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Impact Failure Analysis of Reinforced Concrete Structural
Components by Using Finite Element Method
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Abstract: This paper presents the details of projectile impact on reinforced con-
crete structural components. Nonlinear explicit transient dynamic analysis has been
carried out by using finite element method. Concrete damage model has been em-
ployed to represent the nonlinear behaviour of target under impact load. Various
methods of modeling of reinforcement have been explained. A brief note on equa-
tion of state for concrete, contact algorithms and nonlinear explicit transient dy-
namic analysis has been given. Numerical studies have been carried out to compute
the response of concrete target due to impact of projectile. The computed penetra-
tion depth have been compared with the corresponding experimental observations
and found that they are in good agreement with each other. Further, parametric
studies have been conducted for various grades of concrete, caliber radius head and
design expressions have been proposed to compute the penetration depth.
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1 Introduction

Concrete is a widely used material in civil and defense constructions. Potential
missiles/projectiles include kinetic munitions, vehicle and aircraft crashes, frag-
ments generated by military and terrorist bombing, fragments generated by acci-
dental explosions and other events (e.g. failure of a pressurized vessel, failure of
a turbine blade or other high-speed rotating machines), flying objects due to nat-
ural forces (tornados, volcanoes, meteoroids), etc. These projectiles vary broadly
in their shapes and sizes, impact velocities, hardness, rigidities, impact attitude
(i.e. obliquity, yaw, tumbling, etc.) and produce a wide spectrum of damage in
the target. The interest in penetration, perforation and fragmentation of plain and
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reinforced concrete (RC) targets arises from their use as barriers to protect civilian
buildings and as bunkers to protect against impacts. Good barrier design practice
consists of (i) preventing excessive local damage, and (ii) preventing collapse of
the barrier resulting from its inability to withstand the absorbed energy. To prevent
excessive local damage either the wall be thick enough to prevent scabbing of the
concrete or that a properly designed ‘scab’ plate be attached to the rear surface of
the wall. If a ‘scab’ plate is used, the wall should be sufficiently thick to prevent
perforation. Overall wall collapse is prevented by designing the wall to have re-
serve strain energy capacity greater than the total absorbed energy to which it is
subjected.

Numerous studies were carried out in the last 15 years for the development and
improvement of the macro-scale concrete models for high-pressure applications
[Govindjee et al. 1995; Malvar et al. 1997; Govindjee 1994; Malvar et al. 1996,
1994; Hentz et al. 2004; , Yonten et al. 2005]. Various material models were
proposed, from relatively simple to more sophisticated ones and their capabilities
in describing the actual nonlinear behaviour of the material under different load-
ing conditions vary. Besides, because of the general complexity of the models,
the determination of the model parameters (i.e., the model parameterization) also
plays an important role in the actual performance of these models. This requires
a sufficient understanding of the material formulation and the associated consid-
erations. There are three important methods for studying local effects [Farnam et
al. 2010; Rama chandra murthy et al. 2008, 2009] on a concrete target arising
from projectile impact, namely experimental, analytical and numerical methods.
Experimental data are always of importance extending the understanding of im-
pact phenomena and for validating analytical and numerical models. Empirical
formulae based on experimental data are especially important due to the simplified
expressions to represent complexity of the phenomena. Several design codes em-
ploy empirical formulae for the design of protective barriers. Simple and accurate
analytical models can be developed, when the underpinning mechanics of the local
effects of the missile impact are understood. This approach offers the most effi-
cient and economic way of predicting impact effects and helps to extend the range
of validity of experimentally based empirical formulae. With the rapid develop-
ments of computational tools, computational mechanics and material constitutive
models, the numerical simulation of local projectile impact effects becomes more
reliable and economic. A number of commercial hydro codes such as AUTODYN
(2001) and LS-DYNA (2003) are available for the general simulation of nonlin-
ear dynamic responses. However, such simulations can produce reliable results for
concrete structures, only if a material model capable of representing the essential
mechanical processes of the material under varying stress and loading rate condi-
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tions is available. It is observed from the literature that the concrete damage model
is widely used for impact analysis of concrete structural components. But the im-
pact studies carried out on RC structural components by using concrete damage
model are less.

The objective of this paper is to present the details of the concrete damage model
and to conduct nonlinear transient dynamic analysis for plain and RC structural
components. Further, parametric studies have been carried out to compute the pen-
etration depth by varying grade of concrete, caliber radius head and impact veloci-
ties towards proposing design expressions to compute penetration depth.

2 Concrete damage material model for impact analysis

The material models for concrete-like materials generally share in common some
basic features of brittle materials such as pressure hardening, strain hardening and
strain rate dependency. However, for simplicity, some models adopt highly restric-
tive assumptions; consequently, their applicability is limited to a certain class of
problems. In cases, where the loading environment of the material is very complex
and cannot be pre-defined, more robust material models that are capable of describ-
ing the varying concrete material behavior under different loading conditions are
desired. It is observed from the literature [Farnam et al. 2010] that concrete dam-
aged model is widely employed for simulation of non-linear behaviour of concrete.
The details of the model are given below.

2.1 Concrete Damage Model

The concrete damage model was first developed for DYNA3D [Malvar et al. 1997;
Govindjee 1994; Malvar et al. 1996] software. The concrete damage model uses
three independent strength surfaces, namely, an initial yield surface, a maximum
failure surface and a residual surface, with consideration of all the three stress in-
variants (I1, J2 and J3). The strength surfaces are uniformly expressed as:

∆σ =
√

3J2 = f (p,J2,J3) (1)

where ∆σ and p denote, respectively, the principal stress difference and pressure,
and

f (p, J2, J3) = ∆σ
c ∗ r′ (2)

where ∆σ c represents the compressive meridian and r′ can be calculated by using
the formula given below.

r′ =
r
rc

=
2(1−ψ2)cosθ +(2ψ−1)

√
4(1−ψ2)cos2 θ +5ψ2−4ψ

4(1−ψ2)cos2 θ +(1−2ψ)2 (3)
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where ψ = rt/rc (refer to Figure 1). The Lode angle θ is a function of the second
and third deviatoric stress invariant and can be obtained by either of the following
two equations:

cosθ =
√

3
2

s1√
J2

or cos 3θ =
3
√

3
2

J3

J3/2
2

(4)

 

rf 

rc 

Figure 1: Typical deviatoric cross-section of strength surface

The compressive meridians of the initial yield surface ∆σ c
y , the maximum failure

surface ∆σ c
m and the residual surface ∆σ c

r are defined independently as:

∆σ
c
y = a0y +

p
a1y +a2y p

(5)

∆σ
c
m = a0 +

p
a1 +a2 p

(6)

∆σ
c
r =

p
a1 f +a2 f p

(7)

The eight free parameters, namely, a0y, a1y, a2y, a0, a1, a2, a1 f , and a2 f are to be
determined from experimental data. With the specification of the three strength
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surfaces, the loading surfaces representing strain hardening after yield are defined
as:

∆σL = η∆σm +(1−η)∆σy (8)

The post-failure surfaces, denoted by ∆σp f , are defined in a similar way by inter-
polating between the maximum failure surface ∆σm and the residual surface ∆σ1:

∆σp f = η∆σm +(1−η)∆σr (9)

The variable η in eqns. (8) and (9) is called the yield scale factor, which is deter-
mined by a damage function λ :

λ =


∫ ε p

0
dε p

[1+p/ ft ]
b1 p≥ 0∫ ε p

0
dε p

[1+p/ ft ]
b2 p < 0

(10)

where ft is the quasi-static concrete tensile strength, dε p is effective plastic strain

increment, and dε p =
√

2
3 dε

p
i jdε

p
i j with dε

p
i j being the plastic strain increment ten-

sor.

It is to be noted that the damage function has different definitions for compression
(p≥ 0) and tension (p < 0) to account for different damage evolution of concrete
in tension and compression. The evolution of the yield scale factor η follows a
general trend: it varies from “0” to “1”, when the stress state advances from the
initial yield surface to the maximum failure surface, and changes from “1” back to
“0”, when the stress softens from the failure surface to the residual surface.

2.2 Equation of state (EOS) for concrete

For the hydrocode analysis, an equation of state is required as a separate entity
in the material description, in addition to the constitutive model discussed in the
preceding sections. EOS plays the role of linking together three inter-independent
thermodynamic quantities, namely, pressure p, density ρ and internal energy e.

To obtain a proper EOS for concrete is a challenging task as concrete exhibits a very
complex volumetric response due to its inherent non-homogeneity and the porosity
of the material. When concrete is subjected to quasi-static or low dynamic loads,
the internal energy term can be neglected from the EOS due to its insignificance
when pressure is low. While this EOS proves to be capable of representing the
concrete thermodynamic behaviour at high pressures, it also allows for a reason-
ably detailed description of the compaction behaviour at low pressure ranges. It
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is established on the premise that the initial specific internal energy for the porous
material is the same as the solid material under the same pressure and temperature.

The equation of state of the fully compacted or solid material is described with a
polynomial function as:

p(ρ,E) = A1µ +A2µ
2 +A3µ

3 +(B0 +B1µ)ρ0e (11)

where µ = (ρ/ρ0− 1) is the relative volume change; a1, a2, a3, B0 and B1 are
constants to be determined; ρ0 is the reference initial density of the solid material
and e denotes the specific internal energy. The EOS for the porous material is then
calculated by substituting a new variable ρp xα for ρ in eqn. (11), i.e.,

p(ρp,E,α) = A1µ +A2µ
2 +A3µ

3 +(B0 +B1µ)ρ0e (12)

where ρp is the density of the porous material,µ = ρpα/ρ0−1, and α is called ma-
terial “porosity” and is defined as α = vp/vs in which vp and vs refer, respectively,
to the specific volume of the porous and solid material at the same pressure and
temperature. Physically, α is a function of the material thermodynamic state and
can be expressed in a general form as:

α = g(p,e) (13)

There is a general lack of sufficient test data to evaluate eqn. (13) and the shock
Hugoniot can be used to provide a relation between p and e. Thus, α becomes only
a function of p. In P−α EOS, α(p) is defined as:

α = 1+(αini−1) [(plock− p)/(plock− pcrush)]
n (14)

In the above expression, αini is the initial porosity of the intact concrete; pcrush cor-
responds to the pore collapse pressure beyond which concrete plastic compaction
occurs and plock is the pressure at which the concrete porosity α reaches unity. In
the numerical calculation, an iterative procedure has to be implemented in order to
solve for the current pressure value as the pressure p is involved implicitly in eqn.
(12).

It is worth pointing out that the construction of an equation of state such as p−
α EOS described above is independent of the material constitutive models and,
therefore, it can be used with any material model.

3 Contact algorithms

Several contact algorithms are available in the literature, namely, frictional slid-
ing, single surface contact, nodes impacting on a surface, tied interfaces, one-
dimensional slide lines, rigid walls, material failure along interfaces, penalty and
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Lagrangian projection options for constraint enforcement and fully automatic con-
tact. Details of, ‘contact-automatic-single-surface’ algorithm are presented below.

This algorithm uses a penalty method to model the contact interface between the
different parts. In this approach, the slave and master surfaces are generated auto-
matically within the code. The method consists of placing normal interface springs
to resist interpenetration between element surfaces. An example of this approach is
illustrated in Figure 2. As shown in Figure 2, when a slave node penetrates a mas-
ter surface in a time step, the code automatically detects it, and applies an internal
force to the node (indicated by the spring) to resist penetration and keep the node
outside the surface. The internal forces added to the slave nodes are a function of
the penetrated distance and a calculated stiffness for the master surface. The stiff-
ness is computed as a function of the bulk modulus, volume and face area of the
elements in the master surface. A static and dynamic coefficient of friction of 0.8
is used generally between the different parts in contact.

 
Figure 2: Penalty method for contact algorithm
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4 Modelling of reinforcement

Finite element models for reinforced concrete structures have generally been based
on replacing the composite continuum by an assembly of elements representing
the concrete and the steel reinforcement. Presently, three alternative techniques
are mainly used for modeling reinforcement in a three-dimensional finite element
model of a concrete structure: the discrete model, the embedded model and the
smeared model. The desired technique is chosen depending on the application and
the degree of detail to which the effect of reinforcement needs to be considered.
However, most of the difficulties in modeling reinforced concrete behavior rely in
the development of an effective and realistic concrete material formulation and not
in the modeling of the reinforcement.

4.1 Discrete Model

In the discrete model, reinforcement is modeled by using bar or beam elements
connected to the concrete mesh nodes. As a result, there are “shared nodes” be-
tween the concrete mesh and the reinforcement mesh, as shown in Figure 3. Also,
since the reinforcement is superimposed in the concrete mesh, concrete exists in the
same regions occupied by the reinforcement. The drawback of using the discrete
model is that the concrete mesh is restricted by the location of the reinforcement.
Full bond is generally assumed between the reinforcement and the concrete. In
cases where bond issues are of importance, fictitious spring elements are used to
model bond-slip between the concrete and the reinforcement elements. These link-
age elements connect concrete nodes with reinforcement nodes having the same
coordinates. These type of elements have no physical dimension at all and only
their mechanical properties are of importance.

 
Figure 3: Shared nodes between concrete and reinforced elements
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4.2 Embedded Model

To overcome mesh dependency in the discrete model, the embedded formulation al-
lows independent choice of concrete mesh, as shown in Figure 4. In this approach,
the stiffness of the reinforcing elements is evaluated independently from the con-
crete elements, but the element is built into the concrete mesh in such a way that
its displacements are compatible with those of the surrounding concrete elements.
That is, the concrete elements and their intersection points with each reinforcement
segment are identified and used to establish the nodal locations of the reinforce-
ment elements. In concrete structures, where reinforcement is complex, the em-
bedded representation is advantageous. However, the additional nodes required for
the reinforcement increase the number of degrees of freedom, and the hence the
computational time. Although analyses with the embedded representation are in
general more computationally efficient than those with the discrete representation,
its application to the analysis of concrete structures is still expensive for day-to-day
design.

 
Figure 4: Embedded formulations for reinforced concrete

4.3 Smeared Model

In the smeared model, the reinforcement is assumed to be uniformly distributed
over the concrete elements, as shown in Figure 5. As a result, the properties re-
quired by the material model in the element are constructed from individual prop-
erties of concrete and reinforcement by using composite theory. This technique
is usually applied for large structural models, where reinforcement details are not
essential to capture the overall response of the structure.
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Figure 5: Smeared formulation for reinforced concrete

5 Nonlinear transient explicit finite element analysis

Explicit finite element method (FEM) was originally developed to solve problems
in wave propagation and impact engineering, but they are currently used for many
other applications such as sheet metal forming, underwater simulations, failure
analysis, glass forming, metal cutting, pavement design, and earthquake engineer-
ing, among others [Chen1982].

Implicit FEM is expensive, when thousands of time steps must be taken to solve
a dynamic problem, because of the cost of inverting stiffness matrices to solve the
large sets of nonlinear equations, especially for models with thousands of degrees
of freedom or when nonlinearities are present. In an explicit FEM, the solution can
be achieved without forming a global stiffness matrix. The solution is obtained on
element-by-element basis and therefore global stiffness matrix need not be formed.
As a result, explicit methods can treat large three-dimensional models (thousands
of degrees of freedom) with comparatively modest computer storage requirements.
Other advantages include easy implementation and accurate treatment of general
nonlinearities. However, explicit methods are conditionally stable and therefore
small time steps must be used. For stable computations, the time step is selected
such that the time step is less than the time required for a stress wave to travel
through the shortest element, and therefore this could result in excessive execution
times as the level of discretization increases.

Central-difference method, which is characteristic of explicit methods in general,
for direct time integration can be used. In this method, the solution is determined
in terms of historical information consisting of displacements and time derivatives
of displacements. By using this method, the finite element solution is then obtained
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by using the following equations (with no damping):

u̇n+1/2 = u̇n−1/2 +∆t.M−1
(

Fexternal−
∫

BT
σdv

)
(15)

un+1 = un−1 +∆t.u̇n+1/2 (16)

where Fexternal is the vector of applied forces associated with the boundary condi-
tions and body forces, M is the mass matrix, and BT σdv is the internal force vector
[Benson 2001]. In each time step the velocities and displacements are updated. In
general, implicit methods have the form

un+1 = f
(
u̇n+1, u̇n+1,un, · · ·

)
(17)

and therefore the computation of the current nodal displacements requires the knowl-
edge of the time derivatives of un+1, which are unknown. Consequently, simulta-
neous equations need to be solved to compute the current displacements. On the
other hand, explicit methods have the form

un+1 = f
(
un, u̇n, ün,un−1, · · ·

)
(18)

and therefore the current nodal displacements can be determined in terms of com-
pletely historical information consisting of displacements and time derivatives of
displacements at previous time steps. If a diagonal mass matrix is used, eqn. 18
is a system of linear algebraic equations and a solution is obtained without solving
simultaneous equations. Once displacements are updated, strains can be computed,
which are then used to determine stresses and eventually nodal forces. Stable inte-
gration by using the central difference method for undamped problems requires the
following time step limit:

∆t ≤ L
Cw

(19)

where L is related to the element size and cw is the wave speed (speed at which
stress waves travel in the element). The physical interpretation of this condition for
linear displacement elements is that it must be small enough so that information
does not propagate across more than one element in a time step. The shortcoming
in using an explicit FEM, especially to model a quasi-static experiment is the fact
that it can result in excessive execution times. Therefore, the time step will depend
upon the shortest element size.
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6 Numerical studies

Numerical studies have been carried out to compute the response of concrete target,
due to impact of projectile. One example problem has been explained in detail.

Forrestal et al. (1994) conducted two sets of penetration experiments on concrete
targets, which have compressive strengths of 23MPa and 39 MPa. The ogive nose
projectiles were machined from 4340 Rc 45 steel and designed to contain a single
channel acceleration data recorder. Impact analysis has been carried out taking
these above mentioned dimensions and penetration depths for different velocities.
In the discrete reinforcement model, reinforcement is modeled by using bar or beam
elements connected to the concrete mesh nodes. As a result, there are “shared
nodes” between the concrete and reinforcement mesh. Since the reinforcement is
superimposed in the concrete mesh, concrete exists in the same regions occupied by
the reinforcement. Parametric studies for penetration depth have also been carried
out for various grades of concrete, CRHs and velocities. Design equations are
proposed for computation of penetration depth after curve fit of the data by using
MATLAB.

Details of the Projectile and Target

The geometry details of the projectile is shown in Figure 6.

Projectile characteristics

Material: Steel, Head: Ogive nose with caliber-radius-head = 3.0 and 6.0

Mass = 2.3kg

Geometry and FE modeling has been carried out by using general purpose FEA
software, ANSYS. FE modeling has been carried out by employing Solid164 ele-
ment, which has three DoF at each node, namely, ux, uy and uz. Material model
used is rigid material for the projectile. Distance between projectile and target is
5.92 inch (150.36 mm). Figure 7 shows the FE mesh of the target and projectile.

Target: The geometry of the target is made of concrete with compressive strength
of concrete 23MPa, 40MPa and 60MPa. The target is in cylindrical shape. The
height and diameters of cylinder are 71.48 in and 71.48 in respectively. Solid164
element has been employed to idealize target.

Total no. of elements in the mesh for target and projectile = 4887

Total no. of nodes in the mesh for target and projectile = 5865

The material model employed to represent the concrete is “Concrete Damage”.

Table 1 shows input details of concrete damage model.

Contact algorithm employed between target and projectile is “surface-to-surface-
automatic”. Input details of projectile velocity are shown in Table 2. FEA has been
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(a) CRH = 3.0 

    
(b) CRH = 6.0 
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Figure 6: Projectile geometry details

         
            (a) Target                                   (b) Projectile 
 

Figure 7: FE model of the Target and projectile
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Table 1: Details of Concrete Damage material model

Mass density, RO 2.173e-4 
Poisons ratio, PR 0.19 
Max. principal stress for failure, SIGF 500 psi 
Cohesion, AO 1478.0 psi 
Pr. hardening coefficient, A1 0.4463 
Pr. hardening coefficient, A2 0.1616e-4 
Cohesion for yield, AOY 1116.0 
Pr. hardening coefficient for yield limit, A1Y 0.625 
Pr. hardening coefficient for yield material, A2Y 0.515e-4 
Pr. hardening coefficient for failed material, A1F 0.4417 
Pr. hardening coefficient for failed material, A2F 0.2366e-4 
Damage scale factor, B1 15.0 
Damage scale factor for uniaxial tensile path, B2 50.0 
Damage scale factor for triaxial tensile path, B3 0.01 

 
Damage function coefficients 

X1 – 0 X7 – 0.8e-4 X13 – 0.1e+11 
X2 – 0.8e-5 X8 – 0.32e-3  
X3 – 0.24e-4 X9 – 0.52e-3  
X4 – 0.4e-4 X10 – 0.57e-3  
X5 – 0.56e-4 X11 – 0.1e+1  
X6 – 0.72e-4 X12 – 0.1e+2  

 
Scale factor values 

X1 – 0 X7 – 0.97 X13 – 0 
X2 – 0.85 X8 – 0.5  
X3 – 0.97 X9 – 0.1  
X4 – 0.99 X10 – 0  
X5 – 1.0 X11 – 0  
X6 – 0.99 X12 – 0  

 
E0 = 0, Gamma = 0: V0 = 1.0 

Volumetric strain data values          Volumetric pressure values 
 

1vε  – 0 6vε  – -3.2e-2 

2vε  – -0.6e-2 7vε  – -0.788e-1 

3vε  – -1.08e-2 8vε  – -3.56e-1 

4vε  – -1.72e-2 9vε  – 0.4e+1 

5vε  – -2.4e-2 10vε  – -0.4e+4 
 

C1 – 0 C6 –0.1017e+5 
C2 – 0.325e+4 C7 – 0.1667e+5 
C3 – 0.4973e+4 C8 – 0.7053e+5 

C4 – 0.7086e+4 C9 – 0.7213e+6 

C5 – 0.8906e+4 C10 – 0.7213e+6 
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carried out by using NONSTRANS module of FINEART software and the results
are viewed in LS-PREPOST. The predicted penetration depth values for different
velocities are in good agreement with the corresponding experimental values avail-
able in the literature.

Target Concrete Model with Reinforcement

0.6% of reinforcement is taken into account for the same concrete target model.

Figure 8 shows the FE model of concrete with smeared and discrete model for
reinforcement.

(a) Smeared reinforcement model (b) Discrete reinforcement model

                 
(a) Smeared reinforcement model               (b) Discrete reinforcement model 

 
Figure 8: FE model of concrete target

Parametric studies

Parametric studies have been conducted to compute penetration depth. The param-
eters include impact velocities, grades of concrete and CRHs. Penetration depth
is computed by employing all the three schemes, namely, option model, smeared
model and discrete model. Penetration depth is also computed for the case of with-
out reinforcement. The percentage of reinforcement adopted for the study is 0.6.
The computed penetration depths for various velocities are given in Table 2 for
CRH =3 and 6.

From the above parametric studies, it can be observed that

• Penetration depth decreases with the increase of grade of concrete

• Penetration depth increases with the increase of CRH
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• Penetration depth increases with increase of velocity

• The difference between the computed penetration depth with and without
accounting the effect of reinforcement for 0.6% is approximately 10%

• The computed penetration depth by using discrete model falls in between the
option model and smeared model.

Figures. 9(a) to (x) show the velocity vs. penetration depth for 23MPa, 40MPa and
60MPa with and without reinforcement. These plots are obtained by curve fitting
the data by using MATALB software.

Table 2a: Comparison of penetration depth (mm) (CRH=3)

0.6% reinforcement 
Velocity (m/s) Without 

reinforcement Option model Smeared model Discrete model 

23 MPa, 3CRH 
139 228(240) 187 160 171 
200 390 (420) 343 320 329 
250 550 508 471 483 
300 832 782 745 749 
336 877(930)    
350 960 915.25 892 901 

378.6 1080(1180)    
300 1285 1189 1144 1170 

40 MPa, 3CRH 
139 180 160 145 153.5 
200 230 206 175 184 
250 350 316 273 285 

275.7 365(380)    
300 412 365 341 351 
350 415 423 383 408 
400 663 616 570 594 

456.4 865(940)    
450 825 747 705 725 
550 1416 1345 1293 1301 

60 MPa, 3CRH 
139 135 110 88 105 
200 160 137 112 127 
250 251 220 176 197 
300 343 307 264 294 
350 447 397 351 373 
400 512 469 436 460 
450 731 682 657 668 
550 1280 1230 1187 1209 

 
• ()- The  values given  in bracket correspond experimental observations [Forrestal et al. 1994]. 
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(a) 23MPa, 3CRH no reinforcement     (b) 23MPa, 3CRH, 0.6 %of reinforcement option model 

 
 

 
(c) 23MPa, 3CRH 0.6% reinf. smeared model           (d) 23MPa, 3CRH  6% reinf. discrete model 

  
(e) 40MPa, 3CRH no reinf.                            (f) 40MPa, 3CRH 0.6% reinf. option model 
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(g)  40MPa, 3CRH 0.6% reinf. smeared model  (h) 40MPa, 3CRH 0.6%reinf. discrete model 

 

                 
(i) 60MPa, 3CRH no reinf.      (j) 60MPa, 3CRH 0.6% reinf. option model 

 

     
(k) 60MPa, 3CRH 0.6% reinf. smeared model     (l) 60MPa, 3CRH 0.6%reinf. discrete model 

 

  
(m) 23MPa, 6CRH no reinf.              (n) 23MPa, 6CRH 0.6% reinf. Option model 
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(o) 23MPa, 6CRH 0.6% reinf. smeared model   (p) 23MPa, 6CRH, 0.6% reinf. Discrete model 

     
(q) 40MPa, 6CRH no reinf             (r) 40MPa, 6CRH 0.6% reinf. option model 

       
(s) 40MPa, 6CRH 0.6% reinf. smeared model   (t)40MPa, 6CRH 0.6% reinf. discrete model 

          
(u) 60MPa, 6CRH no reinf.                 (v) 60MPa, 6CRH 0.6% reinf. option model 

 

               
(w) 60MPa, 6CRH 0.6% reinf. smeared model   (x) 60MPa, 6CRH, 0.6% reinf. discrete model 

 

Figure 9: Variation of penetration depth w.r.to impact velocity
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Table 2b: Comparison of penetration depth (mm) (CRH=6)
0.6% reinforcement Velocity (m/s) Without 

reinforcement Option model Smeared model Discrete model 
23 MPa, 6CRH  

139 251 228 197 219 
200 411 376 343 352 

238.4 569(580)    
250 594 548 525 530 
300 870 813 783 806 
350 1043 981 945 960 
378 1130(1250)    
400 1335.89 1259 1180 1203 

39 MPa, 6CRH  
139 205 180 160 176 
200 275 241 220 228 
250 480 440 417 425 
300 558 510 483 496 

312.5 603(610)    
350 695 652 615 637 
400 838 791 747 775 
450 960 (990) 923 890 902 
550 1560 1480 1410 1450 

60 MPa, 6CRH 
139 147 132 120 130 
200 215 197 167 175 
250 283 263 237 241 
300 411 380 351 374 
350 503 470 439 450 
400 594 570 527 536 
450 812 747 703 723 
550 1418 1340 1280 1320 

• * The values given in bracket correspond to experimental observations [Forrestal et al.1994]. 

 

The following expressions have been obtained after regression analysis of impact
velocity vs penetration depth data by using MATLAB software

1. 23MPa, 3CRH and no reinforcement

Y = 3.7e−007∗ x3 +0.0057∗ x2 +0.88∗ x−8.7 (20a)

2. 23MPa, 3CRH 0.6% reinforcement and option model

Y =−1.7e−005∗ x3 +0.018∗ x2−2∗ x+1.6e+2 (20b)

3. 23MPa, 3CRH 0.6% reinforcement and smeared model

Y =−2.2e−005∗ x3 +0.022∗ x2−3∗ x+2.1e+2 (20c)
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4. 23MPa, 3CRH 0.6% reinforcement and discrete model

Y =−1.5e−005∗ x3 +0.017∗ x2−1.8∗ x+1.4e+2 (20d)

5. 40MPa, 3CRH and no reinforcement

Y = 2.2e−005∗ x3−0.015∗ x2 +4.6∗ x−2.4e+2 (20e)

6.40MPa, 3CRH 0.6% reinforcement and option model

Y = 1.9e−005∗ x3−0.012∗ x2 +3.8∗ x−1.9e+2 (20f)

7. 40MPa, 3CRH 0.6% reinforcement and smeared model

Y = 1.7e−005∗ x3−0.011∗ x2 +3.2∗ x−1.5e+2 (20g)

8. 40MPa, 3CRH 0.6%reinforcement and discrete model

Y = 1.6e−005∗ x3−0.009∗ x2 +2.8∗ x−1.1e+2 (20h)

9. 60MPa, 3CRH and no reinforcement

Y = 1.6e−005∗ x3−0.0093∗ x2 +2.9∗ x−1.5e+2 (20i)

10. 60MPa, 3CRH 0.6%reinforcement and option model

Y = 1.7e−005∗ x3−0.01∗ x2 +3.1∗ x−1.9e+2 (20j)

11. 60MPa, 3CRH 0.6%reinforcement and smeared model

Y = 1.4e−005∗ x3−0.0067∗ x2 +1.9∗ x−93 (20k)

12. 60MPa, 3CRH 0.6%reinforcement and discrete model

Y = 1.7e−005∗ x3−0.01∗ x2 +3.1∗ x−1.9e+2 (20l)

13. 23MPa, 6CRH and no reinforcement

Y = 1.5e−005∗ x3−0.0081∗ x2 +2.4∗ x−1.2e+2 (20m)

14. 23MPa, 6CRH 0.6%reinforcement and opt model

Y = 1.8e−005∗ x3−0.02∗ x2−2.5∗ x+2.5e+2 (20n)
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15. 23MPa, 6CRH 0.6%reinforcement and smeared model

Y = 1.9e−005∗ x3−0.021∗ x2 +3∗ x+2.8e+2 (20o)

16. 23MPa, 6CRH 0.6%reinforcement and discrete model

Y =−3.3e−005∗ x3−0.03∗ x2−4.9∗ x+3.8e+2 (20p)

17. 40MPa, 6CRH and no reinforcement

Y =−4e−005∗ x3 +0.036∗ x2−6.6∗ x+5.4e+2 (20q)

18.40 MPa, 6CRH 0.6%reinforcement and opt model

Y = 15e−005∗ x3−0.011∗ x2 +4.7∗ x−3.3e+2 (20r)

19. 40MPa, 6CRH 0.6%reinforcement and smeared model

Y = 1.4e−005∗ x3−0.01∗ x2 +4.5∗ x−3.2e+2 (20s)

20. 40MPa, 6CRH 0.6%reinforcement and discrete model

Y = 1.4e−005∗ x3−0.0097∗ x2 +4.3∗ x−3e+2 (20t)

21. 60MPa, 6CRH and no reinforcement

Y = 2e−005∗ x3−0.013∗ x2 +4.3∗ x−2.6e+2 (20u)

22. 60 MPa, 6CRH 0.6%reinforcement and opt model

Y = 1.9e−005∗ x3−0.013∗ x2 +4.3∗ x−2.8e+2 (20v)

23. 60 MPa, 6CRH 0.6%reinforcement and smeared

Y = 1.8e−005∗ x3−0.012∗ x2 +3.9∗ x−2.5e+2 (20w)

24. 60MPa, 6CRH 0.6%reinforcement and discrete model

Y = 2e−005∗ x3−0.013∗ x2 +4.2∗ x−2.7e+2 (20x)

where Y = penetration depth, mm, x = impact velocity, m/s

Figure 10 shows the penetration of projectile into concrete target and contour of σzz

stress for concrete target without and with reinforcement model by using different
schemes for projectile impact velocity of 139 m/s.
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(a) Plain Concrete Target without reinforcement 
 

          
 

(b) Concrete Target with Reinforcement – option model 
 
 

          
 

(c) Concrete Target with Reinforcement – smeared model 
 

           
 

(d) Concrete Target with Reinforcement – discrete model 
 

Figure 10: Penetration of projectile into concrete and σzz stress contour
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7 Summary & concluding remarks

Nonlinear transient dynamic projectile impact analysis has been carried out for
concrete structural components. Concrete damage model has been employed to
simulate the nonlinear behaviour of concrete. Various contact algorithms used to
model the interface between the projectile and target have been discussed. Brief
note on equation-of-state is provided. Various modelling schemes of reinforcement
are explained. The procedure for nonlinear transient explicit FEA has been pre-
sented. Based on the methodologies, program modules have been developed and
integrated with the NONTRANS module of FINEART.

Parametric studies have also been carried out on various grades of concrete, CRHs
and velocities. Based on the studies, the following observations are made:

• Penetration depth decreases with the increase of grade of concrete

• Penetration depth increases with the increase of CRH

• Penetration depth by using discrete model falls in between the option model
and smeared model.

The data obtained from the parametric studies (i.e velocity vs penetration depth)
has been used for curve fitting in MATLAB. After regression analysis, design ex-
pressions are proposed for computation of penetration depth. These expressions
will be useful for designers to compute the penetration depth under projectile im-
pact loading.
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