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A Localized RBF Meshfree Method for the Numerical
Solution of the Kdv-Burger’s Equation

G. C. Bourantas1 and V. C. Loukopoulos2

Abstract: This paper formulates a local Radial Basis Functions (LRBFs) colloca-
tion method for the numerical solution of the non-linear dispersive and dissipative
KdV-Burger’s (KdVB) equation. This equation models physical problems, such
as irrotational incompressible flow, considering a shallow layer of an inviscid fluid
moving under the influence of gravity and the motion of solitary waves. The local
type of approximations used, leads to sparse algebraic systems that can be solved
efficiently. The Inverse Multiquadrics (IMQ), Gaussian (GA) and Multiquadrics
(MQ) Radial Basis Functions (RBF) interpolation are employed for the construc-
tion of the shape functions. Accuracy of the method is assessed in terms of the L2
and L∞ error norms and three conservative properties related to mass, momentum
and energy. Additionally we investigate how both the accuracy and the stability of
the proposed method are affected from the number of nodes in the support domain,
the parameter dependent RBFs, the condition number of the resulting algebraic
systems and finally the time step length. Numerical experiments demonstrate the
accuracy and the robustness of the method for solving nonlinear dispersive and dis-
sipative problems, while stability analysis demonstrates that the numerical scheme
is conditionally stable.

Keywords: Meshfree point collocation method; RBF; KdV-Burger; Solitons; Dis-
sipative; Dispersive.

1 Introduction

The theoretical study of the irrotational incompressible flow, considering a shal-
low layer of an inviscid fluid moving under the influence of gravity, has attracted
a great interest among the scientific community. Additionally, surface tension and
particularly the motion of solitary waves has been an interesting subject of research
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for more than a century [Whitham 1974]. An interesting equation, initially formu-
lated in [Su and Gardner (1969)], with numerous applications is the KdV-Burgers’
equation. Kortewege-de Vries-Burgers’ equation is a nonlinear partial differential
equation, which is given by

∂u
∂ t

+ εu
∂u
∂x
− v

∂ 2u
∂x2 + µ

∂ 3u
∂x3 = 0, (1)

where ε , ν and µ are positive parameters. In fact, the small parameters ε and µ

are related to a small-amplitude and a long-wavelength assumption, respectively
and, ν is the kinematic viscosity. Furthermore, the right-hand side of Eq. (1) is not
actually zero in general, but is comprised of terms of order ε2, µ2 and εµ which
are neglected in the KdV-Burger approximation.

More precisely, this model arises in numerous physical applications such as prop-
agation of waves in elastic tube filled with a viscous fluid [Jonson (1970)] and
weakly non-linear plasma waves with certain dissipative effects [Grad and Hu
(1967)]. It represents long wavelength approximations where effects of the non-
linear advection term u ∂u

∂x are counterbalanced by the dispersion ∂ 3u
∂x3 . Numerous

theoretical issues related the KdV-Burger equation have received considerable at-
tention, over the last years. Authors in [Demeiray (1998)] and [Antar and Demi-
ray (1997)] derived KdVB equation as the governing evolution equation for wave
propagation in fluid-filled elastic or viscoelastic tubes in which the effects of dis-
persion, dissipation and non-linearity were present. KdV-Burger equation can be
regarded as the combination of the Burgers’ equation (µ=0) and the KdV equation
(ν=0). The former equation was first used by Burger in 1939 [Burger (1939)] for
the study of turbulence (Burger’s equation can be considered as linearized Navier-
Stokes equations), while the later equation was first suggested by Kortewege and
de Vries [Kortewege and de Vries (1895)], who studied the change in shape of long
waves moving in a rectangular shallow water channel.

A considerable number of researchers solved the KdV-Burger equations using well-
established numerical methods. In details, authors in [Zaki (2000)] have used quin-
tic B-spline finite elements method. An algorithm, based on the collocation method
with quintic B-spline finite elements, was set up in order to simulate the solutions
of the KdV, Burgers’ and the KdV-Burger equations, along with the migration of
solitary waves and the temporal evolution of a Maxwellian initial pulse. Burgers’
equation was also solved for different values of Reynolds number, while the time
evaluation of the solutions of the KdVB equation with different values of the dif-
fusion and dispersion coefficients was also examined. Invariants and error norms
were studied for the determination of the conservation properties of the algorithm,
while a linear stability analysis showed that the scheme was unconditionally stable.
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Furthermore, in [Talaat and El-Danaf (2008)] authors used a septic B-spline and
they obtained numerical methods for solution of KdVB equation. By applying the
Von-Neumann stability analysis technique, the authors showed that the method is
unconditionally stable. By conducting a comparison between the absolute error for
the obtained numerical results and the analytic solution of the equation the accuracy
of the proposed method was tested. In [Kaya and Aassila (2006), Soliman (2006)],
authors utilized a decomposition method along with a variational iteration method
in order to obtain exact solution of KdV-Burger equation. More precisely, in [Kaya
and Aassila (2006)] the explicit solutions for the generalized Korteweg–de Vries
equation with initial condition were calculated by using the Adomian Decompo-
sition Method (ADM), indicating that the decomposition method is efficient and
accurate, while in [Soliman (2006)] a variational iteration method for the solution
of the Korteweg-de Vries Burgers (for short, KdVB) was obtained and the numeri-
cal results were compared with those calculated using an Adomian Decomposition
Method. The comparison demonstrates that the two obtained solutions are in an
excellent agreement. As the authors claim, the numerical results calculated show
that the variational iteration method can be readily implemented to this type of
nonlinear equations with excellent accuracy.

Over the past two decades a new class of numerical methods has emerged. Moti-
vated, in part, by the difficulties that are present in the traditional numerical meth-
ods, such as FEM, FDM, FVM, BEM and Spectral [Liu (2002), Atluri and Shen
(2002)], meshless (or meshfree) methods emerged as a potential alternative to the
aforementioned traditional, mesh-based numerical methods. Nevertheless, mesh-
less methods compared to FEM (which originated in the fifties) or FD (which date
back even earlier) are still in their developement stages. In meshless methods no
kind of a pre-defined nodal connectivity is necessary and, the nodes are uniformly
or even non-uniformly distributed in the spatial domain and on the boundaries. As
it is referred in [Belytschko, Krongauz, Organ, Fleming and Krysl (1996)], several
meshfree methods have been proposed since the prototype of the meshfree meth-
ods, the Smoothed Particle Hydrodynamics (SPH), was born. Regarding the mesh-
less methods, according to the formulation procedures they can be classified into
two major categories, namely the collocation-based and the Galerkin-based meth-
ods, solving the strong- and weak-forms of the problems considered, respectively.
Both formulations pose advantages and limitations [Liu and Gu (2005)].

Kansa [Kansa (1990)] introduced a numerical technique, in order to solve partial
differential equations by collocation method using radial basis functions (RBFs).
Since then, several radial basis functions introduced and Kansa’s method has been
further upgraded to symmetric collocation [Fasshauer (1997), Power and Barraco
(2002)], to modified collocation [Chen (2002)], and to indirect collocation [Mai-
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Duy and Tran-Cong (2003)]. We have to notice that the resulting collocation ma-
trix obtained in Fasshauer’s approach [Fasshauer (1997)] is symmetric and non-
singular, while the matrix obtained in Kansa’s approach is non-symmetric and in
some cases non-singular. In spite of their accuracy, all of the above listed methods
usually fail to perform on large problems, since they produce fully populated matri-
ces, which are sensitive to the choice of the free parameters in RBFs. Furthermore,
in all the cases mentioned above, a highly ill-conditioned dense matrix must be in-
verted due to the globally supported RBFs. Moreover, the computation complexity
increases when these methods are applied at nonlinear or time dependent problems.
Thus, these methods are impractical for real problems, where the nodes used and
the resulting algebraic systems can be up to millions of unknowns.

On the other hand, sparse matrices can be generated by the introduction of the
compactly supported RBFs. Thus, the concept of local collocation in the context
of an RBF-based solution has been introduced by Wright and Fornberg [Wright
and Fornberg (2006)]. As it is depicted, using the local RBFs some advantages are
attained as, the only geometrical data needed for the construction of the matrices
are for those nodes that fall into the support domain of each node, the properties
of the constructed shape functions are the same with those for the global RBF, but
the approximation method is stable and insensitive to the free parameter needed for
the formulation and finally, the computational cost is decreasing since the matrix
operations require the inversion of matrices of small size, equal to the number of
nodes in the support domain [Wright and Fornberg (2006)].

For the construction of the meshless locally-supported shape functions, any La-
grangian or Hermitian RBF Hardy’s interpolation can be used, which can recon-
struct the field variable in each point into the support domain. Thus, several strate-
gies have been proposed to possibly improve the imposing of the derivative bound-
ary conditions in a strong-form approach. Some others efforts to bring localization
in RBF-based methods have been independently made in [Lee, Liu and Fan (2003,
Tolstykh and Shirobokov (2003), Šarler and Vertnik (2006), Vertnik and Šarler
(2006)]. Particularly, numerical solutions for KdVB equation were obtained using
sophisticated meshless numerical methods. In [Haq, Ul-Islam and Uddin (2009)]
a simple classical radial basis functions (RBFs) collocation (Kansa) method was
formulated for the numerical solution of the nonlinear dispersive and dissipative
KdV–Burgers’ (KdVB) equation.

In the present work the Inverse Multiquadrics (IMQ), Gaussian (GA) and Multi-
quadrics (MQ) Radial Basis Functions (RBF) interpolation are employed for the
construction of the shape functions, not in the entire domain but in local sub-
domains, in conjunction with the general framework of the point collocation method
in order to solve numerically the KdV-Burger equation and to depict the efficiency
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and the accuracy of the proposed numerical scheme. Thus, first we solve the KdV-
Burger equation by using the proposed numerical scheme, following we examine
the numerical solution of the Burger’s equation and, finally we turn to the well
known KdV equation verifying the behavior of solitary waves. The rest of the paper
is organized as follows. In Sections 2 and 3, we describe the interpolation method
for the local sub-domains, which is used the main steps of the meshless point collo-
cation numerical procedure. A stability analysis of the proposed numerical method
is presented in Section 4, while numerical investigation for the KdV-Burger, Burger
and KdV equations are presented in Section 5. Finally, our conclusions are given
in Section 6.

2 Basic Concepts of Mesh Free Techniques

2.1 Defining the support domain

In the context of localized collocation meshless methods (LCMM), spatial dis-
cretization is performed over uniformly or non-uniformly distributed points, called
nodes. Herein, the LCMM is handled with the local radial basis function formu-
lation, where each node is connected to a set of neighboring points, defining a
local topology of surrounding nodes, namely the support domain. The current lo-
cal topology structure is fixed, that is, the number of nodes in the support domains
remains constant. However, this structure can be altered based on the progress of
the numerical solution, resulting in a local type refinement procedure.

2.2 Proposed numerical scheme

Consider a function u(x) defined in the spatial domain Ω, represented by a set
of nodes scattered in the problem domain and on the boundary ∂Ω. The afore-
mentioned function is then interpolated using the nodal values at the nodes of the
support domain of a point of interest xQ. Then, the approximation uh (x) of the
function u(x) at an arbitrary point x can be written, using the following finite series
representation, as:

un (xi) =
N

∑
j=1

λ
n
j ϕi (ri j) , (2)

where xi = iδx, are collocation points in interval [a,b], i = 1,2,3, ..,N, δx is the
space step, ri j =

∥∥xi− x j
∥∥ is the distance between the collocation points xi and

x j, and λ n
j are unknown coefficients to be determined and φ (ri j) is a radial basis

function, listed at Table 1. Following, we present the proposed collocation scheme
to approximate the KdV-Burger’s equation. We also present a θ -weighted time-
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Table 1: Typical Conventional Form of Radial Basis Functions

Item Name Expression Shape 

Parameters
1 
2 
3 
4 
5 

Multiquadrics (MQ) 
Gaussian (GA) 

Thin plate splines (TPS) 
Logarithmic RBF 

Inverse Multiquadrics 
(IQ) 

( ) ( ) ( ) ( )2 22 2 2
qq

i i i iR x , y r C x x y y C = + = − + − +   
( ) ( ) ( )( )2 2

2 i ii
c x x y ycr

iR x , y e e
− − + −−= =  

( ) ( ) ( )2 2

i i i iR x , y r x x y y
η

η  = = − + −   
( )i i i iR r r log rη=  

( ) ( ) ( ) ( )2 22 2 2
qq

i i i iR x , y r C x x y y C
−−  = + = − + − +   

C,q  
c  
η  
η  
C,q  

 

stepping scheme for temporal discretization. For that reason, we consider the KdV-
Burger Eq. (1) subject to the Dirichlet boundary conditions,

u(a, t) = g1 (t) , u(b, t) = g2 (t) , t > 0 (3)

and initial condition,

u(x,0) = f (x) , x ∈ [a,b]⊂ R, (4)

where g1,g2 are given functions of t and f (x) is a bounded, localized disturbance
inside the interval [a,b]. The discretization in time of Eq. (1) has been done using
the Crank-Nicolson rule (θ = 1

2 ), while for the linearization of Eq. (1) the method
of lagging the coefficients was applied. That is, for the linearization of the non-
linear term u ∂u

∂x , we assumed that the quantity u was locally constant, resulting in:

un+1−un

δ t
+θ

{
εunun+1

x −νun+1
xx + µun+1

xxx
}

+(1−θ){εunun
x−νun

xx + µun
xxx}= 0,

(5)

where tn+1 = tn +δ t, un+1 = u
(
x, tn+1

)
and δ t is the time step size.

Rearranging Eq. (5), we write the terms of the time step (n+1) at the left hand
side and the terms of the time step (n) at the right hand side, obtaining

un+1 +θδ t
{

εunun+1
x −νun+1

xx + µun+1
xxx
}

= un−(1−θ)δ t {εunun
x−νun

xx + µun
xxx} .

(6)

Following, we approximate the solution using RBF shape functions Eq. (2) and,
substituting approximation Eq. (2) in Eq. (6) for all the interior points xi, i =
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1,2,3, ..,N−1 we get the following discretized equation

N

∑
j=0

λ
n+1
j ϕ (ri j)+

δ tθ

[
ε

N

∑
j=0

λ
n
j ϕ (ri j)

N

∑
j=0

λ
n+1
j ϕx (ri j)−ν

N

∑
j=0

λ
n+1
j ϕxx (ri j)+ µ

N

∑
j=0

λ
n+1
j ϕxxx (ri j)

]
=

N

∑
j=0

λ
n
j ϕ (ri j)−

δ t (1−θ)

[
ε

N

∑
j=0

λ
n
j ϕ (ri j)

N

∑
j=0

λ
n
j ϕx (ri j)−ν

N

∑
j=0

λ
n
j ϕxx (ri j)+ µ

N

∑
j=0

λ
n
j ϕxxx (ri j)

]
.

(7)

Finally, the boundary conditions Eq. (3) become as

N

∑
j=0

λ
n+1
j ϕ (r0 j) = g1 (t) , (8)

N

∑
j=0

λ
n+1
j ϕ (rN j) = g2 (t) . (9)

Eq. (2) can be written in matrix notation

u(n) (xi) = Aλλλ
(n), (10)

where A = [ϕ (ri j) : 1≤ i≤ N,1≤ j ≤ N] and λλλ (n) =
[
λ

(n)
1 ,λ

(n)
2 , ...,λ

(n)
N

]T
. The

matrix A can be split into two matrices Ad and Ab corresponding to N−2 interior
points and two boundary points in the following form:

A = Ad +Ab, (11)

where Ad = [ϕ (ri j) : 2≤ i≤ N−1, 1≤ j ≤ N and 0 elsewhere] and

Ab = [ϕ (ri j) : i = 1,N, 1≤ j ≤ N and 0 elsewhere] .

Finally, combining Eqs. (7)-(9) and (10) and writing in matrix notation we get[
Ad +θδ t

[
ε
(
U(n) ∗Bd

)
− vCd + µDd

]
Ab

]
λλλ

(n+1) =[
Ad +θδ t

[
ε
(
U(n) ∗Bd

)
− vCd + µDd

]
0

]
λλλ

(n) +
[

0
g(n+1)

]
, (12)
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where B, C and D are (N−2)× (N−2) matrices such that

B =
[
φ
′ (ri j) : 2≤ i≤ N−1, 1≤ j ≤ N and 0 elsewhere

]
,

C =
[
φ
′′
(ri j) : 2≤ i≤ N−1, 1≤ j ≤ N and 0 elsewhere

]
,

D =
[
φ
′′′
(ri j) : 2≤ i≤ N−1, 1≤ j ≤ N and 0 elsewhere

]
.

The symbol ∗means that the ith component of the vector U(n) is multiplied to every
element of the ith row of the matrix B. Thus, Eq. (12) can be rewritten as

λλλ
(n+1) = M−1Nλλλ

(n) +M−1f(n+1), (13)

where

M =
[

Ad +θδ t
[
ε
(
U(n) ∗Bd

)
− vCd + µDd

]
Ab

]
,

N=
[

Ad +θδ t
[
ε
(
U(n) ∗Bd

)
− vCd + µDd

]
0

]
,

f =
[

0
g(n+1)

]
,

From Eqs. (10) and (13), we can write

u(n+1) = AM−1NA−1u(n) +AM−1f(n+1). (14)

Authors in [Hon and Schaback (2001)] have shown that the non-singularity of the
matrix M can not be proved in general, therefore, it is not possible to show that the
scheme is well-posed in all such cases. However, singularities in practical prob-
lems are rare. Eq. (14) represents a system of N linear algebraic equations in N
unknown parameters u j. A crucial point of the numerical method is the solution of
the resulting algebraic problem. Since the positivity conditions [Jin, Li and Aluru
(2004)] are fulfilled the resulting system can be solved by the Gaussian elimination
method.

3 Stability Analysis

In this section, we present the stability of the Eq. (14) considering the local mesh-
less approximation using the matrix method. As we already mentioned, Eq. (1) can
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be linearized by assuming the quantity u in the nonlinear term u ∂u
∂x in Eq. (6) as

locally constant. The error e(n) at the nth time level is given by

e(n) = u(n)
exact −u(n)

app, (15)

where u(n)
exact and u(n)

app are the exact and the numerical solutions at the nth time level.
The error equation for the linearized KdVB equation, in matrix form, can be written
as;

en+1 = Ken, (16)

where the amplification matrix K is

K =
[
Ad +θδ t

[
ε

(
U(n) ∗Bd

)
− vCd + µDd

]]−1
[

Ad +
δ t
2

[−µDd + vCd ]
]
. (17)

The numerical scheme will be stable as n→ ∞ if the error en → 0. This can be
guaranteed provided that ‖K‖2 ≤ 1, which is equivalent to ρ (K) < 1, where ρ (K)
denotes the spectral radius of the amplification matrix K. From Eq. (17), it can be
seen that the stability is assured if all the eigenvalues of the matrix

K = [H+θδ tJ]−1 [H− (1−θ)δ tJ] (18)

satisfy the following condition∣∣∣∣λH −δ t (1−θ)λJ

λH +δ tθλJ

∣∣∣∣≤ 1, (19)

where H = Ad , J = −vCd + µDd and λH , λJ are the eigenvalues of the matrix H
and J, respectively. When θ = 0.5, the above inequality becomes∣∣∣∣λH −0.5δ tλJ

λH +0.5δ tλJ

∣∣∣∣≤ 1. (20)

In case of complex eigenvalues λH = ah + ibh, λJ = a j + ib j, where ah, a j, bh and
b j are any real numbers, the inequality Eq. (20) takes the following form,∣∣∣∣(ah−0.5δ taJ)+ i(bh−0.5δ tbJ)
(ah +0.5δ taJ)+ i(bh +0.5δ tbJ)

∣∣∣∣≤ 1. (21)

The inequality Eq. (21) is satisfied if aha j +bhb j ≥ 0. For real eigenvalues, the in-
equality Eq. (21) holds true if either (λH ≥ 0 and λJ ≥ 0) or (λH ≤ 0 and λJ ≤ 0).
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This shows that the scheme Eq. (21) is unconditionally stable if aha j + bhb j ≥ 0,
for complex eigenvalues and if either (λH ≥ 0 and λJ ≥ 0) or (λH ≤ 0 and λJ ≤ 0),
for real eigenvalues. When θ = 0, the inequality Eq. (19) becomes∣∣∣∣1− δ tλJ

λH

∣∣∣∣≤ 1. (22)

Thus for θ = 0, the scheme is conditionally stable. The stability of the scheme and
conditioning of the component matrices H, J depend on the weight parameter θ , the
minimum distance between any two collocation points h in the domain set [a,b] and
the shape parameter c. Authors in [Cheng, Golberg, Kansa and Zammito (2003)]
showed that when c is very large then the RBFs system error is of exponential order.
But there is a certain limit for the value c after which the solution breaks down. For
the limiting value of c the condition number of the RBFs system becomes so large
that the system leads to ill-conditioning. In the case of an ill-conditioned system,
the numerical solution thus produced is not stable.

4 Numerical results

In this section we investigate numerically the behavior of the KdV-Burger’s equa-
tion and for that reason we solve three representative examples in order to check the
efficiency and the validity of the proposed scheme. Thus, accuracy of the results is
computed using the L2 and the L∞ error norms given by

L2 = ‖uexact −uapp‖2 =

√√√√h
N

∑
j=0

∣∣∣(uexact) j− (uapp) j

∣∣∣2, (23)

and

L∞ = ‖uexact −uapp‖∞
= max

j

∣∣∣(uexact) j− (uapp) j

∣∣∣ , (24)

where uexact and uapp represent the exact and approximate solutions respectively
and h the minimum grid spacing. Concerning the conservation properties, the KdV-
Burger’s equation possesses three conservative properties related to mass, momen-
tum and energy given by [Miura, Gardner and Kruskal (1968)]

C1 =
b∫

a

udx, (25)

C2 =
b∫

a

u2dx, (26)
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C3 =
b∫

a

(
u3− 3µ

ε
(ux)

2
)

dx. (27)

In order to achieve accurate results a comprehensive study took place, regarding
the total number of the nodes used, the number of nodes in the support domain of
each center node, the shape parameter used and, finally the condition number of
the moment matrix. A compromise between the condition number and the shape
parameter was chosen in order to fulfill the requirements of the so-called ‘Schaback
uncertainty condition’ [Hon and Schaback (2001)]. We can observe that the local
RBF methods can give accurate numerical result, but they are very sensitive to
the choice of the shape parameter used at the shape functions. More precisely we
define the condition number of the moment matrix as a criterion, combining all
the above parameters that produces accurate, efficient and stable numerical results.
Thus, we examine the efficiency and the accuracy of the proposed scheme using
three representative numerical examples.

4.1 Example 1: KdV-Burger’s

Consider KdV-Burger’s equation and the initial condition

u(x,0) =− 6v2

25µ

[
1+ tanh

(
vx

10µ

)
+

1
2

sech2
(

vx
10µ

)]
. (28)

The exact solution, having initial condition (Eq. (28)) is given by [Kaya (2004)]

u(x, t) =− 6v2

25µ

[
1+ tanh(ξ )+

1
2

sech2 (ξ )
]
, (29)

where ξ = v
10µ

(
x+ 6v2

25µ
t
)

. Additionally, we consider the following boundary con-
ditions

u(α, t)=− 6v2

25µ

[
1+ tanh

(
v

10µ

(
α +

6v2

25µ
t
))

+
1
2

sech2
(

v
10µ

(
α +

6v2

25µ
t
))]

,

(30)

u(b, t)=− 6v2

25µ

[
1+ tanh

(
v

10µ

(
b+

6v2

25µ
t
))

+
1
2

sech2
(

v
10µ

(
b+

6v2

25µ
t
))]

.

(31)
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                                           (a)                                                                                  (b) 

 

 
                                           (c)                                                                                  (d) 

 
Figure 1: KdVB type solutions for different values of the viscosity (a) v =0.004
- (b) v =0.04 - (c) v =0.1 and (d) v =1 , showing that solution vector for KdVB
equation tends to behave like a solution of Burger equation, when local type MQ
shape function is used.

Furthermore, for our computations we consider ε = 1, µ = 0.1, δx = 0.5, δ t = 0.01
and v = 0.004,0.04,0.1 respectively, in order to study the effects of viscosity in Eq.
(1). The spatial domain is defined as −20≤ x≤ 20. In Fig. 1, the solution profiles
for different values of v are presented and, the numerical results are plotted using
the local type MQ shape function, and are compared with the analytical solution.
From the figures presented we can observe that, as viscosity v increases the solution
of KdVB equation tends to behave like the solution of Burgers’ equation (Example
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(a) (b) 
 

(c)  
 

Figure 2: Errors (exact solution-numerical solution) at t = 10 for v =0.004.

2), since the solution describes a formatting steep layer. Furthermore, Fig. 2 rep-
resents the error graphs of the solutions at time t = 10s using local IMQ, MQ, and
GA, respectively.

The L2 and L∞ error norms, and the conservative laws are shown in Tables 2–4.
The numerical results obtained using the global RBF functions are listed in Tables
2a-3a-4a, while the results from local RBF in Tables 2b-3b-4b. The numerical re-
sults listed there show that all the three invariants are preserved very accurately
by the local meshfree method. Numerical results obtained using three types of
radial basis functions, i.e., global multiquadric (MQ), Gaussian (GA) and Inverse
quadric (IMQ) are compared with the results provided herein using the local type
RBF functions. Concerning the local RBF functions, the tabulated results obtained
corresponding to the values of shape parameter c = 0.005, c = 0.025 and c = 0.01
for LMQ, LGA and LIQ, respectively. The support domain was defined to be the
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Table 2a: Invariants and error norms for single soliton v = 0.004 and δ t = 0.001 ,
using global RBF.

Time 1s 2s 3s 10s 
MQ 

1C  
2C  
3C  
L∞  

2L  
GA 

1C  
2C  
3C  
L∞  

2L  
IQ 

1C  
2C  
3C  
L∞  

2L  

 
-2.331E-003 
1.343E-007 
-8.619E-012 
6.822E-009 
8.845E-009 

 
-2.360E-003 
1.360E-007 
-8.137E-012 
7.913E-009 
5.378E-009 

 
 

-2.331E-003 
1.343E-007 
-9.202E-012 
4.077E-007 
2.574E-007 

 
-2.331E-003 
1.343E-007 
-8.622E-012 
1.150E-008 
1.652E-008 

 
-2.360E-003 
1.360E-007 
-8.195E-012 
5. 128E-008 
3.488E-008 

 

-2.331E-003 
1.343E-007 
-1.148E-011 
7.475E-007 
4.982E-007 

 
-2.331E-003 
1.343E-007 
-8.624E-012 
1.485E-008 
2.338E-008 

 
-2.360E-003 
1.360E-007 
-8.451E-012 
1.677E-007 
1.199E-007 

 

-2.332E-003 
1.344E-007 
-1.368E-011 
9.830E-007 
6.709E-007 

 
-2.331E-003 
1.343E-007 
-8.630E-012 
2.479E-008 
6.046E-008 

 
-2.364E-003 
1.364E-007 
-2.161E-011 
3.294E-006 
3.706E-006 

 

-2.332E-003 
1.344E-007 
-2.161E-011 
1.270E-006 
8.858E-007 

 

Table 2b: Invariants and error norms for single soliton v =0.004 and δ t =0.01 ,
using local RBF.

Time 1s 2s 3s 10s 
LMQ 

1C  
2C  
3C  
L∞  

2L  
LGA 

1C  
2C  
3C  
L∞  

2L  
LIMQ 

1C  
2C  
3C  
L∞  

2L  

 
-2,103E-004 
1.327E-009 
-7.644E-015 
3.293E-013 
2.048E-012 

 
-2.303E-004 
1.327E-009 
-7.644E-015 
7.953E-012 
4.977E-011 

 

-2.303E-004 
1.327E-009 
-7.644E-015 
1.586E-011 
9.908E-011 

 
-2.304E-004 
1.327E-009 
-7.644E-015 
6.585E-013 
4.094E-012 

 
-2.303E-004 
1.327E-009 
-7.644E-015 
1.590E-011 
9.952E-011 

 

-2.303E-004 
1.327E-009 
-7.644E-015 
3.172E-011 
1.981E-010 

 
-2.304E-004 
1.327E-009 
-7.644E-015 
9.877E-013 
6.140 E-012 

 
-2.303E-004 
1.327E-009 
-7.644E-015 
2.386E-011 
1.492E-010 

 

-2.303E-004 
1.327E-009 
-7.644E-015 
4.759E-011 
2.971E-010 

 
-2.304E-004 
1.327E-009 
-7.644E-015 
3.292E-012 
2.043E-011 

 
-2.303E-004 
1.327E-009 
-7.644E-015 
7.952E-011 
4.969E-010 

 

-2.303E-004 
1.327E-009 
-7.644E-015 
1.586E-010 
9.892E-010 
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Table 3a: Invariants and error norms for single soliton v =0.04 and δ t =0.001

Time 1s 2s 3s 10s 
MQ 

1C  
2C  
3C  
L∞  

2L  
GA 

1C  
2C  
3C  
L∞  

2L  
IQ 

1C  
2C  
3C  
L∞  

2L  

 
-2.198E-001 
1.300E-003 
-8.368E-006 
2.936E-006 
3.727E-007 

 
-2.223E-001 
-1.315E-003 
-8.477E-006 
-1.482E-006 
2.865E-006 

 
 

-2.198E-001 
1.300E-003 
-8.381E-006 
3.925E-005 
2.842E-005 

 
-2.198E-001 
1.300E-003 
-8.369E-006 
4.204E-006 
2.207E-008 

 
-2.223E-001 
-1.315E-003 
-8.481E-006 
-8.668E-006 
9.908E-006 

 
 

-2.200E-001 
1.302E-003 
-8.592E-006 
2.465E-004 
2.251E-004 

 
-2.199E-001 
1.300E-003 
-8.371E-006 
4.126E-006 
1.928E-006 

 
-2.223E-001 
-1.316E-003 
-8.491E-006 
2.665E-005 
2.575E-005 

 
 

-2.202E-001 
1.304E-003 
-8.545E-006 
3.567E-004 
4.205E-004 

 
-2.200E-001 
1.301E-003 
-8.381E-006 
5.800E-006 
1. 297E-005 

 
-2.229E-001 
-1.323E-003 
-8.654E-006 
2.987E-004 
4.084E-004 

 
 

-2.186E-001 
1.284E-003 
-1.349E-005 
1.669E-003 
1.878E-003 

 

Table 3b: Invariants and error norms for single soliton v =0.04 and δ t =0.01

Time 1s 2s 3s 10s 
LMQ 

1C  
2C  
3C  
L∞  

2L  
LGA 

1C  
2C  
3C  
L∞  

2L  
LIQ 

1C  
2C  
3C  
L∞  

2L  

 
-0.230E-002 
1.326E-005 
-7.649E-009 
1.645E-009 
9.529E-009 

 

-0.230E-002 
1.326E-005 
-7.649E-009 
7.679E-009 
4.515E-008 

 
-0.230E-002 
1.326E-005 
-7.649E-009 
1.175E-009 
5.707E-009 

 
-0.230E-002 
1.326E-005 
-7.649E-009 
3.284E-009 
1.900E-008 

 

0.230E-002 
1.326E-005 
-7.649E-009 
1.535E-008 
9.016E-008 

 
-0.230E-002 
1.326E-005 
-7.649E-009 
2.342E-009 
1.139E-008 

 
-0.230E-002 
1.326E-005 
-7.649E-009 
4.919E-009 
2.844E-008 

 

0.230E-002 
1.326E-005 
-7.649E-009 
2.300E-008 
1.350E-007 

 
-0.230E-002 
1.326E-005 
-7.649E-009 
3.507E-009 
1.706E-008 

 
-0.230E-002 
1.326E-005 
-7.649E-009 
1.638E-008 
9.375E-008 

 

0.230E-002 
1.326E-005 
-7.649E-009 
7.643E-008 
4.469E-007 

 
-0.230E-002 
1.326E-005 
-7.649E-009 
1.156E-008 
5.645E-008 
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Table 4a: Invariants and error norms for single soliton v =0.1 and δ t =0.001

Time 1s 2s 3s 10s 
MQ 

1C  
2C  
3C  
L∞  

2L  
GA 

1C  
2C  
3C  
L∞  

2L  
IQ 

1C  
2C  
3C  
L∞  

2L  

 
-1.205E-000 
4.863E-002 
-2.150E-003 
1.540E-005 
1.004E-005 

 
-1.217E-000 
4.921E-002 
-2.178E-003 
1.540E-005 
2.564E-005 

 
 

-1.205E-000 
4.863E-002 
-2.151E-003 
1.314E-004 
1.169E-004 

 
-1.206E-000 
4.868E-002 
-2.152E-003 
3. 760E-005 
1.732E-005 

 
-1.218E-000 
4.926E-002 
-2.181E-003 
6.794E-005 
8.394E-005 

 
 

-1.206E-000 
4.870E-002 
-2.154E-003 
2.330E-004 
3.476E-004 

 
-1.207E-000 
4.874E-002 
-2.155E-003 
4.604E-005 
2.874E-005 

 
-1.220E-000 
4.933E-002 
-2.184E-003 
1.622E-004 
1.864E-004 

 
 

-1.207E-000 
4.876E-002 
-2.156E-003 
1.741E-004 
3.315E-004 

 
-1.215E-000 
4.912E-002 
-2.172E-003 
1.498E-004 
1.342E-004 

 
-1.228E-000 
4.979E-002 
-2.207E-003 
4.886E-004 
1.058E-003 

 
 

-1.216E-000 
4.919E-002 
-2.178E-003 
4.436E-004 
1.218E-003 

 

Table 4b: Invariants and error norms for single soliton v =0.1 and δ t =0.01

Time 1s 2s 3s 10s 
LMQ 

1C  
2C  
3C  
L∞  

2L  
LGA 

1C  
2C  
3C  
L∞  

2L  
LIMQ 

1C  
2C  
3C  
L∞  

2L  

 
-1.434E-001 
5,169E-004 
-1,874E-006 
2.054E-007 
1.097E-006 

 

-1.434E-001 
5,169E-004 
-1,874E-006 
2.428E-007 
1.314E-006 

 

-1.434E-001 
5,169E-004 
-1,874E-006 
1.543E-007 
8.151E-007 

 
-1.434E-001 
5,169E-004 
-1,874E-006 
4.094E-007 
2.184E-006 

 

-1.434E-001 
5,169E-004 
-1,874E-006 
4.847E-007 
2.620E-006 

 

-1.434E-001 
5,169E-004 
-1,874E-006 
3.078E-007 
1.625E-006 

 
-1.434E-001 
5,169E-004 
-1,874E-006 
6.126E-007 
3.265E-006 

 

-1.434E-001 
5,169E-004 
-1,874E-006 
7.256E-007 
3.921E-006 

 

-1.434E-001 
5,169E-004 
-1,874E-006 
4.606E-007 
2.431E-006 

 
-1.434E-001 
5,169E-004 
-1,874E-006 
2.016E-006 
1.068E-005 

 

-1.434E-001 
5,169E-004 
-1,874E-006 
2.400E-006 
1.291E-005 

 
-1.434E-001 
5,169E-004 
-1,874E-006 
1.522E-006 
8.006E-006 

 



A Localized RBF Meshfree Method 291

two nearest nodes, defining a stencil of three nodes, the central and the two neigh-
bors. The condition number was 1.5360× 1011, 1.2288× 108 and 4.8004× 109

respectively.

We can observe that the local type of interpolations scheme posses better accuracy
than the global one. More precisely, among the interpolation methods used, local
MQ is the most accurate. We have to notice that the time step used is one order
less than that used in [Haq, Ul-Islam and Uddin (2009)], obtaining a more efficient
numerical scheme, since the time steps used is less, one order lower.

4.2 Example 2: Burger equation

By taking µ = 0, v = 1 and ε = 1 the KdVB equation reduces to Burger equation
defined as

∂u
∂ t

+u
∂u
∂x
− v

∂ 2u
∂x2 = 0 (32)

and subject to the initial condition

u(x,0) =
α +β +(β −α)eγ

1+ eγ
, (33)

where γ =
(

α

v

)
(x−η) and α,β ,η ,v are the parameters. The exact solution [Kaya

(2004)] of the above problem is given by

u(x, t) =
α +β +(β −α)eζ

1+ eζ
, (34)

where ζ =
(

α

v

)
(x−β t−η) .

For the numerical computations we choose α = 0.4, β = 0.6, η = 0.125, δx = 0.2
and δ t = 0.01 in order to compare our results with those given in [Zaki (2000)] and
[Haq, Ul-Islam and Uddin (2009)]. We solve the Burger equation (Eq. (32)) with
initial condition (Eq. (33)) using the localized form of the radial basis functions
(MQ, GA, IQ) and compare the numerical results with those obtained using the
global form of the aforementioned radial basis functions. The L∞ and L2 error
norms are computed and are given in Table 5a for global RBF and in Table 5b
for local RBF. It can be seen that the local RBF are also accurate as the global
ones, even though we use a time step δ t = 0.01, while in [Zaki (2000)] and [Haq,
Ul-Islam and Uddin (2009)] a time step δ t = 0.001 has been used. In Fig. 3,
we display the exact and numerical solution using the local IQ shape functions,
whereas Fig. 4 represents the error graphs of the solutions with local MQ, GA and
IQ, respectively, at time t = 1. The tabulated results obtained corresponding to the
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Table 5a: Error norms for single soliton using global RBFs.

Time 0 1.  0 3.  0 5.  0 8.  1 0.  
MQ 
L∞  

2L  
GA 
L∞  

2L  
IQ 
L∞  

2L  

 
1.064E-005 

1.926E-005 

 
1.220E-003 

1.338E-005 

 
1.22E-003 
2.597E-006 

 
1.292E-005 

3.979E-005 

 
3.686E-003 

7.503E-005 

 
3.686E-003 
1.254E-005 

 
1.449E-005 

5.523E-005 

 
6.166E-003 

2.028E-004 

 
6.166E-003 
2.865E-005 

 
2.082E-004 

7.480E-005 

 
9.956E-003 

5.464E-004 

 
9.956E-003 
6.361E-005 

 
2.497E-005 

8.654E-005 

 
1.251E-002 

8.601E-004 

 
1.251E-002 
9.321E-005 

 

Table 5b: Error norms for single soliton using local RBFs.

Time 0 1.  0 3.  0 5.  0 8.  1 0.  
LMQ 
L∞  

2L  

LGA 
L∞  

2L  

LIQ 
L∞  

2L  

 
4.753E-003 

1.234E-002 

 
1.727E-005 

3.504E-005 
 

1.804E-005 

3.577E-005 

 
1.428E-002 

3.703E-002 

 
5.043E-005 

1.033E-004 
 

5.278E-005 

1.055E-004 

 
2.381E-002 

6.173E-002 

 
8.266E-005 

1.694E-004 

 
8.646E-005 

1.732E-005 

 
3.806E-002 

9.876E-002 

 
1.288E-004 

2.648E-004 
 

1.350E-004 

2.708E-004 

 
4.762E-002 

1.234E-001 

 
1.574E-004 
3.259E-004 

 
 

1.652E-004 

3.335E-004 

 



A Localized RBF Meshfree Method 293

(a) (b) 
 
Figure 3: Solution graph of Burgers’ equation, when local type IQ shape function
is used.

values of shape parameter c = 0.005, c = 0.025 and c = 0.01 for LMQ, LGA and
LIQ, respectively. The support domain was defined to be the two nearest nodes,
defining a stencil of three nodes, the central and the two neighbors. The condition
number was 1.5360×1011, 1.2288×108 and 4.8004×109 respectively.

We can observe that for global RBFs, MQ approximation obtains better accuracy
than that of GA and IQ, while for local type RBfs GA posses better accuracy com-
pared to MQ and IQ, and the L∞ error norm is bigger compared of that of global
MQ.

4.3 Example 3: KdV equation

By taking µ = 1, v = 0 and ε =−6 the KdVB equation reduces to KdV equation,
defined as

∂u
∂ t
−6u

∂u
∂x

+
∂ 3u
∂x3 = 0 (35)

and subject to the initial condition

u(x,0) =−2sech2 (x) . (36)

The exact solution [Kaya (2004)] of the above problem is given by

u(x, t) =−2sech2 (x−4t) . (37)

The KdV equation represents an approximation in the study of long wavelength,
small amplitude inviscid and incompressible fluids. Since the formulation of the
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(a) (b) 

 

 

(c)  
 

Figure 4: Error (exact-numerical) at t = 1 of Burgers’ equation.

KdV equation, numerous researches have been worked over its analytical solution.
However, a wide class of solutions of this equation was difficult to obtain due to its
non-linearity. Due to its inherent difficulty, numerical solutions are used. We com-
bine meshless point collocation in space and a finite difference scheme in time to
investigate numerically interactions of solitary wave solutions of the KdV equation.

Herein, for the numerical computations we choose δx = 0.2 and δ t = 0.01 in order
to compare our results with those given in [Zaki (2000)] and [Haq, Ul-Islam and
Uddin (2009)]. We solve the KdV equation (35) with initial condition (36) using
the localized form of the radial basis functions MQ, GA and IQ and compare the
numerical results with those obtained using the global form of the aforementioned
radial basis functions. The L∞ and L2 error norms are computed and are given in
Table 6a for global RBF and in Table 6b for local RBF. It can be seen that the local
RBF are more accurate than the global ones, in some cases one or even two orders
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Table 6a: Invariants and error norms for single soliton.

Time C1  C2  C3  L∞  L2  
MQ 
0.1 
1 
2 
3 

GA 
0.1 
1 
2 
3 

IQ 
0.1 
1 
2 
3 

 
-4.000 
-4.000 
-4.000 
-4.000 

 
-4.000 
-4.000 
-4.000 
-4.000 

 
-4.000 
-4.000 
-4.000 
-4.000 

 
5.333 
5.333 
5.333 
5.333 

 
5.333 
5.333 
5.333 
5.333 

 
5.333 
5.333 
5.333 
5.333 

 
-6.400 
-6.400 
-6.400 
-6.400 

 
-6.400 
-6.400 
-6.400 
-6.400 

 
-6.400 
-6.400 
-6.400 
-6.400 

 
2.024E-003 
9.855E-004 
1.096E-003 
9.016E-004 

 
2.023E-003 
9.512E-004 
1.194E-003 
8.000E-004 

 
2.024E-003 
9.730E-004 
1.270E-003 
2.688E-003 

 
9.966E-007 
1.088E-004 
3.405E-004 
3.445E-005 

 
1.152E-005 
1.688E-004 
2.842E-004 
4.844E-004 

 
6.275E-005 
1.077E-003 
3.607E-003 
1.026E-002 

 

Table 6b: Invariants and error norms for single soliton.

Time C1  C2  C3  L∞  L2  
LMQ 
0.1 
1 
2 
3 

LGA 
0.1 
1 
2 
3 

LIQ 
0.1 
1 
2 
3 

 
-4.000 
-4.000 
-4.000 
-4.000 

 
-4.000 
-4.000 
-4.000 
-4.000 

 
-4.000 
-4.000 
-4.000 
-4.000 

 
5.333 
5.333 
5.333 
5.333 

 
5.333 
5.333 
5.333 
5.333 

 
5.333 
5.333 
5.333 
5.333 

 
-6.400 
-6.400 
-6.400 
-6.400 

 
-6.400 
-6.400 
-6.400 
-6.400 

 
-6.400 
-6.400 
-6.400 
-6.400 

 
3.142E-004 
9.365E-005 
1.054E-004 
9.316E-005 

 
3.443E-004 
8.462E-005 
2.194E-004 
7.125E-005 

 
1.324E-004 
7.730E-005 
4.270E-004 
2398E-004 

 
7.866E-007 
1.188E-005 
4.455E-005 
2.127E-006 

 
1.004E-005 
1.188E-004 
2.142E-004 
3.844E-004 

 
2.455E-005 
1.277E-004 
2.637E-004 
1.426E-004 
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of magnitude accurate using a time step δ t = 0.01 while in [Zaki (2000)] and [Haq,
Ul-Islam and Uddin (2009)] a time step δ t = 0.001 was used.

(a) (b) 

 
Figure 5: Motion of solitary wave at t =0–3 .

In Fig. 5, numerical and exact solutions are plotted on the same diagram which
shows an excellent agreement. It is clear from the figure that as the time increases
the solution moves towards the right with a constant speed. The difference between
the exact and numerical solutions (error) are plotted in Fig. 6 for the three methods
when t = 0 up to t = 3.

5 Conclusions

We have applied the localized meshless collocation method using three standard
RBFs, that is, MQ, GA and IQ for the numerical solution of nonlinear KdV–
Burgers’ equation and, we compared the numerical results with those obtained
using the global RBFs. The KdV–Burgers’ equation models physical problems
such as irrotational incompressible flow, considering a shallow layer of an inviscid
fluid moving under the influence of gravity and the motion of solitary waves. The
results show that this scheme is an efficient approach for the solution of such type
of nonlinear equations and, more precisely, the local type gives more accurate re-
sults from the global one, even with larger time step (δ t = 0.001 and δ t = 0.01 for
global and local type respectively). It is noted that time marching process reduces
the solution accuracy due to the time truncation errors. As far as its application is
concerned we have found that RBFs method is very much simple and straightfor-
ward, irrespective of the dimension and geometry of the problem. Thus, we have
avoided the use of fully populated matrices that are created in case of global RBFs.
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Figure 6: Error ( exact-numerical) at t =3 of KdV equation.

The stability analysis presented shows that the proposed numerical scheme is sta-
ble. Furthermore, the accuracy of the method was assessed in terms of the L2 and
L∞ error norms and three conservative properties related to mass, momentum and
energy.
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