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On the Modeling of Surface Tension and its Applications
by the Generalized Interpolation Material Point Method
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Abstract: This paper presents a numerical procedure to model surface tension
using the Generalized Interpolation Material Point (GIMP) method which employs
a background mesh in solving the equations of motion. The force due to surface
tension is formulated at the mesh grid points by using the continuum surface force
(CSF) model and then added to the equations of motion at each grid point. In
GIMP, we use the grid mass as the color function in CSF and apply a moving
average smoothing scheme to the grid mass to improve the accuracy in calculating
the surface interface. The algorithm, named as GIMP-CSF, is implemented using
the software package Uintah and benchmarked by three numerical examples: static
equilibrium of a 2D liquid drop, dynamic evolution of a square drop in 2D and
3D, and the capillary rise. The benchmark results, when compared to analytical
solutions and those obtained by other approaches, demonstrated the accuracy and
effectiveness of the GIMP-CSF algorithm.

Keywords: MPM, GIMP, meshfree, particle, surface tension, CSF, smoothing,
capillary rise.

1 Introduction

Surface tension exists at the interface of two immiscible fluids or at the junctions
of solid, fluid, and gas. As a traction force that is proportional to the magnitude of
curvature at the interface, surface tension exists wherever the interface is not flat.
In particular, at small scales, surface tension becomes comparable in magnitude
to other forces that govern fluid motion due to the large surface-to-volume ratio at
these scales. An effective numerical method capable of modeling surface tension in
its interaction with changing boundaries can be very useful to solve surface tension
related problems.

Surface tension has been modeled by the volume of fluid (VOF) method [Buss-
mann, Mostaghimi, and Chandra (1999); Gueyffier, Li, Nadim, Scardovell, and
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Zaleski (1999); Sussman (2003)], level set method [Sussman, Smereka, and Os-
her (1994); Chang, Hou, Merriman, and Osher (1996); Liu, Fedkiw, and Kang
(2000); Sussman (2003)], and the smoothed particle hydrodynamics (SPH) method
[Nugent and Posch (2000); Morris (2000); Hu and Adams (2009); Zhang (2010)].
These methods model surface tension approximately as a “volume force” based
on the continuum surface force (CSF) approach [Brackbill, Kothe, and Zemach
(1992)].

Meshless or meshfree methods, such as SPH, have been gaining popularity due
to their potential in dealing with complicated problems that involve failure, frag-
mentation and interactions of bodies with contact [Li and Liu (2002)]. The ma-
terial point method (MPM) [Sulsky, Chen, and Schreyer (1994)] and Generalized
Interpolation Material Point (GIMP) method [Bardenhagen and Kober (2004)] are
promising meshfree methods in solving solid mechanics problems with large defor-
mations to address mesh tangling and other issues. In particular, the GIMP method
was developed to improve the instability issue in the original material point method.
MPM has been applied to many engineering problems including contact [Barden-
hagen, Guilkey, Roessig, Brackbill, Witzel, and Foster (2001)], crack and failure
analysis [Nairn (2003)], explosion [Guilkey, Harman, and Banerjee (2007)], and
brittle failure of disc particles under impact [Li, Pan, and Sinka (2011)].

MPM [Sulsky, Chen, and Schreyer (1994)] is an extension to solid mechanics
from the fluid-implicit particle (FLIP) and particle in cell (PIC) methods in model-
ing highly distorted flow problems [Brackbill and Ruppel (1986)]. Consequently,
MPM might be a suitable computational method to model fluid, structure and their
interactions. However, to this date, the application of MPM for solving fluid-related
problems has been limted [York, Sulsky, and Schreyer (1999); Lee and Guilkey
(2008); Gan, Chen, and Montgomery-Smith (2011)]. In particular, the feasibility
of modeling surface tension, as an important building block for the much more
complicated problem of fluid-structure interactions at small scales, using MPM has
not been demonstrated.

The objective of this paper is then to expand the modeling capability of the GIMP
method to include surface tension. The paper is organized as follows. In Section 2
we review the GIMP method. The formulation of surface tension force by the CSF
method for GIMP, and the numerical implementation of surface tension into an
existing software package Uintah [Parker, Guilkey, and Harman (2006)] are given
in Section 3. The newly developed algorithm is verified in Section 4 by a few
numerical examples and compared to analytical solutions. Finally, discussions and
major conclusion are given in Section 5.
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2 Review of the GIMP Method

The numerical procedure of GIMP and other MPM-related methods consists of
three major steps. First, the objects of interest are discretized into particles (i.e.,
material points) which carry all the material properties and history-dependent state
variables. Second, a computational grid is constructed to cover the anticipated do-
main of simulation. Particle information is then mapped to the grid points where
the equations of motion are solved to update the acceleration, velocity, and dis-
placement at the grid points. Third, the status of each material point (such as dis-
placement, velocity, acceleration, and state variables) is updated by mapping the
information from the grid points. The procedure is repeated for each time step;
details follow.

Using a circular disk (Fig. 1) for illustration, we review the GIMP method with a
focus on the inclusion of the surface tension force in the equations of motion.

Ω

background mesh

i

grid point i  : Fi = m  i  a   i

mapping via 

interpolation 
function

particle p:
xp,vp ,σp, , Vp ,mpFp

Figure 1: Illustration of the procedure of GIMP. At the beginning of computation,
the disk Ω is discretized into a collection of particles (i.e., material points) which
are distributed over a background mesh. Each particle carries the local material
properties and state variables of the disk: stress σσσ p, mass mp, volume Vp, defor-
mation gradient Fp, position xp, and velocity vp. An interpolation function is then
selected to map, in each time increment, the information from the particles to the
grid points such that acceleration at each grid point can be solved via the equations
of motion Fi = miai. Information at the grid points is then mapped back to the
particles to complete the calculation of one time increment.



202 Copyright © 2012 Tech Science Press CMES, vol.86, no.3, pp.199-223, 2012

At the beginning of computation, the disk which occupies the domain Ω is dis-
cretized into Np particles. A background mesh, also called the grid, is then con-
structed to cover the domain of simulation. The mesh consists of cells and grid
points (nodes). The subscript p denotes a particle (i.e., a material point) and the
subscript i indicates a node of the background mesh. In MPM, particles carry in-
formation including the material properties, mass (mp), volume (Vp), all the state
variables such as the stress tensor (σσσ p) and the deformation gradient (Fp), and
kinematic variables such as the velocity (vp). The particles may also carry external
forces such as the body force bp and surface traction τττ p.

At the beginning of each time step, the mass of the particle is mapped (extrapolated)
to node i:

mi = ∑
p

Sip(xp)mp (1)

where mi is the mass at the node, ∑
p

denotes summation over particles, and Sip is

the interpolation function. In this paper, we used the GIMP interpolation function
[Bardenhagen and Kober (2004)] for Sip which is computationally more robust than
those used in the conventional MPM. Additional discussions on the implications of
the interpolation function Sip can be found in [Steffen, Wallstedt, Guilkey, Kirby,
and Berzins (2008)].

The internal force at grid point i , fint
i , is calculated from the particle stress σσσ p as:

fint
i = Vp ∑

p
Gip(xp) ·σσσ p (2)

where Gip = ∇Sip is the gradient of the interpolation function, and Vp is the dis-
cretized volume at particle p.

The external force at grid point i, (fext
i ), includes contributions from the particle

body force (bp), and particle traction force (τττ p):

fext
i = ∑

p
Sip(xp)bp +∑

p
Sip(xp)τττ p (3)

At the grid, the equations of motion are:

m a = fext − fint + fsur (4)

where m is the mass matrix, a is the acceleration vector, fext is the external force
vector, fint is the internal force vector, and fsur represents the force contributed by
surface tension when present.
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Here, except for the surface tension force fsur, all the terms in Eq. 4 are alreadly
explicitly formulated. The acceleration at grid point i can be calculated by:

ai = (fext
i − fint

i + fsur
i )/mi (5)

The formulation of the surface tension force fsur
i will be presented shortly in Section

3.2. Once the grid acceleration is solved, the grid velocity vi can be calculated via
conservation of momentum:

vi =
∑p Sip(xp)vpmp

mi
(6)

After the grid velocity is calculated, one needs to update the state of each particle
using ai and vi. For a given time step ∆t, the increment of the particle velocity, ∆vp,
is calculated from:

∆vp = ∆t ∑
i

Sip(xi)ai (7)

where ∑
i

denotes summation over the grid points. It should be noted that the same

interpolation function is used for the mapping from grid to particles as well as from
particles to grid. The increment in the particle position, ∆xp, is updated from vi and
ai:

vL
i = vi +ai∆t (8)

∆xp = ∑
i

SipvL
i (9)

where vL
i is the updated grid velocity. Particle position and velocity are then up-

dated using Eq. 7 and Eq. 9.

The increment in the stress at particles, ∆σσσ p, is updated using the update-stress-last
(USL) algorithm [Wallstedt and Guilkey (2008)]:

∆Fp = I+∆t ∑
i

GipvL
i (10)

∆σσσ = f (∆Fp) (11)

where ∆Fp is the increment of the deformation tensor, I is the identity tensor, and
f (∆Fp) is a function associated with the constitutive law of the material.

For nearly-incompressible fluids of interest in this paper, we adopt the constitu-
tive law given in [Monaghan, Cas, Kos, and Hallworth (1999); Cueto-Felgueroso,
I. Colominas, Navarrina, and Casteleiro (2004)] to calculate the stress:

σσσ =−pI+2µd′ (12)
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where µ is the dynamic viscosity, d′ is the rate of deformation tensor based on ∆Fp,
and p is the hydrostatic pressure determined by an equation of state:

p = K

[(
ρ

ρ0

)λ

−1

]
(13)

where K is the bulk modulus, ρ the fluid density, ρ0 the initial density, and λ a
constant. This completes the computation of a typical time step.

3 Modeling of Surface Tension

Expression of the surface tension force fsur
i in Eq. 5 is elaborated in this section.

We adopt the CSF model [Brackbill, Kothe, and Zemach (1992)] for the surface
tension force since it is capable of handling complicated immiscible interfaces in
the presence of contact angle. In the following, the CSF method is first reviewed,
an approach is then proposed to include surface tension in GIMP.

3.1 Review of the CSF method

Fig. 2 illustrates how the CSF method models the surface tension between two
immiscible fluids. The fluids are represented by different color functions (c1 and
c2) (e.g., 0 and 1). Although color functions should be discontinuous at the interface
in reality, a transition zone is used in the CSF method to bridge the discontinuity
beween c1 and c2 using the color function c(x) over the transition zone (i.e., the

Fsa

h
c1

c2

computational grid

Fsv

c1

c2

(c1+c2)/2

sharp
interface

continuous 
interface

Figure 2: The CSF method for fluids with different colors (c1 and c2). Over the
computational grid, contours of the continuous color function c(x) are illustrated
showing also a transition zone of width h. Surface tension force, Fsa, is reformu-
lated as a volume force Fsv within the transition zone.
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continuous interface labeled in Fig. 2). c(x) will converge to a step function as the
width of the transition zone, h, approaches zero.

In the CSF method, the surface tension is modeled approximately as a body force
or volume force, as opposed to its physical meaning by which the surface tension is
force per length. The volume force, denoted by Fsv, acts within the transition zone,
shown in Fig. 2, in a continuous manner [Brackbill, Kothe, and Zemach (1992)] :

Fsv(x) = γκ(x)
∇c(x)

[c]
(14)

where γ is the coefficient of surface tension, ∇c(x) is the gradient of the color
function, and [c] is the jump of color function across the fluid interface ([c] = |c1−
c2|). κ represents the curvature evaluated at x at the interface; in computation,
however, this curvature term is approximated by the gradient of the unit vector n at
x:

κ(x) = ∇ ·n(x) = ∇ ·
(

∇c(x)
|∇c(x)|

)
(15)

It should be noted that, in order to better approximate the curvature at the transi-
tion zone, the color function c(x) can be further improved using a smoothed color
function c̃(x) [ Brackbill, Kothe, and Zemach (1992); Sussman (2003)]:

c̃(x) = KKK ∗ c(x) =
∫

Ωk

c(x′)KKK(x′−x)dx′ (16)

where Ωk is the smoothing range of the smoothing kernel KKK. Various smooth-
ing kernels have been developed such as the Nordmark kernel [Nordmark (1991);
Williams, Kothe, and Puckett (1999)], the B-spline kernel [Boor (1967); Brackbill,
Kothe, and Zemach (1992)], and the quintic spline kernel used in SPH [Morris,
Fox, and Zhu (1997); Hu and Adams (2009)]. In our study, a moving average
smoothing kernel is used to be discussed in Section 3.4.

3.2 Formulation of surface tension in GIMP

We include the force attributed to surface tension as an additional external force
to the equations of motion in Eq. 4. The modeling of surface tension is based on
Eq. 14 together with a choice of the color function. Here we adopt the grid mass,
mi, as the color function c(x). Therefore, the volume force due to surface tension
at grid point i can be formulated as:

Fsv
i = γκi

∇mi

[mi]
(17)
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where each term is formulated as follows. First, ∇mi, the gradient of grid mass, is
calculated by:

∇mi = ∑
i′

Gip(xi′)mi′ (18)

where ∑i′ is a summation over the neighboring nodes at xi′ .

Second, [mi] is defined as (ρ1−ρ2)Vc , where ρ1 and ρ2 are the densities of the two
immiscible fluids, respectively, and Vc is the volume of the cell of the background
mesh.

Third, the curvature κi is calculated by:

κi = ∇ ·ni = ∑
i′

Gip(xi′) · (ni′)T (19)

where T denotes the transpose of a vector. In turn, the unit normal vector used in
the curvature calculation is based on a smoothed grid mass m̃i:

ni =
(

∇m̃i

|∇m̃i|

)
(20)

where ∇m̃i is evaluated using Eq. 18. In Section 3.4 we discuss the application of
moving average to smooth the mass at each grid point.

Once the volume force is calculated, the force contributed by surface tension, fsur,
in the equations of motion in Eq. 4 can be calculated by:

fsur = VcFsv
i (21)

It should be noted that Eq. 17 can be further improved [Brackbill, Kothe, and
Zemach (1992)] by:

Fsv
i = γκi

∇mi

[mi]
mi

< mi >
(22)

where < mi >=Vc(ρ1 +ρ2)/2. Eq. 22 provides additional computational advantage
in calculating the acceleration using GIMP:

asur
i =

VcFsv
i

mi
= γκi

∇mi

(ρ2−ρ1) < m >
(23)

where asur
i , the acceleration at grid point i due to surface tension, depends solely on

the gradient of grid mass.
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3.3 Treatment of contact angle as a boundary condition

In wetting problems, the balance in surface tension among solid, liquid, and gas
results in the formation of the contact angle whose orientation is defined by the
tagent of the surface profile at the point where the three phases meet. To expand
GIMP’s capability of handling the three-phase problem, we model the contact angle
as a boundary condition illustrated in Fig. 3.

nw

nt

θeq

equilibrium surface

nw

nt

θeq

neq neqni
ni

non-equilibrium surface

Figure 3: Contact angle θeq as a boundary condition. neq is the unit vector normal
to the tagent along θeq; nt is a unit vector tangent to the wall; nw is a unit vector
normal to the wall; and ni is the unit normal vector along the liquid-wall contact
line. During simulation, the profile of the liquid in equilibrium can be determined
when ni is aligned with neq.

At the boundary where the wall interacts with two fluids (i.e., the liquid and gas),
the unit normal calculated earlier in Eq. 20 is replaced by neq:

neq = nw cosθeq +nt sinθeq (24)

where nw and nt are normal and tangent to the wall, respectively (Fig. 3). The
replacement of ni by neq in Eq. 20 for all the grid points at the boundary (where
the meniscus is) will force the liquid profile to comply with a given contact angle.
Consequently, the curvature of the liquid profile at the boundary will be updated
incrementally during simulation, eventually reaching equilibrium when ni aligns
with neq.

3.4 Implementation of GIMP-CSF

Fig. 4 outlines the main procedures discussed previously for our implementation
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Figure 4: A flow chart for GIMP-CSF. ∇mi–gradient of grid mass; m̃i–smoothed
grid mass; ni–grid surface normal; neq–surface normal based on contact angle; κi–
grid curvature; Fsv

i –grid surface tension (volume) force; asur
i –grid surface tension

(acceleration) force.

of surface tension in MPM. The algorithm is named GIMP-CSF since it integrates
the CSF model of surface tension with the GIMP method. GIMP-CSF is imple-
mented in Uintah [Parker, Guilkey, and Harman (2006)], a comprehensive software
package that includes the GIMP method. Our contribution to the improvement of
Uintah is threefold: calculation of the gradient of grid mass, smoothing of the grid
mass, and evaluation of the surface curvature; each aspect is presented below.

For illustration, we consider a 3D domain in Cartesian space meshed uniformly
into L×M×N cells in the x, y, and z direction, respectively. Each cell has volume
Vc = ∆x∆y∆z, where ∆x, ∆y, and ∆z are the cell sizes. The position of a grid node
is represented by x(i, j,k) = (i∆x, j∆y,k∆z), where 1≤ i≤ L, 1≤ j ≤M, and 1≤
k ≤ N.
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The gradient of the grid mass for a grid node at xi, j,k can be calculated by:

∇mi, j,k = ∑
i′, j′,k′

Gip(xi′, j′,k′) mi′, j′,k′ (25)

where mi′, j′,k′ is the grid mass at the neighboring node xi′, j′,k′ . With the GIMP
interpolation function, there are 27 neighboring nodes where the gradient of inter-
polation function Gip is evaluated at each node.

Smoothing of the grid mass is conducted by using moving average as the smoothing
kernel (cf. Eq. 16):

m̃i, j,k =
1
n3 ∑mi′, j′,k′ (26)

where n is the number of neighboring nodes in each coordinate direction; the sum-
mation is over neighboring nodes; m̃x

i, j,k, and m̃y
i, j,k, and m̃z

i, j,k are the smoothed
grid mass along each direction. We did not apply the smoothing average kernel at
or near the boundaries since there are not sufficient neighboring nodes for Eq. 26.
Further smoothing can be done by conducting more iterations of the smoothing
process by substituting the left-hand side of Eq. 26 to its right-hand side.

With m̃i, j,k found, the unit normals are obtained by:

ni, j,k =
∇m̃i, j,k

|∇m̃i, j,k|
(27)

where ∇m̃ is calculated similar to ∇m in Eq. 25. It should be noted that if contact
angle is specified, the boundary conditions described in Section 3.3 will be applied
to modify ni, j,k.

The curvature is evaluated via:

κi, j,k = ∇ ·ni, j,k

= ∑
i′, j′,k′

Gip ·nT
i′, j′,k′ (28)

4 Numerical Examples

Three numerical examples are given in this section to assess the efficacy of the
GIMP-CSF algorithm implemented in Uintah. These examples consider only single-
phase fluids with surface tension, applicable to situations when the effect of one
phase on the other is negligible [Blanchette and Bigioni (2009); Zhang (2010)].
Although the algorithm is also capable of simulating surface tension problems in
multi-phase fluids, they are beyond the scope of this paper.

We used the fluid properties listed in Tab. 1 and GIMP interpolation function given
in Bardenhagen and Kober (2004) for all the examples below.



210 Copyright © 2012 Tech Science Press CMES, vol.86, no.3, pp.199-223, 2012

Table 1: Fluid properties used in the numerical examples

Surface tension
(dynes/cm)

Density
(g/cm3)

Bulk modulus
( dynes/cm2)

Dynamic viscosity
(dynes · s/cm2)

λ

2.4 1 1.5 ×105 0.5 7.0

4.1 2D equilibrium droplet

A droplet in equilibrium experiences a pressure drop, pdrop, across the interface
due to surface tension. The theoretical solutions for pdrop are

pdrop = γκ = γ/R, for 2D (29)

pdrop = 2γκ = 2γ/R, for 3D (30)

where γ is the surface tension coefficient, and R the radius of the droplet. In this
example, we simulate the 2D case with GIMP-CSF and compare the results with
those obtained by a different approach [Brackbill, Kothe, and Zemach (1992)].

A 1-cm-radius droplet in the x–y plane is simulated with a typical set-up shown in
Fig. 5. The droplet has an initial non-circular shape and is discretized into 1264

R=1 cm

Total particles=1264 ; mesh= 40 x 40; PPC=2x2 

x

y

Figure 5: Example set-up of 2D equilibrium drop with GIMP using Uintah.

particles; the initial shape was chosen to be close to a circle to save computational
time. The problem domain is overlaid with a 4×4 cm grid with 40× 40 cells; there
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are 2 particles per cell in the x and y directions, respectively (PPC=2 × 2). In the z
direction, there is only one layer of particles and cells for this 2D case. Besides the
set-up in Fig. 5, various numbers of PPC and cells were also investigated.

As an example, Fig. 6 shows the contours of grid mass and its gradient (∇m) for

inner -0.000025 
mid   -0.000250
outer -0.000475

grid mass (g)
 

Figure 6: Contours of the grid mass and the gradients at t=0 s.

the situation in Fig. 5 at t=0 s. The grid mass is mapped from the particle mass by
Eq. 1, and its gradient calculated by Eq. 18. The contours of the grid mass define a
transition zone which is about two cells wide. Only within the transition zone are
the gradients nonzero, so is the surface tension force. Thus there is no need for the
CSF model to track the evolution of the boundary. Since the surface tension force is
zero when ∇m is zero, it can save computational time by skipping the calculation of
the curvature and surface tension when the gradient ∇m is smaller than a threshold
(e.g., 10 % of [m]/∆x). Fig. 7 shows the curvatures evaluated at the nodes when
the gradient ∇m is greater than the predefined threshold. It shows the influence of
different smoothing schemes on the curvature. Without smoothing, Fig. 7a shows
that the curvature has a large error compared to the theoretical value of 1 cm−1 at
the boundary of the droplet. With 1 iteration of moving average smoothing, the
curvature (Fig. 7b) is improved. More iterations of moving average smoothing can
greatly improve the accuracy of the curvature, as shown in Fig. 7c and Fig. 7d.
Similar results were also found in [Brackbill, Kothe, and Zemach (1992)].

Next we plot the surface tension in terms of acceleration asur (cf. Eq. 23) in Fig. 8,
comparing the result of 1 iteration of the moving average smoothing with that of
4. The directions of surface tension at the grid points in Fig. 8a and Fig. 8b are



212 Copyright © 2012 Tech Science Press CMES, vol.86, no.3, pp.199-223, 2012

κ, cm-1

κ, cm-1

κ, cm-1

κ, cm-1

(a) (b)

(c) (d)

Figure 7: Curvatures (t=0) with different smoothed grid mass: (a) zero iteration of
moving averaging; (b) 1 iteration of moving averaging ; (c) 2 iterations of moving
averaging; (d) 4 iterations of moving averaging. Theoretical curvature is 1 cm−1.

(a) (b)|asur|max= 31.06 cm/s2

a
|asur|max= 27.51 cm/s2

Figure 8: Surface tension, asur, at t=0 with different curvatures from (a) one itera-
tion of moving averaging; (b) 4 iterations of moving averaging.

the same since they are based on the gradient of unsmoothed grid mass (Fig. 6).
However, the magnitude of the surface tension for each case is different since it is
determined by the curvature which, in turn, is affected by the smoothing scheme
used.

In a dynamic simulation, the droplet oscillates and will reach an equilibrium state.
Given the initial configuration, we found that 0.25 second is sufficient for the
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droplet to stabilize. The grid pressure is then obtained by mapping the particle
stress to the background mesh. Fig. 9 shows the distribution of pressure for differ-

(a) (b)
p (dynes/cm2) p (dynes/cm2)

Figure 9: Pressure at t=2.5 s from different smoothing schemes: (a) one iteration of
moving averaging; (b) 4 iterations of moving averaging. Theoretical pressure drop
is 2.4 dynes/cm2.

ent numbers of smoothing iterations. Accuracy of the calculated pressure can be
assessed by the following measures [Brackbill, Kothe, and Zemach (1992)]:

< p >=
1

Nd

Nd

∑
i, j=1

pi, j (31)

L2 =

[
∑

Nd
i, j=1(pi, j− pdrop)2

Nd p2
drop

]
(32)

where <p> is the average pressure, Nd is the number of grid nodes within the droplet
radius, i and j are node indices, and L2 is the root-mean-square (rms) error relative
to the theoretical pressure drop pdrop which is 2.4 dyne/cm2 for our case (Eq. 29).
With Eq. 31 and Eq. 32, we have, for Fig. 9a, <p>/pdrop = 98.36% and L2= 0.043;
for Fig. 9b, we have <p>/pdrop = 98.16% and L2 = 0.043. It shows that the results
in pressure in Fig. 9 are very close such that the number of smoothing iterations
has little effect on the distribution of pressure.

Tab. 2 shows the effects of grid resolution, number of particles per cell, and smooth-
ing schemes. Generally, the GIMP-CSF method with smoothing has the same order
of accuracy (less 5% error in <p>) as those in Brackbill, Kothe, and Zemach (1992).
Smoothing is shown to be very important; when not used, the error could be as high
as 125.7%. However, smoothing once is adequate for this example as smoothing
more times does not change the results significantly.
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Table 2: Comparison of results using GIMP-CSF to those using the arbitrary
Lagrangian-Eulerian (ALE) method for simulating a 2D equilibrium droplet. (∆h
is the mesh size; PPC–particles per cell.)

ALE [Brackbill, Kothe, and Zemach (1992)]
R/∆h # of particles (PPC) smoothing < p > /pdrop rms error (Eq. 32)

10 / B-spline 1.034 0.056
20 / B-spline 1.016 0.028

GIMP-CSF
10 1264 (2×2) none 1.641 0.655
10 1264 (2×2) 1 moving averaging 0.983 0.043
10 1264 (2×2) 2 moving averaging 0.982 0.042
10 1264 (2×2) 4 moving averaging 0.984 0.043
10 5024 (4×4) none 1.212 0.279
10 5024 (4×4) 1 moving averaging 0.984 0.046
10 5024 (4×4) 2 moving averaging 0.992 0.045
10 5024 (4×4) 4 moving averaging 0.991 0.045
20 5024 (2×2) none 2.257 1.286
20 5024 (2×2) 1 moving averaging 0.967 0.040
20 5024 (2×2) 2 moving averaging 0.980 0.031
20 5024 (2×2) 4 moving averaging 0.978 0.033
20 20108 (4×4) none 1.941 0.971
20 20108 (4×4) 1 moving averaging 0.973 0.035
20 20108 (4×4) 2 moving averaging 0.989 0.026
20 20108 (4×4) 4 moving averaging 0.987 0.027

In terms of the effect of grid resolution, results in Tab. 2 indicate that a cell size
(∆h) 10% of the droplet radius (R/∆h = 10) is adequate since the results are com-
parable to those with R/∆h = 20. Regarding the effect of the number of particles
per cell, PPC=4×4 gives slightly better results than PPC=2×2. For computational
efficiency, we recommend a PPC= 2×2 (or 2×2×2 for 3D).

4.2 Evolution of non-equilibrium drops in 2D and 3D

In this example, we consider the evolution of a droplet from a square in 2D (or a
cubic in 3D) to the circular (spherical) profile at equilibrium under surface tension.
This example has been studied by other numerical methods [Brackbill, Kothe, and
Zemach (1992); Zhang (2010)] and serves as another benchmark problem for our
GIMP-CSF algorithm.
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We first consider the 2D case where a square drop (1 × 1 cm) is simulated shown
in Fig. 10. The drop is discretized with 400 particles and overlaid with a 2 × 2

t=0.00 s

t=0.10 s

t=0.05 s

t=0.25 s

1cm x 1cm

Figure 10: A 2D 1 × 1 cm square drop evolves into a circular shape under surface
tension using two iterations of moving average smoothing. The arrows represent
the surface tension force.

p (dynes/cm2) Theoretical p = 4.254 
κ, cm-1

Theoretical κ = 1.77 

(a) (b)

Figure 11: Distribution of the calculated curvature (a), and pressure (b) after a 2D
non-equilibrium drop becomes stable at time = 0.25 s. The average pressure is 4.09
(or 96.1% of the theoretical value), with an rms error L2 = 0.044.
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cm background grid of 40× 40 cells with a PPC of 2×2. Similar to the previous
example, there is a single layer of particles and cells in the z direction. Initially,
the surface tension forces, indicated by the arrows, are concentrated at the corners
where the curvatures are very large; these forces cause the drop to evolve reaching
an equilibrium state at t = 0.25 s. The theoretical equilibrium state is circular with
an area equal to that of the initial square, 1 cm2, which gives a theoretical radius of
0.56 cm, and a curvature of 1.77 cm−1; the pressure drop across the interface is 4.25
dynes/cm2. Fig. 11 shows the calculated curvature and pressure at t=0.25 s when
equilibrium is reached; the average pressure <p> is 4.09 dynes/cm2 (or 96.1% of
the theoretical value) with an rms error L2=0.044. A similar example was studied
in Brackbill, Kothe, and Zemach (1992) but the equilibrium state was not shown.

The same problem of a non-equilibrium drop evolving to its equilibrium state is
simulated in 3D shown in Fig. 12. In this simulation, the drop is initialized as a

t=0.00 s

t=0.10 s

t=0.05 s

t=0.25 s

z

x
y

z

x
y

z

x
y

z

x
y

1cm x 1cm x 1cm

Figure 12: Evolution of a 3D cubic drop into a sphere under surface tension using
two iterations of moving average smoothing.

1 × 1 × 1–cm cube placed over a 2 × 2 × 2–cm background mesh. The drop
is discretized into a total of 27000 particles and the background mesh has 30 ×
30 × 30 cells; the PPC is 2×2×2. The theoretical radius of the final sphere is
0.62 cm corresponding to a curvature of 1.61 cm−1, and a pressure drop of 7.74
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dynes/cm2 (cf. Eq. 30). The calculated curvature and pressure on a plane through
the origin are shown in Fig. 13; the average pressure is 8.05 dyn/cm2 (or 104.1
% of the theoretical value) with an rms error of 0.0451. The results suggest that
the GIMP-CSF algorithm is capable of handling 3D droplet simulation with good
accuracy.

In summary, the proposed GIMP-CSF algorithm can produce comparable results
as benchmarked by examples available in the literature or with known theoretical
solutions for a drop evolving to its equilibrium state in 2D or 3D.

p (dynes/cm2) Theoretical p = 7.74

κ, cm-1

Theoretical κ = 1.61 

(a) (b)

Figure 13: Distribution of the calculated curvature (a), and pressure (b) on a plane
through the origin of a 3D drop. The average pressure is 8.05 (or 104.1% of the
theoretical value) with an rms error L2 = 0.0451.

4.3 Wall adhesion and capillary rise

The last example demonstrates the capability of the GIMP-CSF algorithm in prob-
lems involving contact angles and the gravitational force. The contact angle prob-
lem was modeled in Brackbill, Kothe, and Zemach (1992) using the CSF method
but without quantitative comparisons with theoretical results. In this example, we
simulate the problem of half-plane capillary rise and compare the results with the-
oretical solutions.

The problem is shown schematically in Fig. 14 where a contact angle θeq is speci-
fied. The meniscus profile can be described by a closed-form solution derived from
the work in Anderson, Bassom, and Fowkes (2006):

ξ = cosh−1
(

2
ζ

)
−
√

4−ζ 2 +
√

2(1− sinθ)− cosh−1

( √
2√

1− sinθ

)
+
√

2+2sinθ

(33)
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y

x

y(x)
H

θeq Horizotal surface

(y=0)

g

Figure 14: Schematic of half-plane liquid meniscus y(x) under gravitational pull.
The liquid is at rest in contact with a hydrophilic wall with a given contact angle
θeq. H is the capillary rise to be simulated.

where the two dimensionless parameters are ξ = x/
√

γ/ρg, ζ = y/
√

γ/ρg; x is
distance measured from the wall, and g the gravitational constant (981 cm/s2 in the
negative-y direction). The capillary rise H is measured from the horizontal surface
at y = 0 shown in Fig. 14.

The initial set-up of the capillary-rise simulation is shown in Fig. 15 where a 2D
tank (0.5 cm by 0.3 cm) is partially filled with a 0.20-cm-deep fluid. A 75×45×1
background mesh with 6750 particles are used (PPC=2×2). It should be noted that
the normal vector to the initial meniscus, as shown in Fig. 15, points to the negative
y−direction at all the grid nodes lying on the meniscus except at the boundaries
which join the walls. At the two side boundaries, the vectors are set in the direction
defined by the contact angle θeq as a boundary condition (cf. Section 3.3). Such
a boundary condition results in a net surface tension force which drives the fluid
upwards along the wall, while under the influence of gravitational pull, until an
equilibrium state is established.

The evolution of the meniscus profile is shown in Fig. 16 with a contact angle
gradually approaching the specified θeq of 30o. The simulation is terminated when
the contact angle is equal to the specified 30o, shown in Fig. 16, at t=0.1 s. The
profile of the meniscus is obtained using particle positions.

We compare the simulation results for two different θeq values, 30o and 60 o, with
the theoretical solutions (Eq. 33) in Fig. 17. The agreement with the theoretical
solutions for various θeq is good suggesting that the proposed GIMP-CSF algo-
rithm is capable of handling problems with wetting or capillary rise such as liquid
extraction in oil recovery or capillary driven flows.
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cm

x

y

g=9.81 m/s2

θeq = 30o or 60 o

θeq 

Figure 15: Set-up for the simulation of the capillary rise. The contact angle θeq is
prescribed at the wall boundary; the surface profile will evolve toward its equilib-
rium state under surface tension.

vskip1em

t=0.000s t=0.025s

t=0.050s t=0.100s

capillary rise measured 
from here

θeq=30 o

Figure 16: Evolution of the surface profile due to surface tension. Arrows indicate
the surface tension force which are in equilibrium with gravitational pull at t=0.1 s
(θeq = 30o).
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θeq = 30o

GIMP-CSF

GIMP-CSF

θeq = 60o

Figure 17: Comparison of the calculated capillary rise at t=0.1 s to theoretical
solutions for different contact angles (30o and 600).

5 Discussions and Conclusion

Surface tension exists at the interface between two immiscible fluids and becomes
significant at small spatial scales. In this paper, we presented a new particle-based
algorithm, GIMP-CSF, to model surface tension and capillary rise in the presence
of contact angles. The contribution of this paper is in the adaptation of the CSF
surface tension model for the GIMP method. One key aspect of the algorithm is
about calculating and adding the surface tension force to the equations of motion
at the nodes of the background mesh within the framework of the GIMP method.
The algorithm used a moving average smoothing scheme for the color function to
improve the accuracy of the curvature at the interface. The effects of smoothing,
grid resolution, and number of particles per cell were also studied with practical
suggestions regarding a balance between accuracy and computational efficiency.

The computational time for each example is summarized in Tab. 3 based upon the
Uintah package installed on a Sun Ultra 40 computer with a 2.4 GHz CPU.

As demonstrated through the benchmarked examples, we have shown that the pro-
posed GIMP-CSF algorithm, using a nearly-incompressible constitutive law for
fluids, can be as effective and accurate as other methods in literature. This paves
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Table 3: Summary of computational time. ∆h is mesh size, tp is physical time, and
tc is computational time.

Example Mesh ∆h (cm) # of particles tp(s) tc(s)
2D-equilibrium 40x40x1 0.1 1264 0.25 195
2D-equilibrium 40x40x1 0.1 5024 0.25 482
2D-equilibrium 80x80x1 0.05 5024 0.25 1304

2D-nonequilibrium 40x40x1 0.1 1600 0.25 571
3D-nonequilibrium 30x30x30 0.13 27000 0.25 4612

Capillary rise 75x45x1 0.0067 6750 0.1 4556

the way for applying GIMP toward more difficult problems such as fluid-structure
interactions at small scales where surface tension plays an important role.
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