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Optimizations for Elastodynamic Simulation Analysis with
FMM-DRBEM and CUDA
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Abstract: In this study, we propose a novel method to accelerate the process of
elastodynamic analysis in 3D problems with BEM (boundary element method).
With applying the DRBEM (dual reciprocity boundary element method) to form
new integral equations for reducing complexity;the modified FMM (fast multipole
method)is introduced to simplify the computation process and save storage space
by avoiding intermediate coefficientmatrices. At the same time, FMM-DRBEM is
reprogrammed in parallel byapplying GPU with CUDA (Compute Unified Device
Architecture)for improving efficiency further.The main features in this paper are:
(1)with respect to defects of classical method for elastodynamic, modified FMM-
DRBEM algorithm is introduced; (2)optimal algorithms of translationsin FMM are
discussed in parallel for improving the effect of GPU with CUDA;(4) PLE (Posi-
tion Location Equation) and GHST (Global Hierarchy Substitution Transferring)
methods are proposedfor improving efficiency, saving storage space requirement
and optimizing data transforming process between host and device, respectively.
The effect has been tested by numerical examples in the last section, and signifi-
cantoptimal results both in efficiency and accuracy have been observed.

Keywords: FMM-DRBEM, CUDA, parallelize algorithm, 3D elastodynamic prob-
lems

1 Introduction

Because ofthe characteristics such as dimensiondecomposition, high precision, theBEM
is more suit for fastpreprocessing, self-adaptive structure analysis engineering ap-
plications than other numerical methods. Nevertheless, forthe low stability and high
cost in time, classical BEM is rarely used for solving 3D elastodynamic problems
in engineering[Liu; Mukherjee; Nishimura; Schanz; Ye; Sutradhar; Pan; Dumont;
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Frangi and Saez (2011)]. The non-symmetric and fully populated matrix of BEM
results in huge workload for computation in elastodynamics. Furthermore, the in-
tegral equation will need furtherdiscretization for time domain for elastodynamic
problems. Suppose that an elastodynamics boundary value problem for a cube
usesO(n) nodes and O(m) time steps.N is the scale of coefficient matrix. In this
case, the computational complexity of BEM is O(n4)*O(m4) since N=3*n2*3*m2,
but only O(n3)*O(m) for FDM (Finite difference method) and FEM (Finite element
method)at the same time.

FMM was introduced by Rokhlin [Rokhlin (1985)] as an O(N)numerical method
for solving an integral equation with 2D Laplace’s equation. This method becomes
well noted with introducing into N-body problems by Greengard [Greengard and
Rokhlin (1987; Greengard (1988)] for solving potential and particle simulation
problems.Many authors applied FMM for elastodynamic problems to improve ef-
ficiency and save storage space. Chen [Chen; Chew and Zeroug (1997)]extends
the high-frequency FMM in Helmholtz proposed by Rokhlin [Rokhlin (1990)] to
2D elastic wave surface formulation. Fukui [Fukui (1998)] introducelow-frequency
FMM algorithm into 2D scattering problems for many holes, and which was also
applied to solve scattering problems for multi cavities and cracks by Fujiwara [Fuji-
wara (1998)] in corresponding. In 3D field, Yoshida [Yoshida (2001)] utilized low-
frequency FMM to solve low-frequency crack problems with decomposition of fun-
damental function, and also proposed diagonal form FMM for elastodynamic crack
problems in 2001[Yoshida; Nishimura and Kobayashi (2001)]. The recent develop-
ment in elastodynamic FMM is slow until the diagonal form redesigned by Chaillat
et.al.[Chaillat; Bonnet and Semblat (2007)].Besides FMM algorithm, other accel-
eration methodology was applied such as pre-corrected FFT (Fast Fourier Trans-
lation) approach.[Yan; Zhang and Ye (2010)], and the H-matrix (ACA: Adaptive
Cross Algorithm)approach in crack problems[Benedetti and Aliabadi (2010)].

Ahead of FMM, DRBEM(Dual Reciprocity Boundary Element Method) had al-
ready beenintroduced by Nardini and Brebbia[Nardini and Brebbia (1983)] since
1983.Chirino et.al [Chirino; Gallego; Sáez and Dominguez (1994)] have concluded
that the DRBEM requires less computing time than either the time or frequency
domain of conventional BEM’s. During DRBEM algorithm, the inertial volume
integral in BEM equationis transformed into a surface integral by applying the re-
ciprocal theorem twice, andthe displacement fieldis approximatedby a finite series
variables involving RBF (radial basis functions)[Agnantiaris; Polyzos and Beskos
(2001)]. This method combines the advantages of dimensionality reductionand
simplicity of elastostatic foundation solution. Ahmad and Banerjee [Ahmad and
Banerjee (1986)] proposed a particular integral BEM approach for conversion from
domain to surface ones, which is proved to be mathematically equivalent to DRBEM



Optimizations for Elastodynamic Simulation Analysis 243

[Nardini and Brebbia (1983)].

The FMM-DRBEM applied in this research combines the characteristics of FMM
and DRBEM. However, two disadvantages need to be solved before application.
First, in contrast with the banded, sparse and symmetric matrix formed by FEM,
plenty of non-symmetric and full populated matrix operations in DRBEM con-
sumes huge memory space and CPU time; second, as the price of simplicity with
elastostatic fundamental functions, some additional MMP (Matrix-Matrix produc-
tion) calculation with O(N2) complexity are required, which have low efficiency
duringcomputation.Thus, the CUDA parallel algorithm is designed in section 4.

Since the general application of CUDA in engineering industries,parallelize FMM
algorithms are developed by many authors. Gumerovand Duraiswami[Gumerov
and Duraiswami (2008)] pioneered fine-grained parallel FMM (Fast Multipole Me-
thod) algorithm based on CUDA. In this algorithm, RCR (rotation coaxial-translation
rotation) decomposition and translation stencil techniques were applied for opti-
mization. Compared to traditional coarse-grained parallel algorithm based on CPU,
the three dimensional Laplace kernel FMM achieved a speed up of 30 to 70 times
on a single NVIDIA GPU[Gumerov and Duraiswami (2008)].

Inheriting the basic algorithm from Gumerov and Duraiswami, Yokota applied
FMM with cluster of GPUs for meshless simulation of turbulence. The speed up
ratio on a single GPU is about 80 times than using two CPUs. And the parallel ef-
ficiency improves with the increase of particle number, e.g. the parallel efficiency
in 32 GPU is just 4% at N = 104, but 78% atN = 107; this work was investigated by
Hamadaet al. in conjunction with their high-performance GPU implementation of
a tree code[Hamada; Narumi; Yokota; Yasuoka; Nitadori and Taiji (2009)].

Cruz et.al discussed the optimization strategies for GPU kernels with FMM as ex-
ample[Cruz; Layton and Barba (2011)]. In the related work, the author introduced
four properties to judge the algorithm in GPU model — computational intensity,
concurrency, homogeneity, and data locality, which were taken as criteria in his
paper. On the other hand, this paper assessed each stage in the forming processes
of GPU kernel, such as the partition of threads, share memory use, memory man-
agement and so on. Those design strategies are very helpful and efficient while
modifying CPU algorithm into GPU kernels.

The speed up ratio of each translation procedure is discussed and the effect of func-
tion expansion order is also exhibited in detail. During the processes of FMM,
the M2L (Moment to Local Expansion translation) and near interaction computa-
tion take almost 80% time. Takahashi studied M2L operation and presented four
algorithms to accelerate the process[Takahashi; Cecka; Fong and Darve (2012)].
Although each algorithm has different characteristic and functions, the key point of
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his work is the improvement of reusability of coefficient data in M2L translation.
This algorithm transforms the 64 MVP (Matrix-Vector production) computations
into 27-MMP computations, in which most data could reuse in computation. How-
ever, the total complexity actually increases from 512r’*r2 to 1728r’*r2 (r’ and r is
the order of series expansion). In connection with this situation, we propose a new
data structure to decrease the complexity for M2L optimization.

In this paper, the secondand third sections briefly introduce the DRBEM and con-
ventional FMM theories;then the modified algorithm in FMM is explained in detail.
The fourth section introduces the optimal parallel translation algorithms in detail;
the effectof our research is demonstrated in the last section with numerical exam-
ples.

2 DRBEM inElastodynamics

It can simplify the process of computation greatly by using static fundamental func-
tions instead of dynamic ones. But the inertial item will appear in the equation such
that the domain field needs discretization, which makes the technique lose the at-
traction of its “boundary only” character. The DRBEM is essentially a generalized
way of constructing particular solutions that can be used to represent internal source
distribution.

For the homogenous medium, the motion of linearly elastic body of volume Ω and
surface S is described by Navier-Cauchy partial differential equation as

(λ +2µ)∇∇ ·u(x, t)−µ∇×∇×u(x, t)+ρb = ρü(x, t) , (1)

in which u(x, t) is the displacement vector at point x and time t, and λ and µ are
Lame elastic constants and ρ is density of body. Assuming zero body forces and
initial conditions, as applying traditional BEM, one can obtain an integral repre-
sentation of the Eq. (1) in the form

c(x)u(x, t) =
∫

Γ

[U∗ (x, t; ;ξ ,0)∗ p(ξ , t)−W∗ (x, t; ;ξ ,0)∗u(ξ , t)]dΓ(ξ ) , (2)

in which U∗ (x, t; ;ξ ,0) and W∗ (x, t; ;ξ ,0) is the dynamic fundamental solutions of
displacement and traction tensor in respect, p(ξ , t) is the traction vector at point ξ

and time t. c(x) is the jump tensor. The fundamental solution is very complicated
for computation. Because of the time variables in integral equation, the complexity
will be O(n4)*O(m4)compare to the O(n3 )*O(m)in FEM with O(n) nodes and O(m)
time steps, that is very inefficiency. For simplifying the computation process, one
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can substitute static functional solutions with dynamic ones, such as

c(x)u(x, t) =
∫

Γ

[u∗ (x,ξ )p(ξ , t)−p∗ (x,ξ )u(ξ , t)]dΓ(ξ )

−
∫

Ω

u∗ (x,ξ )ρü(ξ , t)dΩ(ξ ) , (3)

in which u∗ (x,ξ ) and p∗ (x,ξ ) are static fundamental solutions and the overdots
indicate differentiation with respect to time.However, the appearance of the inertial
volume integral in Eq. (4) indicates the discretization in volume domain is neces-
sary, which would eliminate the biggest advantage of BEM. Nardini and Brebbia
[Nardini and Brebbia (1983)] transferred this volume integral to the boundary sur-
face, thereby creating an all-boundary integral formulation that leading to DRBEM.

The key point of DRBEM is expressing the unknown u(x, t) inside Ω as a series of
production between unknown time dependent coefficients αm

i (t) and known basis
function f m(x)

ui (x, t) =
∫ M

m=1
α

m
i (t) f m (x) , x ∈Ω, (4)

in which M=N+L,andN and Lare the number of boundary and internal collocation
points, respectively.It is worth noting that L could be zero. Using the reciprocity
theorem again, one succeeds in transforming Eq. (4) into a boundary integral form

−
∫

Ω

u∗ (x,ξ )ρü(ξ , t)dΩ(ξ ) =

ρ

∫ M

m=1
α̈

m
n

[
ci j (x)κ

m
jn (x)+

∫
Γ

p∗i j (x,ξ )κ
m
jn (x)dΓ(ξ )−

∫
Γ

u∗i j (x,ξ )ζ
m
jn (x)dΓ(ξ )

]
,

(5)

in which κm
jn (x) and ζ m

jn (x) are the particular solutions for displacement and trac-
tion field, respectively. Then,with the discretization of the boundary Γ into numbers
of triangle elements (the total number of node is N), Eq. (4) could form the matrix
equation

[M]{ü}+[H]{u}= [G]{p} , (6)

where

[M] = ρ ([G] [P]− [H] [W]) [F]−1, (7)

in which [H] and [G] are the integral coefficient N×3×N×3matrices, and [P] and
[W] are matrices containing sub-matrices of particular solution κm

j and ζ m
j each
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column of which corresponds to the m-order radial function and each row refers to
the jth nodal point. When introducing the collocation points to improve accuracy,
the matrices could be wrote as

[M] = ρ

([
GBB

GDB

][
PBB PBD

]
−
[

HBB HBD

HDB HDD

][
WBB WBD

WDB 0

])
[F]−1,

(8)

in which the subscript B and D represent the boundary nodes and interior colloca-
tion points, respectively.

In modal analysis, considering time harmonic dependence for the boundary dis-
placement and traction vectors appearing in Eq. (6). The frequency domain equa-
tion is(
−ω

2 [M]+ [H]
)
{u0}= [G]{p0} , (9)

in which ω is the circular frequency of the harmonic excitation of u and pvectors
with amplitude u0 and p0, respectively. Just setting the external disturbances equal
to zero, one can obtain natural modes and frequencies of free vibration.

[A]{x}= ω
2 [M∗]{x} , (10)

in which [A] is the BEM influence matrix referring to all unknown boundary vari-
ables contained in {x}, and [M∗] is obtained by setting zeros in [M] in which
sub-columns refer to specified displacements. From the work of J.P. Agnantiaris
[Agnantiaris; Polyzos and Beskos (2001)] for 3D elastodynamics, the effect of
augmentation in the linear radial basis function for accuracy is very small, and
for non-axisymmetric 3D structures polynomial 1+r is simplest and high accuracy
RBF. Therefore, the corresponding particular solution equation for displacement
and traction can be achieved in respect.[Agnantiaris; Polyzos and Beskos (1998)]

κ
m
i j =

1
4µ (1−ν)

[
(3−4ν)

(
r2

6
+

r3

12

)
+

r2

10
+

r3

18

]
δi j

− 1
4µ (1−ν)

(
2
15

+
r

12

)
rir j, (11)

ζ
m
i j =

1
2(1−ν)

[
(1−2ν)

(
1
3

+
r
4

)
+

1
5

+
r
6

]
(rin j + rknkδi j)

− 1
2(1−ν)

[
(1−2ν)

(
1
3

+
r
4

)
− 1

5
− r

6

]
r jni−

1
2(1−ν)

· 1
12r

rir jrknk, (12)
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in which µ is the shear modulus, ν the Poisson’s ratio, ri is the components of the
vector rthat connecting any two points of boundary nodes or interior points, and ni

is the components of the normal outward vector n at the point that the particular
solution is evaluated, and δi j is the Dirac function.

3 Fast Multipole Method in DRBEM

The fast multipole method can be considered as a method which provides a way to
compute the multiplication between matrix and vector without intermediate matrix.
Hence, this method is very suitable for solving potential and particle simulation
problems. The conventional MVP algorithm needs O(N2) complexity in general,
which is too expensive to large-scale problems. By the contrast, the FMM provides
the matrix-trial vector product O(N) operations, which is a huge improvement in
efficiency.

Comparing with general data structure, we take STL (standard template library) to
simplify construction and explain the structure of all relationship in FMM; the fun-
damental C language is applied during all translation computations to improve effi-
ciency. In this section, the translations of kernel functionare brief reviewed at first,
more detail information can be found in Nishimura’s work [Nishimura (2002)].
Then the new version of FMM algorithm is featured up in detail, which applies new
data structure (node-elementcell structure) and algorithms for improving searching
efficiency in the procedure of computing the expansion of kernel function.

3.1 Basic Functions Introducing

According to the character of DRBEM, we just need considering the elastostatic
fundamental solution for elastodynamics problem. The fundamental functions,
expressed asUi j (x,y) and Ti j (x,y), can be expanded by solid harmonic functions
which are expressed by the associated Legendre function [Yoshida (2001)].In the
Appendix, Eq.(a1) and Eq. (a2)denote these expansions. Therefore, the integration
equations can be rewrote by these expansions, and the direct integration between
points substituted by the intermediate integrations and kinds of translation.

During these translations, the transferring from source to expansion point is called
moment expansion, and the corresponding transferring from filed to expansion
point is called local expansion which depend the results of moment expansion.
Yoshida[Yoshida (2001)] provides details of these expansions which can be re-
ferred in Appendix.

These formulas are derived from results in Epton MA [Epton MA (1995)] in terms
of the Wigner-3j symbols and concluded by Yoshida [Yoshida (2001)].
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3.2 Description of Modified FMM

1. level: the division step;

2. cell: the box that contains node or element;

3. limit-number: the minimal limit number of node in each cell.

As the concepts proposed by Rokhlin [Rokhlin (1985)], the surface elements will
be divided into different cells in different levels after the meshing procedure for the
surface of body, as Figure 1 shows. In this study, the index number of cell is labeled
by the division order. For example, the cell labeled i in level l are divided into m
child cells which are labeled from t to t+m (t is the number of cells in level l+1 at
moment). And while these child cells are leaves (the number of points in the cell
is zero or less than limit-number), the cell i+1 of level l could be divided and the
child cells will be labeled from t+m+1, and so on, as shows in Figure 1.

There will be two kinds of cell data structure in oct-tree: one is named NCell which
stores point data (include nodes and collocation points), and another is namedECell
which stores element data. In our algorithm, the number of NCell in current level
is stored in vector CellNumL, similarly, the ECell is stored in vector CellNumM.
The total node number in mesh data is expressed as NodeNum, collocation point
number is expressed as Con, and element number is expressed as ElemNum.

In our algorithm, the current levelcells are instantiated in each recursion procedure,
and each cell object contains the pointer of parent cell and child cells. The recursion
will not end until all thecells are leaf, then the total number of level will be counted
as levelnum. As mentioned in the above sub-section, the local expansion depends
on the moment expansion of each cell, and the moment value of each non-leafcell
depends on moment value of leafcell. Therefore the process of FMM is separated as
upward (for moment expansion) and downward (for local expansion) procedures.

In upward, the moment computation in leafcell is named E2M (element to mo-
ment) and the moment of non-leaf cell is evaluated by M2M (moment to moment).
The downward procedure is carrying on from level2 to levelnum-1, and contains
translations of M2L (moment to local expansion) between two cells in same level,
L2L (local to local expansion) between parent and child cells, NIC (near interaction
computation) between contiguouscells, and FLE (final local expansion) during the
leaf cells.

Because of the difference in L2L and NIC translation, the distance of target cell and
source cell should be evaluated for determination in traversal cell process. How-
ever, this strategy is very inefficient, because the number of contiguous cells are at
most 27 (contain itself), and the number of interaction cells (the parent cells is con-
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Figure 1: The forming procedure of cells in levels

tiguous but not for child cells) are at most 189, See Figure 2 gray and purple cells,
respectively.We derive the Position Location Equation (PLE) (See Eq. (12)) to lo-
cate the neighbor and interaction cells position with respect to target cell without
traversal of all cells. The complexity is at most 27 for NIC and 189 for M2L.

Position = (z+m)∗2Div+(y+n)∗Div+ x+ l, (13)
0 < (z+m) < (Div/2−1)
0 < (y+n) < (Div/2−1)
0 < (x+ l) < (Div/2−1)

in which

z = i/2Div
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Figure 2: Indication of relationship between target and source cells

y = (i%2Div)/Div

x =
(
i%2Div)%Div

Div is the numbers of division in current level, and m,n,l is neighbor cell position
(front or back, left or right, up or down) with respect to target cell, with value of
1,0 or1.

In this research, another modified aspect for FMM algorithm is proposed. In nu-
merical solutions, the DRBEM integrations would be discretized with format as
follows:

Pci j (x)u j (x,s) =
Ne

∑
n=1

∑
α

tnα
j (s)

∫ 1

−1

∫ 1

−1
u∗i j(x, y(ξ1,ξ2) ,s)Nα (ξ1,ξ2)Jn (ξ1,ξ2)dξ1dξ2

−
Ne

∑
n=1

∑
α

unα
j (s)

∫ 1

−1

∫ 1

−1
t∗i j (x, y(ξ1,ξ2) ,s)Nα (ξ1,ξ2)Jn (ξ1,ξ2)dξ1dξ2, (14)

in which Ne denotes number of elements contain the filed point s; α denotes the
filed point in different element; ξ1,ξ2 denote the parameters in local coordinate
system of element.

In traditional way, the integration of Eq. (13) between source point and the element
must be computed repeatedly while each node of the element is treated as field
point. Actually, because the value in matrix is the contribution from point to point,
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(a)           (b) 
 

Figure 3: Different integration method

each point to element integration must repeats three times, as Figure 3 (a) shows
for example. The integration result can be expressed as η , and w express the shape
value of the correspond node.Then, the final value of correspond point to point
integration is achieved by the following equation:

η1 ∗w1 +η2 ∗w2 + · · ·+η6 ∗w6.

Suppose the ElemNum is M, then the complexity of this kind of integration is 3M.
Hence, for reducing the redundant computation, we could evaluate all the inte-
gration between source points and elements at first, then transferring the value
to all nodes in the matrix by shape functions, (See Figure 3 (b)).It could be ob-
tained that this method’s complexity is just M, which saves plenty of computation
cost relative to traditional way.For realizing this method, we apply two sets of cell
data to avoid repeated computation, one of sets stores NCell and the other stores
ECell(mentioned in the above).

4 Parallelize in GPU

For convenient, some notations are listed in the Table 1.

Because the FMM for elastodynamic problems include MMP computation, the par-
allel algorithm must concurrent the rows of matrix B into threads of x dimension,
which means each thread in x dimension evaluate the multiplication with one row
of matrix B. The other two dimension states different intention in different kernel
of algorithms, the details refer to Table 4.

In this section, Partition Reduction Summation method is introduced firstly, then
the translations of FMM in parallelize are discussed. M2M and L2L have the same
data structure; M2L applied a new algorithm to improve efficiency; E2M, FLE
have the similar kernel structure. We should note that NIC translation needs far
more space than other translations. If the total number of nodes exceeds 1500, the
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Table 1: Some notations about the parallel algorithm

Notation Description 

NodeNumC the number of nodes in Ncell box 

ElemNumC the number of elements in Ecell box 

dim NodeNum + Con 

Nexp the order of series expansion 

TolNum (Nexp + 1)*(Nexp + 2)/2 

TolNum1 (Nexp*2+1)*(Nexp*2+2)/2 

d_M moment value in the Ecell 

d_L local translation value in the Ncell 

Ejt 
the translation operator between j cell and t cell during M2M, M2L and L2L 

translation 

 

requirement space of NIC will be 2˜3 times than other translations, and this dis-
tance will increases with the scale of problem. For improving the scale of solvable
problem, we do not parallel NIC translation with CUDA in GPU, but with OpenMP
in CPU.

4.1 Partition Reduction Summation

During the introduction of FMM-DRBEM algorithm in the third section, it is worth
noting that there are lots of summation computations while forming expansion val-
ues or final matrix. Just asFigure 3(b)shows, it needs to accumulate all coefficients
of the node corresponds to each element which includes it. However, in the parallel
process, this summation is easy leading to visit conflict in GPU memory (reading
and writing the same place at same time). The general efficient summation algo-
rithm in parallel is Reduction Summation (RS)[NVIDIA (2011)], which decreases
the procedures of summation from N to

√
N (N is the number of thread in one

dimension of a block).

However, this method requests that all relative data are referred in one block that
could be accessed in different thread. The number of nodes and elements in each
cell is different and uncertain, and the difference may be very large in complicated
body discretization. So it is impossible to set fixed length of block to evaluate the
summation of interactions in E2M, FLE. This paper presented a new summation
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Table 2: Estimate equation for translations in GPU memory (MB)

E2M 96݀݅݉ כ ݉ݑ݈ܰܶ כ ሺ1  ாସሻ1024 כ 1024  

NIC / 

M2M 72݀݅݉ כ ଶ݉ݑ݈ܰܶ  1024ܯܵ כ 1024  

FLE 
12݀݅݉ כ ݉ݑ݈ܰܶ כ ሺ8  ܰሻ1024 כ 1024 M2L 72݀݅݉ כ ଶ݉ݑ݈ܰܶ  ܯܵ  1024ܮܵ כ 1024

 
L2L 

72݀݅݉ כ ଶ݉ݑ݈ܰܶ  1024ܮܵ כ 1024  

 

N: NodeNumC in leaf cell; E: ElemNumC in leaf cell; SM: size of moments in cells
of current level; SL: size of local expansion in cells of current level

 

Figure 4: Partition Reduction Summation method

method called Partition Reduction Summation (PRS).

Firstly, the whole data is partitioned into N/M segments which have the same struc-
ture with a block; the data in each thread of segment will be added into segment 0,
respectively. Then, the block will refer to segment 0 by thread ID and apply RS al-
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gorithm to evaluate the final result, just as Figure 4 shows. Compared to traditional
method, the procedure of summation could decrease to N/

√
M (M is one dimen-

sion length of block), and this method will not be limited by dimension length of
block.Through this method, the requirement storage space in GPU of each transla-
tion also reduces, and the estimate equation for each translation is listed in Table
2.

4.2 E2M, FLE and NIC

 

Figure 5: Arichitecture of kernel in translations

E2M In the traditional way, the moment expansion of each leaf cell is computed
by traversing every cell in each level, which is not suit for parallel processes. A
vector (leaflist) to store allleafcells pointer, and the moment of allleaf are evalu-
atedbefore translations of M2M and M2L is executed. Because of the limitation
of storage space, the E2M translation is evaluated by circle, though the cell data
is independent for each other. The pseudo code of E2M parallel algorithm could
write as Table 3 shows.

The three dimensions of grid are expressed by dim, ElemNumC and TolNum as
Table 4 shows. The architecture of kernel is described in Figure 5. For the parallel
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algorithm, one thread executes one moment evaluation and data accessing with
global memory in GPU. After the E2M translation of elements in GPU, the PRS is
applied to achieve the final moment expansion of the ECell.

FLE and NIC The processes of parallel translation algorithm of FLE are similar
to E2M, but the data structure has some differences. The FLE translation takes
place in leafcell of tree structure, the results obtained by this procedure will be put
into the final result matrix. By contrast with E2M, the Z-dimension direction is
expressed with the order of series expansion (TolNum) which is the certain value
defined in before. Because of that, the length of Grid in Z direction is 1, and RS
algorithm is applied directly into the summation of threads in Z-dimension of a
block. The pseudo codes of FLE are listed in Table 3.

In this study, the near interaction cell is determined by PLE presented in section
3.2. OpenMP in CPU is introduced to parallel this translation (NIC), and eight
processor threads are applied. The pseudo code for the process is listed in Table 3.

Table 3: Pseudocode for translations

E2M translation FLE translation NIC translation 

fori = levelNumTo 2 fori = levelNumTo 2 fori = levelNumTo 2 

for j = 0 ToCellNumM[i] for j = 0 ToCellNumL[i] for j = 0 ToCellNumM[i] 

E2Mkernel(···) --- GPU Obtain near source cell k 
 respect to cell j 

ifcell j is leaf 
#pragma omp parallel for 

PRS evaluation for j = 0 ToNearcells 

end for FLEkernel(j, k, ···) --- GPU NIC (···)---CPU 

end for RS evaluation end if 

end for end for 

 end for 

PRS kernel 
end for 

  end for 

 

4.3 M2M, L2L

For the limitation of storage space, the moments and local expansion value of level
can’t transfer in one time. Considering this situation, the page-locked memory
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Table 4: The index of three dimension of Grid in different translations

Direction 

Translation 
X-dimension Y-dimension Z-dimension 

E2M dim ElemNumC TolNum 

M2M dim TolNum TolNum 

M2L dim TolNum TolNum 

L2L dim TolNum TolNum 

FLE dim NodeNumC ElemNumC 

 

of CUDA is applied in the algorithm. There are three kind of page-locked mem-
ory provided by CUDA, portable memory, write-combining memory and mapped
memory[NVIDIA (2011)]. The first kind memory make any device (multi-GPU)
could access this memory, which will reduce transferring and communication time
in CPU threads. The second kind memory will frees up host’s L1 and L2 cache
resources, making more cache availableto the rest of the application. In addition,
write-combining memory is not snoopedduring transfers across the PCI Express
bus, which can improve transferperformance by up to 40%.[NVIDIA (2011)]Read-
ing from write-combining memory from the host is prohibitively slow, sowrite-
combining memory should in general be used for memory that the host onlywrites
to. The mapped memory could be applied in out parallel algorithm. There is no
need to allocate a block in device memory and copy data betweenthis block and
the block in host memory; data transfers are implicitly performedas needed by the
kernel. That means the scale of problems which could be paralleled in GPU will
improve greatly. On the other hand, the efficiency of this method is lower than the
GHST (Global Hierarchy Substitution Transferring) method proposed in this paper.
Table 5lists the time cost of the two transfer method in different degree of freedom
by discretization for a cubic body.

M2M The Moment to Moment translation (M2M) is used to evaluate the moment
of parent cell respect to current level. In simple terms, that is accumulating all the
child cell moment to parent cell with multiplying coefficient operator Et j. Because
the translation of M2M happens between current level and parent level, this paper
employs GHST to save storage space and improve efficiency. As Figure 6 shows,
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Table 5: Comparative time cost of translations in different data transfer method
(ms)

 

Translations 

DOFs 

-Transfer Method 

M2M L2L M2L FLE 

1356 
GHST 137 53 1937 28 

Mapped Memory 203 91 4019 44 

3804 
GHST 101 76 6160 119 

Mapped Memory 167 133 16128 246 

10122 
GHST 356 282 13672 1975 

Mapped Memory 594 511 29140 2216 

 

Figure 6: Global Hierarchy Substitution Transferring for M2M

except for the first step, each circulation in levels only needs transferring parent
level moment data, the result evaluated in previous time would be reused in next
time, and thed_M_kmemory in device should be freed in before.
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The method of global level moment data transferring in one time could avoids the
repeated transfer during the computation in the kernel, which is the key point for
achieving higher performance than mapped memory method. The hierarchy sub-
stitution transferring excludes the redundant moment data which would be useless
in current level moment evaluation and saves the storage space of GPU.

 

Figure 7: Global Hierarchy Substitution Transferring for L2L and M2L

L2L The processes of L2L is similar to M2M translation, except for the direction
of translation is from parent level to child, as shown in Figure 7. It is worth noting
that the performance of GHST is nice not only happening during two level’s cells
such as L2L, but also between current levelcells such as M2L, FLE. As a result of
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the highly reusable data in global memory of GPU, the speed up ratio of relational
translations improves about 2 times relative to mapped memory method, as show
inTable 5.

4.4 M2L

As one of the largest time-consumption part of FMM algorithm, M2L translation
is studied specially by some researchers[Lexing; Biros; Zorin and Langston (2003;
Lashuk; Chandramowlishwaran; Langston; Nguyen; Sampath; Shringarpure; Vuduc;
Ying; Zorin and Biros (2009; Takahashi; Cecka; Fong and Darve (2012)]. By con-
trast with theory that apply translation stencil to reduce translations per cell from
189 to 119 mentioned in [Lashuk; Chandramowlishwaran; Langston; Nguyen;
Sampath; Shringarpure; Vuduc; Ying; Zorin and Biros (2009)]by Lashuk, Taka-
hashi proposed a more effectively method to reduce the reusable coefficient eval-
uation in M2L in[Takahashi; Cecka; Fong and Darve (2012)]. However, the total
complexity actually increases from 512r’*r2 to 1728r’*r2 (r’ and r is the order
of series expansion) according his theory. In connection with this situation, we
proposed a new solution method to decrease the complexity.

According Takahashi’s theory, the parent cell contains the current cell is called
cluster. The translation between source cell j and target celli can be expressed as:

d_L_ui =
∫ CellNumL

j=0
Ei j ∗d_M_k j

Where Ei j is the translation operator, and d_L_u is the local expansion value of
target celli, and d_M_k is the moment value of source cell j.

As shown in Figure 2, there are at most 27 clusters near target cluster (contains
itself), 27 cells near the target cell j, and 189 interaction source cells for target celli.
Thus, it request at most 189 translations for a target cell. From the Eq. (22)(23), we
can find that the value is determined by the distance of center of celli, j. Hence, the
coefficient could be reused when the distance of center of celli, j does not change.
We should take coefficients of target cell of a cluster into matrix [Dcluster], and the
little square of matrix [Dcluster] is an r′ ∗ r (r’ is the order of moment expansion, r
is the order of local expansion) matrix [Di j] for celli, j. The elements during matrix
[Di j] are coefficient value between source cell j and target celli that is evaluated by
Eq. (21)(22).

Because of the same distance value between celli, j, the [Dcluster] just needs evalu-
ating 27 types of interaction matrix [Di j], as shown in Figure 8, the different color
square expresses different types of interaction matrix [Di j]. The squares of [Dcluster]
in example shown in Figure 8 express that the coefficients between SC (source cell
index) and TC (target cell index). The color squares transform into blank squares
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Figure 8: Optimization of M2L algorithm for parallel

means that the relationship between SC and TC are contiguous, and will not be cal-
culated with M2L but NIC procedure. Table 6 has listed which square will change
to blank (the color square is also numbered by 0˜26) as the source cluster appearing
in different position relative to the target cluster (the index 0˜26 expresses differ-
ent position as Figure 2 shows) during the computation. During the computation of
M2L, MMP procedure need be applied. For improving the efficiency, this paper ex-
tracts the non-repetitive part from coefficient matrix and moment matrix to partic-
ipate the multiplication, as shown in Figure 8. Compared the conventional method
and optimization method proposed by Lashuk, the complexity of this method re-
duced to 117r’*r2.

4.5 Mixed parallel with Open-MP and Multi-core GPU

The most time-consumption calculations in FMM-DRBEM are MMP evaluation
between [H] and [W], [G] and [P], respectively.In our algorithm, these procedures
are dealt with multi-processors in CPU, and parallel translations of FMM-DRBEM
in dual-core GeForce 590.

Because of the unequal time consumption for different MMP calculation, the im-
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Table 6: The unavailable types of interaction with different source cluster index

 

clusterIn
dex 

Contiguous 
Relationship 

clusterInd
ex 

Contiguous 
Relationship 

clusterInd
ex 

Contiguous 
Relationship 

0  (0) 9  
(0, 4, 10) 

18  (4) 

1  
 (0, 1, 8) 

10  
(0, 1, 4, 5, 8, 10, 

12, 16, 21) 

19  
(4, 5, 16) 

2  (1) 20  (5) 

3  
(0, 2, 9) 

11  
(1, 5, 12) 

21  
(4, 6, 17) 

4  
(0, 1, 2, 3, 8,  
9, 11, 13, 20) 

12  
(0, 2, 4, 6, 9,  

10, 14, 17, 22) 

22  
(4, 5, 6, 7, 16, 17, 

18, 19, 25) 

5  
(1, 3, 11) 

13 all 23  
(5, 7, 18) 

6  (2) 

14  
(1, 3, 5, 7, 11, 12, 

15, 18, 23) 

24  (6) 

7  
(2, 3, 13) 

25  
(6, 7, 19) 

8  (3) 15  
(2, 6, 14) 

26  (7) 

 
16  

(2, 3, 6, 7, 13, 14, 
15, 19, 24) 

17  
(3, 7, 15) 

  

provement of mixed parallelism method could not achieve 100% for the efficiency.
With the estimation approach proposed by Felipe A. Cruz et.al[Cruz; Knepley and
Barba (2011)], the max improvement for these procedures is 80%.

5 Numerical Examples

This section demonstrates the accuracy of FMM-DRBEM algorithm and the ef-
ficiency of parallel code proposed in the above through two numerical examples.
All the program codes are executed on a desktop computer with Intel Core 2 I7
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Figure 9: Mixed parallelize in FMM-DRBEM for MMP calculations

CPU, and the host memory is 8GB. The display card is NVIDIA GeForce 590
which enjoys two cores and 1.5GB space in each core. The peak floating-point
arithmetic performance is 4.64 Tflops and 984 Gflops in single and double pre-
cision, respectively. In both two examples, the material parameters are: Shear
modulusµ = 106Pa, Poisson’s ratioν = 0.3„ and mass density ρ = 7400kg/m3.

5.1 Example 1

The first numerical example is to detect the efficiency of parallelize program code
proposed in section 4. A cubic with 0.3m length in each edge is introduced, and
the surface is faceted into numbers of elements through ACIS facet component
developed by Spatial Company. This example lists the comparison in two different
methods: conventional serial FMM-DRBEM algorithm and GPUparallel method.
Thetime consumption of six translationsof[G] [P] in FMM-DRBEM algorithm is
listed inTable 7, Table 8.

We should know that the expansion order not only affects the accuracy, but also
the efficiency during the calculation. The two tables lists comparison of the time
consumption in different expansion orders (Nexp = 3 and Nexp = 6). The effective-
ness of limit-number in leaf cell is also considered in this example. Two different
numbers of DOF are offered in this example: 3804 and 10122. The columns of
every table represent the following quantities:

N: the number of DOFs in the body;

T: translation type;

P: limit-number;

SG: singular GPU;

SR: speed-up ratio: CPU/SG;

Table 7 and Table 8 list result data of speed-up with GPU for translations in FMM
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Table 7: The effectiveness of speed-up and memory requirement for translations in
FMM with 3804 DOFs

N = 3804 TolNum = 10 

P T CPU(s) SG(ms) 

20 

E2M 60.088 696.83 

FLE 4.375 168.44 

NIC 8.3361 2250.7 

M2M 0.9922 295.18 

M2L 208.73 13163 

L2L 1.2404 236.34 

Total 283.76 16807.5 

40 

E2M 60.977 537.47 

FLE 4.4174 118.96 

NIC 17.88 6160.2 

M2M 0.3416 100.829 

M2L 48.352 2909.2 

L2L 0.4176 76.047 

Total 132.39 9902.7 

60 

E2M 60.707 459.34 

FLE 4.454 99.352 

NIC 19.774 6474.2 

M2M 0 0 

M2L 27.063 1624.8 

L2L 0 0 

Total 112.0 8657.7 

 

TolNum = 28 SR 

CPU(s) SG(ms)  

167.89 1516.9 

13.936 554.7 

8.3026 2598.9 

7.1841 647.52 

1820.9 33109 

8.3164 550.62 

2026.5 38978 

167.97 1344.6 

13.871 492.272

17.796 6215.3 

2.4958 236.185

421.12 7667.3 

2.8188 187.337

626.07 16143 

168.05 1189.6 

13.89 464.72 

19.313 6534.9 

0 0 

234.34 4194.1 

0 0 

435.6 12383 

86

3

16

5

To

111 25

55

15

Tota

113
3

33

17
5

Tota

13

3

11

55

15

Tota

132 35

3

17

Tota

141
4

3

56
Tota

 

 

26
4

tal = 17

3
11

al = 52

37

al = 13

3
28

al = 39

5

3

al = 13

40

3

al = 35

with different number of DOFs. The data listed in the tables explain the detail time
consumption during parallel and serial processes in different accuracy. The figures
in these tables show the time consumption proportion of each translation procedure,
and the speed-up ratio of each part. The max total speed-up ratio in Table 7 is 52



264 Copyright © 2012 Tech Science Press CMES, vol.86, no.3, pp.241-273, 2012

when TolNum= 28and limit-number = 60, and 32 in Table 8 when TolNum= 28and
limit-number = 100.

As these figures show, the total speed-up ratio is mostly determined by the speed-up
ratio of the translations which occupy large proportion in total time consumption.
The results will be affected by the number of limit-number in a leaf. Just like Table
7 shows, the total speed-up ratio is just 35 while limit-number = 60, far less than
52 while limit-number = 20. Because of unsuited limit-number respect to different
problems, the low speed-up translation has large influence on total speed-up ratio.
According from Table 7 and Table 8, it is obvious that the less of limit-number, the
higher ratio for total speed-up. However, the total time is decreasing as the limit-
number increase, except that the time consumption proportion of NIC procedure
occupies too large.

In addition, we can find that the expansion order has deep influence for the effec-
tiveness of speed-up. We list two kinds of Nexp in these tables, and both tables tell
that the time consumption is increasing with Nexp, but the speed-up ratio is also
improving obvious. That means the higher order of expansion applied, the higher
effect can be achieved. For example, the total speed-up ratio is 31 which is almost
three times than 11 obtained when Nexp = 10 in Table 8.

It is worth noting that the host memory collapse for the request memory of moment
expansion (TolNum= 28) in all levels exceeds 8GB which is the limitation of our
platform. Because of GHST method is applied in this paper, the scale of solvable
problem in GPU is actually larger than CPU.

The GPU memory requirement in 10122 DOFs is listed in Figure 10. The Max
requirement of memory is about 1400MB while TolNum equal to 28 (Nexp = 6).
Although the GPU card we used has two independent cores and each has 1536
MB storage space, but the communication cost is too expensive to apply for large
scale computation which needs interaction calculations time after time. The storage
memory requirement will be affected by the effect of acceleration. If we increase
the storage memory requirement, such as decreasing the limit-numberand storing
all intermediate data into GPU during computation, the speed-up effect will im-
prove obviously, but the scale of solvable problem will decrease rapidly, the vice
versa. Table 2 lists the estimate equation of memory in GPU, and Figure 10 lists the
memory requirement during computation in 10122 DOFs. We can find that the max
value is 1400MB which is close to the limit of the GPU card. Although this value
could decrease by change code structure of parallelize program, the effectiveness
will decrease rapidly and this kind of change is unnecessary for the limitation of
CPU memory.
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Table 8: The effectiveness of speed-up and memory requirement for translations in
FMM with 10122 DOFs

N = 10122 TolNum = 10 

P T CPU(s) SG(ms) 

60 

E2M 887.51 5821 

FLE 66.44 2362.8 

NIC 424.55 133447 

M2M 2.8232 514.28 

M2L 414.01 15771 

L2L 3.4717 422.11 

Total 1798.8 158338 

100 

E2M 889.89 5538.7 

FLE 65.874 1166.1 

NIC 429.04 133905 

M2M 0 0 

M2L 366.58 15079 

L2L 0 0 

Total 1751.4 155689 

140 

E2M 864.59 5480 

FLE 66.016 1123.9 

NIC 432.01 136140 

M2M 0 0 

M2L 368.36 13730 

L2L 0 0 

Total 1731 156474 

 

TolNum = 28 SR 

CPU(s) SG(ms)  

/ / 

/ / 

/ / 

/ / 

/ / 

/ / 

/ / 

2540 15168 

220.48 1822.6 

470.59 138781 

0 0 

3345.6 48583 

0 0 

6576.7 204355 

2444.5 15106 

211.39 1674.9 

435.36 140061 

0 0 

3238.4 47116 

0 0 

6329.7 224456 

152 28

3

6 26 8

Tot

161 56

3

24

Tota

167 1

3

69

Tota

158 59

3

27

Tota

162 1

3

69

Tota

 

 

tal = 11

l = 11

21

3

l = 32

al = 11

26

3

al = 31

5.2 Example 2

There will be two parts of analysis in this example. First, the effect of FMM-
DRBEM is discussed through comparing the time consumption between classi-
cal BEM and FMM-DRBEM with different number of elements while computing
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Figure 10: Memory requirement in GPU for each translation in different limit-
number (MB)

MVP. Second, the accuracy of FMM-DRBEM proposed in this paper need to be
demonstrated. The pedestal body is selected in this example, see Figure 11.

In the first part, the time consumption in different number of elements is summa-
rized in Figure 12. In each kind number of elements, the time consumption in
FMM-DRBEM is far less than classical BEM. We also find that the time cost of
classical BEM will increase rapidly with the number of element, and the increase
of FMM-DRBEM is far small, relatively. Because of the limitation of memory
space, the large scale of problem can’t be solved. So only three kind number of
classical BEM data are listed in this figure.

In the second part, the natural frequencies are calculated with the algorithm pro-
posed in section 2˜4. High accuracy is an important character of BEM with re-
spect to FEM and FDM. However, due to the approximation of unknown u(x, t)
(See Eq.(5)), the accuracy of DRBEM has been affected, but which could be fixed
by introducing collocation points during computation[Chirino; Gallego; Sáez and
Dominguez (1994)]. This paper lists the results corresponding to different number
of collocation points to check the accuracy of this algorithm. The calculation re-
sults by FEM (Ansys and Hyperworks) are also exhibited for comparison. Through
Figure 11(a), we find most orders of frequency are agreed with FEM except for the
orders in 4, 5 have some distance with Ansys and Hyperworks. Then, the colloca-
tion points are applied for computation process (b, c in Figure 13). It is obvious
that the agreement is closer than before, and the consistency is increasing as the
number of collocation points grows.
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Figure 11: Pedestal bodywith different number of elements

Although the number of collocation points indeed has positive effect for the accu-
racy in general, but this kind of affect is not immovable. Actually, the accuracy of
results evaluated with DRBEM is not bounded to the number of collocation points,
the accuracy will slightly increases for a small increase of number of collocation
points but decreases for further increase of them. The detail description of choosing
collocation points refers to Chirino et.al [Chirino; Gallego; Sáez and Dominguez
(1994)] and Agnantiaris et.al[Agnantiaris; Polyzos and Beskos (1996)], in which
the view that a small number of collocation points improve the accuracy of the
solution is proved.

6 Conclusion

Because of the complicated dynamic fundamental solutionsand low efficiency com-
putation processes in classical BEM for 3D elastodynamic problems, this paper in-
troduces a novel strategy with FMM-DRBEM and CUDA for accelerating compu-
tation process. First, the DRBEM is introduced to replace the dynamic fundamental
solution with static ones which efficientlydecrease the complexity in computation.
Then, FMM algorithmis introduced and modified to fit for MMP computation dur-
ing DRBEM.Finally, we re-program the total computation codes into parallel codes
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Figure 12: Time consumption in different methods

with CUDA to efficientlyaccelerate FMM computation processes. Apart from the
general parallel strategies in GPU programming, we proposed some new strategies
to optimize the computation processes such as PRS method for summation, GHST
method for data transportation, and optimization of M2L procedure with respect
to the characteristics of CUDA. In the last section, we propose numerical exam-
ples to examine the efficiency and accuracy of the algorithm proposed in this paper.
The free vibration analysis for natural frequency is considered to check the accu-
racy through comparison with FEM, and the memory requirement in GPU is also
checked to test the max magnitude could be solved in this platform. The affection
of collocation points is considered, and the detail explanation for the itemcan be
found in Chirino et.al[Chirino; Gallego; Sáez and Dominguez (1994)] and Agnan-
tiaris et.al. [Agnantiaris; Polyzos and Beskos (1996)].
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Appendix

Ui j (x,y) =
1

8πµ∫
∞

n=0

∫ n

m=−n

[
Fi j,n,m (x− yc)Rn,m (y− yc)+Gi,n,m (x− yc)(y− yc)Rn,m (y− yc)

]
,

(15)

Ti j (x,y) = E jkl pnk (y)
∂

∂yp
Uil (x,y) , (16)

Where

Fi j,n,m (x− yc) =
λ +3µ

λ +2µ
δi jSn,m (x− yc)−

λ + µ

λ +2µ
(x− yc) j

∂

∂xi
Sn,m (x− yc) , (17)

Gi,n,m (x− yc) =
λ + µ

λ +2µ

∂

∂xi
Sn,m (x− yc) , (18)

Where

Rn, m (x) =
1

(n+m)!
Pm

n (cosθ )eimφ rn,

Sn, m (x) = (n + m)!Pm
n (cosθ )eimφ 1

rn+1 .

(19)

The relationship between Rn, m (x) and Sn, m (x) shows in follow:

Sn, m (y, x) =
∫

∞

n′=0

∫ n
′

m′= −n′
Rn′ ,m′ (y)Sn+ n′ , m+ m′ (x),

Rn, m (y, x) =
∫ n

n′=0

∫ n
′

m′= −n′
Rn′ ,m′ (−y)Sn− n′ , m− m′ (x).

Moment Expansion:

M j,n,m (yc) =
∫

Sc

Rn,m (y− yc) t j (y)dS (y), (20)

Mn,m (yc) =
∫

Sc

(y− yc) jRn,m (y− yc) t j (y)dS (y), (21)

M j,n,m
(
yc′
)

=
∫ n

n′=0

∫ n
′

m′=−n′
Rn′ ,m′

(
yc′ − yc

)
M j,n−n′ ,m−m′ (yc), (22)
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Mn,m
(
yc′
)

=∫ n

n′=0

∫ n
′

m′=−n′
Rn′ ,m′

(
yc′ − yc

)
[Mn−n′ ,m−m′ (yc)+

(
yc′ − yc

)
jM j,n−n′ ,m−m′ (yc) .

(23)

Local Expansion

L j,n,m (xL) = (−1)n
∫

∞

n′=0

∫ n
′

m′=−n′
Sn+n′ ,m+m′ (xL− yc)M j,n′ ,m′ (yc), (24)

Ln,m (xL) =

(−1)n
∫

∞

n′=0

∫ n
′

m′=−n′
Sn+n′ ,m+m′ (xL− yc) [M j,n′ ,m′ (yc)−(xL− yc) jM j,n′ ,m′ (yc)],

(25)

L j,n,m
(
xL′
)

= (−1)n
∫

∞

n′=n

∫ n
′

m′=−n′
Rn′−n,m′−m

(
xL′ − xL

)
L j,n′ ,m′ (xL), (26)

Ln,m
(
xL′
)

=

(−1)n
∫

∞

n′=n

∫ n
′

m′=−n′
Rn′−n,m′−m

(
xL′ − xL

)
[Ln′ ,m′ (xL)−

(
xL′ − xL

)
jL j,n′ ,m′ (xL)].

(27)
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