cone, there ex-
ists a Lie-group element G ∈ SOo(n,1) mapping (v0,‖v0‖) onto (v f ,‖v f ‖), which
is given by[

v f

‖v f ‖

]
= G

[
v0

‖v0‖

]
, (46)

where G is uniquely determined by v0 and v f through the following equations:

G =

 In + a−1
‖F‖2 FFT bF

‖F‖

bFT
‖F‖ a

 , (47)

a = cosh(x f ‖F‖), b = sinh(x f ‖F‖), F =
1
η

(v f −v0). (48)
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4 Computing the control force by the LGAM

In this section we compute the optimal control force with the point-wise ui. From
Eqs. (29) and (32) we have a very useful Lie-group equation:

v f = v0 +η
f̂
‖v̂‖

. (49)

Up to here we have constructed a Lie-group equation (49), which is a universal
algebraic equation applicable to any vector field f. This equation involves four
quantities of v0, v f , f and r together, where the last is a single parameter to be
determined.

We can write f̂ explicitly,

f̂ =



L̂1 + v̂1
1+x̂ + ĥ1− (1+ x̂)u1

L̂2 + v̂2
1+x̂ + ĥ2− (1+ x̂)u2

...

L̂n + v̂n
1+x̂ + ĥn− (1+ x̂)un


, (50)

where x̂ = (1−r)x f , v̂i = rv0
i +(1−r)v f

i and L̂i = Li(v̂i). The term L̂i is calculated
by the Differential Quadrature (see the Appendix) with L̂i = bi jv̂ j.

From Eqs. (49) and (50) we can derive a formula to calculate ui:

ui =
1

1+ x̂

[
L̂i +

v̂i

1+ x̂
+ ĥi−

‖v̂‖
η

(v f
i − v0

i )
]
. (51)

Now, the numerical procedures for computing ui are described as follows. We
assume the initial values of ui. Substituting them into Eq. (5), using the initial con-
ditions in Eq. (6), and integrating Eq. (5) from t = t0 to t = t f , we can calculate v0

i
and v0

f . Then, inserting v0
i and v0

f into Eq. (51) we can calculate a new ui, which is
then compared with the old ui. If the difference of these two sets of ui is smaller
than a given stopping criterion, then the iteration is terminated, and thus the final ui

is obtained. The processes are summarized as follows:

Step 1: Select a value of r ∈ [0,1].
Step 2: Give an initial guess of ui.
Step 3: For j = 1,2 . . ., we repeat the following computations. Calculate v0

i and v f
i

by Eqs. (5) and (6). Insert the above v0
i and v f

i denoted, respectively, by v0
i ( j) and
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v f
i ( j) into

u j
i =

1
1+ x̂

[
L̂i( j)+

v̂i( j)
1+ x̂

+ ĥi( j)− ‖v̂( j)‖
η j [v f

i ( j)− v0
i ( j)]

]
, (52)

where η j is calculated from Eq. (45) by inserting v0
i ( j) and v f

i ( j). If u j
i converges

according to a given convergence criterion:

C j :=

√
1
n

n

∑
i=1

(u j+1
i −u j

i )2 < ε, (53)

then stop; otherwise, go to Step 3.
Step 4: Finally, we search a suitable value of r by

min
r∈[0,1]

J = g(v0
n,v

0
t,n)+

n

∑
j=1

b jL(v0
j ,v

0
t, j,u j, t j), (54)

which is an approximation of J defined in Eq. (3), and which can be evaluated by
using the Integral Quadrature introduced in the Appendix. When r is selected we
can insert it into Eq. (51) to calculate ui.

The present LGAM has used a fictitious dimension of x to derive Eq. (52) by sup-
posing a fictitious target v f

i ( j) at x f . We can repeatedly use the time direction
integration of Eqs. (5) and (6) to obtain the new data of v0

i ( j) and v f
i ( j), and then

we can adjust ui by Eq. (52) until they are convergent.

5 Numerical tests

5.1 Example 1

We first consider an optimal control problem treated by Feldbaum (1973):

J =
1
2

∫ 1

0
[φ 2(t)+u2(t)]dt,

φ̇ =−φ +u,

φ(0) = 1. (55)

The exact solutions are

φ = e(α−1)t , u = αφ = αe(α−1)t , (56)

where α is solved from the following algebraic equation:

(2α
3−α

2−3)e2(α−1)−α
2 +2α +1 = 0, (57)



The Optimal Control Problem of Nonlinear Duffing Oscillator 183

which is about α = −0.333724. The minimization of J = (1 + α2)[e2(α−1) −
1]/[4(α−1)] is about 0.19385759.

Under the following parameters ∆t = 1/200, ∆x = x f /20 = 0.5/20, and ε = 10−3,
we let r run in an interval of r ∈ [0.4,0.6] within 20 iterations to find the best r as
shown in Fig. 1(a), which is happened at r = 0.51. The control force computed
from the LGAM is compared with the exact one in Fig. 1(b), revealing that the
numerical control force is very accurate with the maximum error being 1.42×10−2.
The computed J is about 0.193958, which is slightly larger than the exact one
Je = 0.19385759. The time history of φ is compared with the exact one in Fig. 1(c),
and they are almost coincident, with the maximum error about 2.386×10−3.

It is interesting that for this example, we can find a sub-optimal solution under a
constant control force u = β . Through some algebraic operations we can derive

u = β =−e2−2e+1
e2 +4e−1

≈−0.1710382, φ = β +(1−β )e−t ,

J =
1
4

[
1− 1

e2

]
(1−2β +β

2)+
[

1− 1
e

]
(β −β

2)+β
2 ≈ 0.19908047. (58)

In Fig. 2 we compare the above two closed-form solutions. When the maximum
difference of φ is 2.74× 10−2, the maximum difference of u is 0.163. This fact
demonstrates that when the control forces have a moderate difference, the displace-
ments and the performance indices have a little difference.

In the previous computation the initial guess of ui is given by ui = 0.5αe(α−1)ti ;
however, we can try another initial guess of ui by ui = −0.01. We let r run in an
interval of r ∈ [0.5,0.6] to find the best r as shown in Fig. 3(a). The control force
is compared with the exact one in Fig. 3(b), which revealing the numerical con-
trol force is very accurate with a maximum error being 1.948× 10−2, where J is
about 0.19407. In Fig. 3(c) the time history of φ is compared with the exact one in
Eq. (58), and they are quite close, with the maximum difference being 8.41×10−3.

5.2 Example 2

We consider an optimal control problem of a simple harmonic oscillator:

J =
1
2

∫ 0

−T
u2(t)dt,

φ̈ +φ = u,

φ(−T ) = A0, φ̇(−T ) = B0, φ(0) = 0, φ̇(0) = 0, (59)
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Figure 1: For the Feldbaum optimal control problem solved by the LGAM: (a) 

showing the performance index, (b) comparing the control forces, and (c) comparing 

the displacements. 

 

 

 

Figure 1: For the Feldbaum optimal control problem solved by the LGAM: (a)
showing the performance index, (b) comparing the control forces, and (c) compar-
ing the displacements.

where we fix A0 = 0.5, B0 =−0.5 and T = 2. The exact solutions derived from the
optimality condition are

φ =
1
2
[At sin t +B(sin t− t cos t)], u = Acos t +Bsin t,

J =
1
8
[2T (A2 +B2)+(A2−B2)sin(2T )−4ABsin2 T ],

A =
2[A0T sinT −B0(T cosT − sinT )]

T 2− sin2 T
,

B =
2[B0T sinT +A0(sinT +T cosT )]

T 2− sin2 T
. (60)
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Figure 2: For the Feldbaum control problem comparing the optimal and sub-optimal 

solutions. 

 

 

 

 

 

 

 

 

 

 

Figure 2: For the Feldbaum control problem comparing the optimal and sub-
optimal solutions.

Here the minimization of J is about 0.184858542 [Vlassenbroeck and Van Dooren
(1988)].

In the search of the best r we have added a penalty term w[(v0
n)

2 + (v0
t,n)

2] with
w = 50 to the minimized function of J, because we have to take the final time
conditions in Eq. (59) into account.

Under the following parameters ∆t = 2/200, ∆x = 0.5/20, and ε = 10−3 we let r
run in the interval of r ∈ [0.6,0.65] within 10 iterations to find the best r as shown
in Fig. 4(a). The control force is compared with the exact one in Fig. 4(b), where
J is about 0.18356, which is slightly smaller than the exact one. The time history
of φ is compared with the exact one in Fig. 4(c), and they are rather close, with the
maximum error being 1.72×10−2.

We must emphasize that the J = 0.18356 we obtained by the LGAM is smaller
than that J = 0.184858542 derived from the optimality condition. This is possible,
because the optimality condition is only a necessary condition, not a sufficient con-
dition.
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Figure 3: For the Feldbaum optimal control problem solved by the LGAM with a 

constant initial guess: (a) showing the performance index, (b) comparing the control 

forces, and (c) comparing the displacements. 

 

 

 

Figure 3: For the Feldbaum optimal control problem solved by the LGAM with
a constant initial guess: (a) showing the performance index, (b) comparing the
control forces, and (c) comparing the displacements.

5.3 Example 3

We consider the following performance index for the above oscillator:

J =
1
2

φ
2(t f )+

1
2
[φ̇(t f )]2 +

1
2

∫ t f

t0
u2(t)dt, (61)

where we fix t0 = 0, t f = 2, φ(0) = 0.5 and φ̇(0) =−0.5. Through some derivations
we can obtain the exact solutions of u and φ .
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Figure 4: For an optimal control problem of a simple oscillator with end constraints 

solved by the LGAM: (a) showing the performance index, (b) comparing the control 

forces, and (c) comparing the displacements. 

 

 

 

Figure 4: For an optimal control problem of a simple oscillator with end constraints
solved by the LGAM: (a) showing the performance index, (b) comparing the con-
trol forces, and (c) comparing the displacements.

Here the exact minimization of J is about 0.104565. Under the following pa-
rameters ∆t = 2/200, ∆x = 0.2/20, and ε = 10−3 we let r run in the interval of
r ∈ [0.2,0.7] within 10 iterations to find the best r as shown in Fig. 5(a). The con-
trol force obtained is compared with the exact one in Fig. 5(b), where J is about
0.11102. The time history of φ is compared with the exact one in Fig. 5(c), which
is close to the exact one, with the maximum error being 1.72×10−2.
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Figure 5: For an optimal control problem of a simple oscillator without end 

constraints solved by the LGAM: (a) showing the performance index, (b) comparing 

the control forces, and (c) comparing the displacements. 

 

 

Figure 5: For an optimal control problem of a simple oscillator without end con-
straints solved by the LGAM: (a) showing the performance index, (b) comparing
the control forces, and (c) comparing the displacements.

5.4 Example 4

In this example we solve the optimal control problem of the Duffing oscillator
[Davies (1972); van Dooren and Vlassenbroeck (1982); El-Gindy, El-Hawary, Alim
and El-Kady (1995); El-Kady and Elbarbary (2002); Lakestani, Razzaghi and De-
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Figure 6: For an optimal control problem of a Duffing oscillator with end constraints 

solved by the LGAM showing (a) the performance index, (b) the control forces, and 

(c) the displacement and velocity. 

 

 

 

 

Figure 6: For an optimal control problem of a Duffing oscillator with end con-
straints solved by the LGAM, showing (a) the performance index, (b) the control
force, and (c) the displacement and velocity.

hghan (2006)]. The performance index and equation of motion are given by

J =
1
2

∫ 0

−T
u2(t)dt,

φ̈(t)+φ(t)+βφ
3(t) = u(t),

φ(−T ) = A0, φ̇(−T ) = B0, φ(0) = φ̇(0) = 0, (62)

where we fix A0 = 0.5, B0 =−0.5 and T = 2.

In the search of the best r we have added a penalty term w[(v0
n)

2 + (v0
t,n)

2] with
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w = 10. Under the following parameters ∆t = 2/200, ∆x = 0.2/30, and ε = 10−3

we let r run in the interval of r ∈ [0.5,0.7] within 20 iterations to find the best r
as shown in Fig. 6(a) for the case of β = 0.15, where the minimal point is located
at r = 0.6. The control force solved from the LGAM is shown in Fig. 6(b) by
the solid line, where the value of J is about 0.17727. The time histories of φ and
φ̇ are displayed in Fig. 6(c) by the solid lines. It can be seen that the curves of
displacement and velocity both match the terminal conditions φ(0) = 0 and φ̇(0) =
0 very well. It deserves to note that the value of J we obtained is slightly smaller
than 0.1874, which was obtained by other methods [van Dooren and Vlassenbroeck
(1982); Razzaghi and Elnagar (1994); Lakestani, Razzaghi and Dehghan (2006)].
It shows that the present method can achieve a better control strategy than other
methods.

Similarly, we consider a strongly nonlinear case with β = 0.75. The minimal point
is happened at r = 0.65, and the numerical results are shown in Figs. 6(a)-6(c)
by the dashed lines. The value of J is about 0.1879, which is also smaller than
0.1979 obtained by Razzaghi and Elnagar (1994). It shows again that the present
method can achieve a better optimal control than the method of Razzaghi and El-
nagar (1994). Although the curves of control force are quite different, the curves
of displacement and velocity are close.

5.5 Example 5

In this example we solve the optimal control problem of the Duffing oscillator under
a more complex performance index:

J =
1
2

∫ 0

−T
[φ 2(t)+ φ̇

2(t)+ exp(u2(t))]dt, (63)

which is subjected to the initial conditions with A0 = 0.5, B0 =−0.5 and the ends
are free.

In the Hamiltonian formulation, it is difficult to express u as a function of the co-
state variables; hence, many methods based on the Hamiltonian formulation cannot
be applied to this problem.

Under the following parameters ∆t = 2/200, ∆x = 0.2/30, ε = 10−3 and β = 0.75
we let r run in the interval of r ∈ [0.2,0.7] within 20 iterations to find the best r as
shown in Fig. 7(a), where the minimal point is located at r = 0.525. The control
force solved from the LGAM is shown in Fig. 7(b), where the value of J is about
1.466. The time histories of φ and φ̇ are displayed in Fig. 7(c). This example re-
veals that the present method of LGAM is quite easily used to treat other optimal
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Figure 7: For an optimal control problem of a Duffing oscillator with free ends solved 

by the LGAM showing (a) the performance index, (b) the control forces, and (c) the 

displacement and velocity. 

 

 

 

Figure 7: For an optimal control problem of a Duffing oscillator with free ends
solved by the LGAM, showing (a) the performance index, (b) the control force,
and (c) the displacement and velocity.
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Figure 8: For an optimal control problem of a van der Pol oscillator with end 

constraints solved by the LGAM showing (a) the performance index, (b) the control 

forces, and (c) the displacement and velocity. 

 

Figure 8: For an optimal control problem of a van der Pol oscillator with end con-
straints solved by the LGAM, showing (a) the performance index, (b) the control
force, and (c) the displacement and velocity.
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control problems with a complex functional of J.

5.6 Example 6

In this example we solve the optimal control problem of the following van der Pol
oscillator:

φ̈(t)+φ(t)+β (1−φ
2)φ̇(t) = u(t),

φ(−T ) = A0, φ̇(−T ) = B0, φ(0) = φ̇(0) = 0, (64)

where we fix β = 0.15, A0 = 0.5, B0 = −0.5 and T = 2. The performance index
used in this optimal control is also given by Eq. (62).

Under the following parameters ∆t = 2/200, ∆x = 0.5/20, and ε = 10−3 we let r
run in the interval of r ∈ [0.5,0.7] within 30 iterations to find the best r as shown in
Fig. 8(a). In the search of the best r we have added a penalty term w[(v0

n)
2 +(v0

t,n)
2]

with w = 30 to the minimized function of J. The control force solved from the
LGAM is shown in Fig. 8(b), where the value of J is about 0.256622, of which the
minimum is happened at r = 0.63. The time histories of φ and φ̇ are displayed in
Fig. 8(c). It can be seen that the curves of displacement and velocity both match
the terminal conditions φ(0) = 0 and φ̇(0) = 0 very well.

6 Conclusions

For an optimally controlled vibration problem of nonlinear oscillators to find an
optimal control force, we have transformed the equation of motion into a parabolic
PDE with an unknown heat-source to be identified. Hence, it became a nonlinear
inverse problem. By a semi-discretization of the PDE, the optimal control problem
was further reformulated as being a system of n-dimensional ODEs with n un-
known point-wise sources. However, based-on the Lie-group method in a fictitious
dimension we have developed a Lie-group adaptive method (LGAM) to easily and
correctly find the optimal control force. The present LGAM can handle the mini-
mization problem with a complex performance index, where the control force can
be computed accurately. In the LGAM, the minimization of the performance index
was used as a target equation to select a suitable value of the parameter r, such
that the optimal control problem, upon being formulated in the framework of the
LGAM, becomes quite easy to find the optimal control force, and the computa-
tional cost is saving. Numerical examples disclosed that the LGAM can obtain a
better value of the performance index than other methods.
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Appendix

In this appendix we provide some backgrounds of the Differential Quadrature (DQ)
and Integral Quadrature (IQ).

Bellman and Casti (1971), and Bellman, Kashef and Casti (1972) first proposed the
Differential Quadrature (DQ) approximation of derivatives to mimic the integral
quadrature. Here, we consider a scalar function f (x) defined in a closed interval x∈
[a,b]. It is supposed that there are n grid points with coordinates x1 = a,x2, . . . ,xn =
b. The function f (x) is assumed to be differentiable at any grid point, so that its
first-order derivative f ′(x) at any grid point xi can be approximated by

f ′(xi) =
n

∑
j=1

ai j f (x j). (A1)

In the first approach of Bellman, Kashef and Casti (1972), the test functions are
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chosen as

gk(x) = xk, k = 0,1, . . . ,n−1, (A2)

such that we have the following algebraic equations to determine the weighting
coefficients ai j:

∑
n
j=1 ai j = 0,

∑
n
j=1 ai jx j = 1,

∑
n
j=1 ai jxk

j = kxk−1
i , k = 2, . . . ,n−1.

(A3)

Similarly, for the integral quadrature:∫ b

a
f (x)dx =

n

∑
i=1

bi f (xi), (A4)

we can derive{
∑

n
i=1 bi = b−a,

∑
n
i=1 bixk

i = bk+1−ak+1

k+1 , k = 1, . . . ,n−1.
(A5)

By inspection, we can see that the above systems are with the Vandermonde matrix
as the coefficient matrix. Therefore, we can apply the technique described by Liu
and Atluri (2009) to solve the above system, i.e., we solve

1 1 . . . 1 1
x1
R0

x2
R0

. . . xn−1
R0

xn
R0(

x1
R0

)2 (
x2
R0

)2
. . .

(
xn−1
R0

)2 (
xn
R0

)2

...
... . . .

...
...(

x1
R0

)n−2 (
x2
R0

)n−2
. . .

(
xn−1
R0

)n−2 (
xn
R0

)n−2

(
x1
R0

)n−1 (
x2
R0

)n−1
. . .

(
xn−1
R0

)n−1 (
xn
R0

)n−1





b1
b2

...

bk

...

bn


=



b−a
b2−a2

2R0

...
bk+1−ak+1

(k+1)Rk
0

...
bn−an

nRn−1
0


,

(A6)

where R0 is a scaling factor. When the coefficient matrix of the first-order differ-
ential DQ is obtained, we can obtain the second-order differential [Shen and Liu
(2011)]:

f ′′(xi) =
n

∑
j=1

bi j f (x j), (A7)

where bi j = aikak j. In the context the matrix ai j will be denoted by K , while the
matrix bi j will be denoted by L .




