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Modeling and Simulation of Phantom Temperature Field
in Magnetic Induction Hyperthermia

J.H. Wu1, L.Y. Zhu2 and J.T. Tang3

Abstract: Magnetic induction hyperthermia is one of hopeful methods for tumor
therapy. In this method, several ferromagnetic seeds are needed to be implanted
into the tumor. The seeds would produce energy, and cause the nearby tumor to
die. Temperature prediction is significant before treatment. In addition, in clinical
treatment, the tumor temperature has to be monitored in realtime. However, using
as few thermometers as possible is the basic principle. Fortunately, the numerical
simulation can contribute to realtime measurement. The seed temperature is mod-
eled based on the Haider’s method, which is treated as the thermal boundary in
numerical simulation. We employ the lattice Boltzmann method to solve the bio-
heat transfer equation. Meanwhile, three phantom experiments are carried out to
evaluate the model. Thirty-two thermal seeds in total were implanted into a phan-
tom, and three thermocouples are embedded into the specific positions to record the
variation of temperature. By comparing the results of simulations and experiments,
we obtain that the proposed numerical model is effective.

Keywords: Magnetic induction hyperthermia, Temperature modeling, Lattice Boltz-
mann method, Ferromagnetic seed.

1 Introduction

Magnetic induction hyperthermia for tumor has been developed for many years(Murray,
Steeves, Gentry, Bresnick, Boldt, Mieler, and Tompkins (1997); Steeves, Murray,
Moros, Boldt, Mieler, and Paliwal (1992); Brezovich, Lilly, Meredith, Weppel-
mann, Henderson, Brawner, and Salter (1990)). In ferromagnetic interstitial hy-
perthermia, a number of ferromagnetic seeds are required to be implanted into the
tumor according to its shape. The seeds can produce energy under an alternating
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magnetic field. As soon as the alternating magnetic field is exerted, the seeds would
be heated. Then, the temperature of the tumor would rise due to the energy trans-
fer from the seeds(Tompkins, Partington, Steeves, Bartholow, and Paliwal (1992)).
Once the temperature reaches to a critical value(normally 43◦C), the tumor cells
would lose activity. After a period of therapy, the tumor will die. When the temper-
ature of the seed approaches to its Curie point, it would not absorb energy again.
Then the temperature of the seed will maintain until the magnetic field is lost. Ow-
ing to this property, the temperature of the normal tissue would stay at a safe level.
Therefore, the magnetic induction hyperthermia is safe.

Treatment planning system(TPS) can be used to predict the temperature distribu-
tion in the tumor before the clinical treatment(Kotte, Wieringen, and Lagendijk
(1998)). The heat conduction model and the effective solving method determine
the reliability of TPS. Typical heat conduction model for the human body is the
Pennes bioheat transfer equation(Pennes (1948)), which was often solved by the
finite volume method(Indik, Indik, and Cetas (1994)). However, when the num-
ber of grids are large, it would cost too much calculation time. As a time and
space discrete method, lattice Boltzmann method(LBM)(Chen and Doolen (1998))
is very suitable for parallel computing. He, Chen, and Doolen (1998) developed
a LBE for the thermal problems. Golneshan and Lahonian (2011) have given an
example of obtaining the temperature distribution in spherical tissue with LBM.
Another important factor influencing temperature distribution is the model of the
ferromagnetic seed. We treat the seed as the thermal boundary and develop a tem-
perature discrete model based on Haider’s experimental model(Haider, Cetas, Wait,
and Chen (1991)) .

We present a model to predict the temperature field for tumor in magnetic induc-
tion hyperthermia. The solution of the Pennes heat transfer equation by LBM are
described. The boundary treatment methods are suggested. We carried out three
identical phantom experiments. Each muscle phantom contained with 32 ferro-
magnetic seeds. We record the temperature variations with three thermal electric
couples. Meanwhile, the numerical simulations with the proposed LBM are imple-
mented. The comparing results show the proposed method has enough accuracy
for treatment planning before the clinical therapy.
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2 Numerical Method

2.1 Pennes bioheat transfer equation

In this study, we employ the pennes bioheat equation to model the temperature
distribution in human body.

k∇
2T +ηbρbcpb(Ta−T )+Qm +Qs = ρcp

∂T
∂ t

(1)

where ρ is the density, cp is the specific heat, k is the thermal conductivity of the
tissue, T is the temperature, Ta is the temperature of the artery, t is the time, ρb, cpb
are the density and the specific heat of the blood, ηb and Qm are the blood perfusion
and the metabolic heat generation of the tissue, Qs is the distributed volumetric heat
source due to spatial heating.

Eq. (1) can be rewritten as:

k∇
2T +Q = ρcp

∂T
∂ t

(2)

where Q contains all the heat source by the body tissue, which is

Q = ηbρbcpb(Ta−T )+Qm +Qs (3)

2.2 Lattice Boltzmann method for heat conduction

After the simple transformation mentioned above, the bioheat transfer equation
becomes an ordinary transient heat transfer equation. The transient heat transfer
equation could be solved by LBM.

Typical lattice Boltzmann equation for heat transfer is defined as:

gi(x+ eiδt , t +δt)−gi(x, t) =−1
τ
[gi(x, t)−geq

i (x, t)]+δtFi (4)

where gi(x, t) is the distribution function, i is the direction, geq
i (x, t) is the equi-

librium distribution function, x is the grid position, x + eiδt is the neighbor of x
in the direction of i, e is the velocity that the distribution moves from the site x
to the neighboring site x + eiδt , τ is the relaxation parameter, Fi is the distribution
function of the source term .

Different from what He, Chen, and Doolen (1998) had suggested, we prefer another
simpler form of the source term

Fi(x, t) = ωiQ(x, t) (5)
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The equilibrium distribution functions are defined as:

geq
i (x, t) = ωiT (6)

Then, the macro temperature variable is defined as:

T =
q−1

∑
i=0

gi(x, t) (7)

where q is the total amounts of the lattice vectors.

In this paper, we adopt a D3Q19 model, showed in Fig. 1. The lattice velocity e is
defined as: 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1

0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 0
0 0 0 0 0 1 −1 0 0 0 0 1 −1 1 −1 1

1 −1 −1
0 0 0
−1 1 −1

 (8)
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Figure 1: D3Q19 velocity model

The weight factor wi is give by

wi =


1/3, i = 0
1/18, i = 1,2, · · · ,6,

1/36, i = 7,8, · · · ,18

(9)
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Here, we adopt a central difference method for the term Fi(x, t),

Fi(x, t) = ωiQ(x+
eiδt

2
, t +

δt

2
) (10)

Hence, Eq. (10) can derive the macro temperature without any other modification.

By applying Taylor expansion, Eq. (10) is rewritten as:

Fi(x, t) = ωiQ(x, t)+
δt

2
(∂t + ei∇)Q(x, t) (11)

By Chapmann-Enskog multiscale expansion, Eq. (4) can be reduced to the macro
heat conduction equation as displayed in Eq. (1), as long as the relaxation parame-
ter and the thermal diffusivity satisfy the relation as below:

τ = 0.5+
aδt

ξ δ 2
x

(12)

where a = k
ρcp

is the thermal diffusivity, ξ is a coefficient, which is correlated with
the model and the wight factor, in the current case, ξ = 3.

2.3 Solution of LB

The procedure of LB solution contains two steps, i.e. the collision step and the
streaming step. In streaming process, the distribution functions move to the neigh-
boring sites in their respective directions.

g
′
i(x, t) = gi(x− eiδt , t) (13)

Before the collision step, the macro variables is required to be calculated with Eq.
(7),

T =
q−1

∑
i=0

g
′
i(x, t) (14)

At the collision steps, all the incoming distribution functions g
′
i(x, t) collide with

the particles, which stayed at the original site. Then, the new distribution function
is formed:

gi(x, t +δt) = (1− 1
τ
)g
′
i(x, t)+

1
τ

geq
i (x, t) (15)

where geq
i (x, t) is obtained from a predefined equilibrium function, at present study,

the function is

geq
i (x, t) = ωiT (16)

where, ωi is the coefficient, the value can be defined by several simple formulas.
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2.4 Boundary conditions

Boundary conditions are significant in numerical simulation. Improper boundary
conditions would produce great mistakes. Guo, Zheng, and Shi (2002) and Latt,
Chopard, Malaspinas, Deville, and Michler (2008) have summarized and recom-
mended many boundary treatments. In this work, non-equilibrium extrapolation
method developed by Guo, Zheng, and Shi (2002) is employed.

The main method is to substitute the nonequilibrium distribution of the boundary
node with its neighboring grids. If the grid x is the boundary grid, xnb is the nearest
neighbor grid, then, the distribution of the grid x is given by

gi(x) = geq
i (x)+gi(xnb)−geq

i (xnb) (17)

Non-equilibrium extrapolation method has high accuracy, which is almost suitable
for all the boundary conditions.

3 Temperature model of the ferromagnetic seeds

In this case, the heat sources in body tissue are the ferromagnetic seeds, which
have been implanted into the tumor. The seeds would produce heat under the al-
ternating magnetic field. It is the magnetic eddy current effect. The seeds become
paramagnetic after the temperature of the seeds reach to the curie point. Then,
the temperature remain unchanged, as well known, which is the Curie point phe-
nomenon. Nevertheless, when the temperature drops lower than the curie point,
they would absorb the energy again. We note this is a nonlinear process.

3.1 The experimental model of the seed

As the temperature variation of the seed is complicated, it is no necessary to be
calculated by the numerical methods. In this study, the seeds are treated as the
heat boundary. We use the Haider’s experimental equation(Haider, Cetas, Wait,
and Chen (1991)) to describe the power absorbed by the seeds, therefore, the tem-
perature of the seeds can be determined. The absorption power is given by:

P(T ) =
P0

1+ eβ (T−Te)+2 (18)

where P(T ) is the absorption power of the ferromagnetic rod per unit length, Tc

is the curie temperature, β/4 represents the gradient of curve close to the curie
temperature. P0 can be written as(Stauffer, Cetas, and Jones (1984); Stauffer, Cetas,
Fletcher, Deyoung, Dewhirst, Oleson, and Roemer (1984))
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P0 = πra(ωµmax/2σ)
1
2 H2

0 (19)

where µmax is the maximum magnetic conductivity(H ·m−1), σ is the conductivity(S ·
m−1), ω is the frequency of the magnetic field, ra is the radius of ferromagnetic
rod(m), H0 is the magnetic field intensity(A ·m−1).

The ratio of the power absorption to the maximum power absorption is represented
by p = P(T )

P0
, which is a function of temperature T , the relationship of the seed

between p and T used in the experiment is illustrated in Fig. 2.
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Figure 2: The ratio of power absorption respect to the temperature

We can see from Fig. 2, that the Curie temperature of the seed, that have been
utilized in the experiments, is 77◦C. Once the temperature of the seed is beyond
the Curie point, the absorbed energy is almost close to zero.

3.2 The numerical model of the seed

The energy exchange between the seed and the phantom is very complicated. This
study does not use numerical methods to analyze the internal thermal variation of
the seed, which would obviously increase the difficulty of calculation. We treat the
seeds as the thermal boundaries. Therefore, as long as the temperature of the seed
is known, the simulation will proceed.

In simulation, the time increment is denoted as δ t, and the current temperature of
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the seeds is T , then, the absorbed energy during a time step δ t is

E(T ) =

{
Pδ t T < Tc

0 T ≥ Tc
(20)

According to the heat conduction equation, the temperature increment is

δT =
E(T )

cpρπr2 (21)

where, cp(Jkg−1K−1) is the specific heat of the seeds, ρ is the seed density, r is the
radius of the seed.

Now, the temperature at time t +δ t is

T (t +δ t) = δT +T (t) (22)

If the ferromagnetic seeds are placed in the vacuum magnetic field, the temperature
would increase to the Curie point in a short time, and keep until the magnetic field
is vanished. This process is illustrated in Fig. 3. The initial temperature is assumed
as 26◦C, the temperature will reach to the Curie point in 5 seconds. However, the
actual temperature variation is not the same as what displayed in Fig. 3. As there
have energy transfer between the seed and the mediums, actual heating would be
slower.
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Figure 3: Temperature variation of the ferromagnetic seed
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4 Results and Discussion

4.1 Experiment of the magnetic induction heat on phantom

The experiment of using magnetic induction to heat up the phantom is introduced.
The magnetic field is generated by a magnetic induction hyperthermia device, which
is located in our laboratory, as shown in Fig. 4(a). The seed we utilized is a 0.8mm
diameter and 6mm long Ni-Cu alloy(Fig. 4(b)), which has perfect super param-
agnetic. The device and the seeds are all produced by Fuzhou Haolian Medical
Technology Co., Ltd. The curie point of the seed is about 76◦C. The other param-
eters are listed in Table 1.

(a) Magnetic field generator (b) Ferromagnetic seeds

Figure 4: Experimental devices

Table 1: The values of some parameters

Name Symbol Value
Curie temperature Tc(◦C) 77
Gradient of curve β 0.4
Maximum magnetic permeability µmax (H ·m−1) 1.885×10−4

Thermal conductivity of the seed ks (Wm−1K−1) 22
The electric conductivity of the seed σ (S ·m−1) 2×106

Frequency of alternating magnetic field ω(kHz) 2π×110
Radius of the seed ra(m) 0.4×10−3

Magnetic field intensity H0(A ·m−1) 2000
Density of the phantom ρ (kgm−3) 1050
Specific heat cp (Jkg−1K−1) 3800
Thermal conductivity of the phantom k (Wm−1K−1) 0.27
Local metabolism Qm (W/m3) 0
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The phantom used in the experiment is a 60mm× 60mm× 60mm cube, with 32
ferromagnetic seeds have been implanted. These seeds are divided into two groups,
which formed two parallel layers, each layer contains 16 seeds, as displayed in Fig.
5, the solid circles represent the seeds, the spacing between the two seeds is 10mm,
they form a 4×4 matrix.

Figure 5: Schematic of the distribution of the seeds

At the central plane of the two seed layers, three thermocouples are embedded,
which are marked as the solid squares in Fig. 6. The second and third thermocou-
ples are symmetrically placed. The purpose is to decrease the measurement error,
as the thermocouple would be placed to the wrong places.

The phantom, which contains the seeds, is placed between the two magnetic poles.
Once the device started, the alternating magnetic field is produced, the tempera-
ture of the seeds will increase, then, the phantom is heated. In the meantime, the
thermometer will record the temperature values at any time.

The same as the seeds, the thermocouples are implanted into the phantom by the
puncture needle with a module plate. Nevertheless, the couples are difficult to be
place to the exact positions. Therefore, three identical experiments were carried
out. The initial and the final temperatures of the phantom are listed in Table. 2

4.2 Comparison between simulations and experiments

As described before, several LB models can be applied, such as D3Q7, D3Q15 and
D3Q19. The model of D3Q19 is employed in this simulation. The wight factors
illustrated in Eq. (9), in this case, ξ is 1

3 . The unit length of each cell is δx = 1, the
number of the grid in x,y,z direction are 60 respectively. As the phantom has no
internal source, the relaxation parameter can be defined arbitrarily, we choose that
δt = 1, then, the relaxation parameter is determined.
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(a)(a)

(b)

(c)

(d)

Figure 6: Schematic of the experiment (a)Magnetic pole, (b)Phantom,
(c)Thermometer, (d)Thermocouple

Table 2: The results obtained from the experiment

Phantom
number

Point
1(◦C)

Point
2/3(◦C)

Initial
temperature(◦C)

Environmental
temperature(◦C)

1 61.7 59.25 19.23 22.5
2 62.2 59.9 20.17 23.9
3 61.5 59.3 20.07 23.7
Average 61.8 59.5 19.82 23.37

The diameter of the ferromagnetic seed is 0.8mm. We define the grid size as 1mm,
therefore, 6 grids can represent one ferromagnetic seed. The heat source is also
dealt as the boundary. If the lost energy that has transferred into the phantom is
ignored, the temperature at any time step, can be obtained from Eq. (22). Although,
the lost energy is very little, we present a simple solving method,

T
′
(t +δ t) = T (t +δ t)−Tlost(t) (23)

where, T (t +δ t) is acquired from Eq. 22, Tlost(t) denotes the decreasing tempera-
ture by the heat transferring, which is defined as:

Tlost(t) =
k
ks

δx

πr2
a

q−1

∑
i=0

(gi(x, t)−gi′(x+ ei, t)) (24)
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Figure 7: Temperature contours
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where the first two terms at the right of the equation is the coefficients.

After simulation, the temperatures at any places of the phantom would be known.
Fig. 7 illustrates the temperature contours from three perpendicular sections. Also,
the temperature at each point can be recorded. The temperatures where the ther-
mocouples positioned, were analyzed by comparing with the experimental results.
Fig. 8 shows the comparison. From the two comparing curves, we can find that
the variation of the temperature obtained by the numerical method is almost similar
to the experimental results. The comparison intensifies that the proposed model is
effective and has enough accuracy.

The numerical method has been explained and verified in many studies(Chen and
Doolen (1998)). The present calculation is mostly depended on the temperature
variation model of the ferromagnetic seed. As long as the model is effective, the
numerical results would be credible. However, the real status of the seed cannot be
observed when they are in the phantom or in the body. The temperature variation
of the seed in the phantom is different from that when directly imposed to the
magnetic field. Although there have some empirical formulas, they can not be
utilized directly. By using the numerical works, the model of temperature variation
can be revised or improved. Then, the physical law of heat generation of the seed
in tissue can be recognized.

5 Conclusion

This paper presents a numerical model to solve the heat transfer in magnetic induc-
tion hyperthermia. We demonstrate the procedures of solving the Pennes bio-heat
equation by LBM. We treat the ferromagnetic seeds as the temperature boundary
and develop the temperature model of the seed based on the Haider’s method. We
also implement several magnetic induction experiments to heat the phantom. Three
phantoms having the same properties are used, each implanted with 32 seeds. Two
thermocouples are placed to special positions to measure the temperature.

The comparisons between the experimental results and the numerical solutions
show the proposed method has enough accuracy. It also indicates that the adopted
temperature variation model is effective. The present work gives another numerical
methods for bio-heat transfer problems. Except the ability of temperature predic-
tion, the proposed method can be used to measure the clinical tumor temperature
with the help of few thermometers. However, the parallel computing algorithm is
expected, as LBM has the advantage of parallel computing.
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induction experiments.

References

Brezovich, I. A.; Lilly, M. B.; Meredith, R. F.; Weppelmann, B.; Henderson,
R. A.; Brawner, W.; Salter, M. M. (1990): Hyperthermia of pet animal tu-
mours with self-regulating ferromagnetic thermoseeds. International Journal of
Hyperthermia, vol. 6, no. 1, pp. 117–130.

Chen, S.; Doolen, G. (1998): Lattice boltzmann method for fluid flows. Annual
Review of Fluid Mechanics, vol. 30, no. 1, pp. 329–364.

Golneshan, A.; Lahonian, M. (2011): The effect of magnetic nanoparticle disper-
sion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia
using the lattice boltzmann method. International Journal of Hyperthermia, vol.
27, no. 3, pp. 266–274.

Guo, Z.; Zheng, C.; Shi, B. (2002): An extrapolation method for boundary
conditions in lattice boltzmann method. Physics of fluids, vol. 14, pp. 2007.

Haider, S.; Cetas, T.; Wait, J.; Chen, J. (1991): Power absorption in ferromag-
netic implants from radiofrequency magnetic fields and the problem of optimiza-
tion. Microwave Theory and Techniques, IEEE Transactions on, vol. 39, no. 11,
pp. 1817–1827.

He, X.; Chen, S.; Doolen, G. (1998): A novel thermal model for the lattice
boltzmann method in incompressible limit. Journal of Computational Physics,
vol. 146, no. 1, pp. 282–300.

Indik, J.; Indik, R.; Cetas, T. (1994): Fast and efficient computer modeling
of ferromagnetic seed arrays of arbitrary orientation for hyperthermia treatment
planning. International Journal of Radiation Oncology* Biology* Physics, vol.
30, no. 3, pp. 653–662.

Kotte, A.; Wieringen, N.; Lagendijk, J. (1998): Modelling tissue heating with
ferromagnetic seeds. Physics in medicine and biology, vol. 43, pp. 105.

Latt, J.; Chopard, B.; Malaspinas, O.; Deville, M.; Michler, A. (2008): Straight
velocity boundaries in the lattice boltzmann method. Physical Review E, vol. 77,
no. 5, pp. 056703.

Murray, T. G.; Steeves, R. A.; Gentry, L.; Bresnick, G.; Boldt, H. C.; Mieler,
W. F.; Tompkins, D. (1997): Ferromagnetic hyperthermia: Functional and
histopathologic effects on normal rabbit ocular tissue. International Journal of
Hyperthermia, vol. 13, no. 4, pp. 423–436.



240 Copyright © 2012 Tech Science Press CMES, vol.86, no.3, pp.225-240, 2012

Pennes, H. (1948): Analysis of tissue and arterial blood temperatures in the
resting human forearm. Journal of applied physiology, vol. 1, no. 2, pp. 93–122.

Stauffer, P.; Cetas, T.; Fletcher, A.; Deyoung, D.; Dewhirst, M.; Oleson, J.;
Roemer, R. (1984): Observations on the use of ferromagnetic implants for in-
ducing hyperthermia. Biomedical Engineering, IEEE Transactions on, , no. 1, pp.
76–90.

Stauffer, P.; Cetas, T.; Jones, R. (1984): Magnetic induction heating of fer-
romagnetic implants for inducing localized hyperthermia in deep-seated tumors.
Biomedical Engineering, IEEE Transactions on, , no. 2, pp. 235–251.

Steeves, R. A.; Murray, T. G.; Moros, E. G.; Boldt, H. C.; Mieler, W. F.; Pali-
wal, B. R. (1992): Concurrent ferromagnetic hyperthermia and 125i brachyther-
apy in a rabbit choroidal melanoma model. International Journal of Hyperthermia,
vol. 8, no. 4, pp. 443–449.

Tompkins, D. T.; Partington, B. P.; Steeves, R. A.; Bartholow, S. D.; Paliwal,
B. R. (1992): Effect of implant variables on temperatures achieved during ferro-
magnetic hyperthermia. International Journal of Hyperthermia, vol. 8, no. 2, pp.
241–251.


