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Ale Formulation with Explosive Mass Scaling for Blast
Loading: Experimental and Numerical Investigation

Souli M.1, Bouamoul A.2 and Nguyen-Dang T.V.3

Abstract: Protection of military vehicles against blast mine and high explo-
sive in air is of a great concern in defence industry. Anti-Vehicle (AV) mines and
Improvised Explosive Devices (IED’s) are capable of inflecting damage to heavy
vehicles. For the last decades, numerical simulation of blast wave propagation and
its interaction with surrounding structures becomes more and more the focus of
computational engineering, since experimental tests are very expensive and time
consuming. This paper presents an experimental and numerical investigation of
blast wave propagation in air, using an Arbitrary Lagrangian Eulerian (ALE) multi-
material formulation developed in LS-DYNA with the contribution of the first au-
thor. To accurately capture peak pressure values of the shock wave, a very fine
mesh, in the explosive material and the surrounding air mesh, is needed. For three
dimensional problems, this condition leads to large size problems that can be CPU
time consuming and not appropriate to run several times for engineering design pur-
poses and structure analysis to resist blast loading. In order to calibrate numerical
models to experimental data, using reasonable fine mesh, explosive masse scaling
is used in this paper. Good correlations in terms of pressure and impulse between
numerical results and experimental data were obtained when using the right combi-
nation of solution parameters and multiplying the explosive mass by an appropriate
scaling factor. This procedure is commonly used in defence industry for structural
design and to avoid running large scale problems.

1 Introduction

Simulation of blast wave propagation and its interaction with the surrounding struc-
tures becomes more and more the focus of computational engineering in defence
industry. It is well known that experimental tests of high explosive detonation and
impact on surrounding structures are expensive and time consuming. To reduce the
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number of experimental tests, theoretical and experimental studies of blast wave
have been considered by several researchers over the past decades. When a high
explosive is detonated an inward wave is generated in the explosive material, at the
same time, a shock wave moves through the air medium, which is at lower pressure
and a contact discontinuity appears between the rarefaction wave and the shock
wave. Experiments have shown that the resulting flow is quite complex, involving
several physical phenomena as burning effects and heat transfer. The detonation
of high explosive material converts the explosive charge into gas at high pressure
and temperature what leads to high structures damage. Numerical simulations help
to minimize the number of tests required which are very costly, and also help to
interpret test results. Once simulations are validated by test results, it can be used
as design tool for the improvement of the system structure involved. In defence
industry, classical Lagrangian finite element methods have been used to solve blast
problems and pressure propagation, but the Lagrangian formulation cannot resolve
large deformations very accurately. Recent development such as ALE or Eulerian
multi-material formulations can be used as an alternative for the simulation of high
explosive phenomena. ALE formulations have been developed to overcome the
difficulties due to large mesh distortion. The ALE multi-material formulation de-
veloped in LS-DYNA code, see Hallquist (1998), by the first author and used in
this paper, has been validated for several academic and industrial applications. The
formulation has been implemented in the LS-DYNA explicit finite element code to
be able to simulate fluid structure interaction problems, where the fluid mesh can
be defined by an ALE or Eulerian mesh and the structure mesh as a Lagrangian
deformable mesh. In the ALE multi-material formulation, a fluid element can con-
tain more than one material. For explosive detonation in ambient air, an element
may contain two different materials, explosive and air, with their respective volume
fractions in the element. During the simulation, state variables are computed and
stored for each material in each element. An interface tracking an algorithm based
on Young’s method (1982) is used to capture the interface between the two materi-
als inside the element. This method was used successfully to model many industrial
and academic applications as sloshing tank problem as described in Aquelet et al
(2006).

For the simulation of blast wave interacting with a surrounding structure, pressure
values need to be computed accurately for structure loading. To accurately capture
peak pressure values of the shock wave, a very fine mesh with element size of the
order of 1 mm, in the explosive material and the surrounding air mesh, is needed.
For three dimensional problems, this condition leads to large size problem that can
be CPU time consuming and not appropriate to run several times for engineering
design and structure analysis to resist blast loading. In order to calibrate the nu-
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merical models to experimental data, using reasonable fine mesh, explosive masse
scaling is used. Once simulations are validated by test results, it can be used as a
design tool for the improvement of the system structure involved.

In this paper, we describe in Section 2, the ALE formulation of the Navier-Stokes
equations in an arbitrary moving domain, and the advection algorithms used to
solve mass, momentum and energy conservation. In Section 3, description of High
explosive and related JWL (Jones-Wilkins_Lee) equation of state are highlighted.
These equations are commonly used to evaluate pressure shock wave at pressure
sensors located far away from the detonation point. To asses mesh sensitivity of the
described problem, different mesh sizes have been used for peak pressure enhance-
ment. In order to capture peak pressure accurately, and minimize energy dissipation
and diffusion, very fine mesh needs to be used in the simulation. This may lead to
large size problems mainly for three dimensional problems that may take several
days to run even with multiple processors. For design purposes where several runs
are required, this procedure cannot be used. In order to use moderate size problems,
and compensate for energy dissipation, high explosive mass scaling is introduced
and described in Section 4.

2 ALE and Eulerian Multi-material formulations

Fluid problems, in which interfaces between different materials (e.g. gas and ambi-
ent air) are present, are more easily modeled using a Lagrangian mesh. However, if
an analysis for complex geometry is required, the distortion of the Lagrangian mesh
makes such a method difficult to use and many re-meshing steps are necessary for
the calculation to continue. Another method to use is the Eulerian formulation.
This change from a Lagrangian to an Eulerian formulation, however, it introduces
two problems. The first one is the interface tracking Young (1982), and the second
is the advection phase or advection of fluid material across element boundaries.

To solve these problems, an explicit finite element method for the Lagrangian phase
and a finite volume method (i.e. flux method) for the advection phase are used. For
a full description of the explicit finite element method, the authors refer to the fol-
lowing explicit codes: Pronto, Dyna3D and LS-DYNA;. The advection phase has
been developed by the first author into the LS-DYNA code, extending the range of
applications that can be used with the ALE formulation. Current applications in-
clude sloshing involving a ‘free surface’, and high velocity impact problems where
the target is modeled as a fluid material, thus providing a more realistic representa-
tion of the impact event by capturing large deformations.

An ALE formulation contains both pure Lagrangian and pure Eulerian formula-
tions. The pure Lagrangian description is the approach that the mesh moves with
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the material, making it easy to track interfaces and to apply boundary conditions.
Using an Eulerian description, the mesh remains fixed while the material passes
through it. Interfaces and boundary conditions are difficult to track using the
last approach; however, mesh distortion is not a problem because the mesh never
changes.

In the ALE description, an arbitrary referential coordinate is introduced in addition
to the Lagrangian and Eulerian coordinates. The material derivative with respect to
the reference coordinate can be described in Equation (2.1). Thus substituting the
relationship between the material time derivative and the reference configuration
time derivative derives the ALE equations.

∂ f (Xi, t)
∂ t

=
∂ f (xi, t)

∂ t
+wi

∂ f (xi, t)
∂xi

(1)

In the last equation, Xi is the Lagrangian coordinate, xi the Eulerian coordinate, wi

is the relative velocity. Let denote by v the velocity of the material and by u the
velocity of the mesh. In order to simplify the equations, we introduce the relative
velocity w = v− u. Thus, the governing equations for the ALE formulation are
given by the following conservation equations (2.2) to (2.4):

(i) Mass equation.

∂ρ

∂ t
=−ρ

∂vi

∂xi
−wi

∂ρ

∂xi
(2)

(ii) Momentum equation.

The strong form of the problem governing Newtonian fluid flow in a fixed domain
consists of the governing equations and suitable initial and boundary conditions.
The equations governing the fluid problem are the ALE description of the Navier-
Stokes equations:

ρ
∂vi

∂ t
= σi j, j +ρbi−ρwi

∂vi

∂x j
(3)

Where σi j is the Cauchy stress tensor. Boundary and initial conditions need to be
imposed for the problem to be well posed.

(iii) Energy equation.

ρ
∂E
∂ t

= σi jvi, j +ρbivi−ρw j
∂E
∂x j

(4)

Note that the Eulerian equations commonly used in fluid mechanics by the com-
putational fluid dynamics (CFD) community, are derived by assuming that the ve-
locity of the reference configuration is zero and that the relative velocity between
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the material and the reference configuration is therefore the material velocity. The
term in the relative velocity in equations (2.3) and (2.4) is usually referred to as the
advective term, and accounts for the transport of the material past the mesh. It is the
additional term in the equations that makes solving the ALE equations much more
difficult numerically than the Lagrangian equations, where the relative velocity is
zero.

In the second phase, the advection phase, transport of mass, internal energy and mo-
mentum across cell boundaries are computed. This may be thought of as remapping
the displaced mesh at the Lagrangian phase back to its original or arbitrary position.
From a discretization point of view of (2.2), (2.3) and (2.4), one point integration
is used for efficiency and to eliminate locking. The zero energy modes are con-
trolled with an hourglass viscosity described in Benson (1992). A shock viscosity,
with linear and quadratic terms, is used to resolve the shock wave; a pressure term
is added to the pressure in the energy and momentum equations (2.3) and (2.4).
The resolution is advanced in time with central difference method, which provides
a second order accuracy in time integration. For each node, the velocity and dis-
placement are updated as follows:

un+1/2 = un−1/2 +∆t.M−1.(Fexl +Fint)

The multi-material formulation is attractive for solving a broad range of non-linear
problems in fluid and solid mechanics, because it allows arbitrary large deforma-
tions and enables free surfaces to evolve. The Lagrangian phase of the volume of
fluid VOF method is easily implemented in an explicit ALE finite element method.
Before advection, special treatment for the partially voided element is needed. For
an element that is partially filled, the volume fraction satisfies Vf ≤ 1, and the total
stress σ is weighed by volume fraction σ f = σ .Vf . For a complete description of
this method, the authors refer to xyz.

In the second phase, the transport of mass, momentum and internal energy across
the element boundaries is computed. This phase may be considered as a ‘re-
mapping’ phase. The displaced mesh from the Lagrangian phase is remapped into
the initial mesh for an Eulerian formulation, or an arbitrary undistorted mesh for an
ALE formulation. In this advection phase, the first author has solved a hyperbolic
problem, or a transport problem, where the variables are density, momentum and
internal energy per unit volume. Details of the numerical method used to solve the
equations are described in detail in Aquelet et al (2005), where the Donor Cell al-
gorithm, a first order advection method and the Van Leer algorithm, a second order
advection method are used. As an example, the equation for mass conservation
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would be :

∂ρ

∂ t
+∇.(ρu) = 0 (5)

It is not the goal of this paper to describe the different algorithms used to solve
equation (2.5); which are well described in in Aquelet et al (2005) but to used them
to solve problems related to mass scaling for blast applications.

3 High Explosive Simulation

3.1 Material model and Equation of state for high explosive

In High explosive process, a rapid chemical reaction is involved, which converts the
material into high pressure gas. From a constitutive material point of view, the gas
is assumed to be inviscid with no shear, and the pressure is computed through JWL
equation of state, a specific equation of state, commonly used for explosive mate-
rials. There have been many equations of state proposed for gaseous products of
detonation, from simple theoretically to empirically based equations of state with
many adjustable parameters Kingery et al (1984). The JWL equation of state de-
termines the relation between blast pressure, change of volume and internal energy.
The JWL equation of state was used in the following form:

P = A
(

1 − ω

R1V

)
exp(−R1 V )+B

(
1 − ω

R2 ω

)
exp (−R2V )+

ω

V
E (6)

In Equation (3.1), P defines the pressure whereas V is the relative volume:

V =
v
v0

ω (7)

In the late equation, v and v0 are the current and initial element volume respectively,
a, B, R1, R2 and ω are material constants defined in Table 1. These performance
properties are based on the cylinder expansion test done in controlled conditions.
At the beginning of the computations, V =1.0 and E is the initial energy per unit
volume.

The first term of JWL equation (a), known as high pressure term, dominates first
for V close to one. The second term (B) is influential in the JWL pressure for V
close to two. Note that in the expanded state, the relative volume is sufficiently
important so that the exponential terms vanish, and JWL equation of state takes the
form of an ideal gas equation of state (3.3):

P = ω
E
V

(8)
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Table 1: High explosive parameters for C4

Parameter Value
A, (MPa) 609.8
B, (MPa) 13.0

R1 4.5
R2 1.4

E, (MPa) 9.0
ω 0.25

Detonation velocity (m/s) 8193
Density, (kg/m3) 1600

Chapman Jouget pressure, (MPa) 28

3.2 Material model and Equation of state for air

Air is modeled using the hydrodynamic material model. The model requires an
equation of state, density, pressure cut-off and dynamic viscosity to be defined. The
viscosity and pressure cut-off are set to zero, because pressure cannot be negative
and the viscosity forces are negligible. The ideal gas law (i.e. gamma law) is
used as an equation of state for air. This polytropic equation of state is given by
considering the general linear polynomial equation of state (3.3):

P = (γ−1)
ρ

ρ0
E (9)

Where ρ and ρ0 = 1 kg/m3 are current and initial densities of air respectively, and
E is the specific internal energy per unit volume (units of pressure) and γ is the
polytropic ratio of specific heats. For the diatomic molecules comprising air, this
adiabatic expansion coefficient is γ = 1.4. To be thermodynamically consistent, air
must be initialized to atmospheric pressure. Note that from equation (3.3) at time
t=0, for an initial pressure P0 = 0.1MPa, the initial internal energy should be set
to E0 = 1.25 MPa , since γ = 1.4, and ρ = ρ0 at initial time. Setting a non-zero
initial pressure in the air domain, appropriate boundary conditions are imposed at
the external boundary, to avoid initial air leakage, thus a 0.1 MPa pressure boundary
condition need to be assumed.

3.3 Blast wave propagation in ambient air

Blast waves are associated with rapid energy release processes such as explosions.
Detonation of a high explosive (HE) is achieved by compressing and heating of the
constituents. As a result, a chemical reaction is triggered and propagated supersoni-
cally at the Chapman-Jouget velocity through the explosive. The violent expansion
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of the gaseous products generates a strong shock wave that propagates into the am-
bient medium. Shock waves are created because the sound speed increases with
increasing temperature in a compressible flow. As a matter of fact, the wave travels
faster than the sound speed in the ambient medium. The various properties of the
fluid (e.g. density, pressure, velocity and Mach number) fluctuate almost discon-
tinuously. In atmospheric conditions, with idealized specific heat ratio γ= 1.4, the
density and pressure across the shock increase whilst the speed decreases and the
shock weakens as its Mach number decreases. When the flow Mach number be-
comes sonic M = 1, the jump in pressure, density and speed vanish and the shock
fades away.

The typical pressure versus time curve at a stationary point (in the inertial reference
frame) is presented in Fig. 1. The positive compression phase is characterized by
a peak overpressure, Ps above that of the ambient medium, P0. The pressure im-
mediately decays, as a function of time from its peak value. A negative expansion
phase follows where the pressure drops below the ambient level. The time at which
this shock occurs is termed the time of arrival, ta. The duration of the shock, td , is
the time between the time of arrival and the time at which the pressure reaches that
ambient pressure. Another non-negligible aspect of a shock is its specific impulse,
I, the momentum imparted in a blast. It can also be viewed as the area under the
pressure-time curve.

I =
∫
t

P(t) dt (10)

Its magnitude often determines structural damage and injuries caused by the blast.
The duration of the shock increases with the distance from explosion, whereas
the peak pressure decreases. With high-energy blasts, subsequent minor pressure
maxima following the main one can be recorded although they are often disregarded
because they occur with decreasing amplitude and are rapidly damped in the air.
As the primary blast wave is moving outward, the expansion wave travels inward.
When reflected at the blast center, the then created outward moving shock wave
is referred to as the secondary shock. Tertiary shock can sometimes be observed
since the cycle of compression and rarefaction is recurring periodically. Finally,
reflections on grounds, walls or obstacles are much more likely to cause secondary
and tertiary shocks than reflection of shock on itself. The internal structure of a
shock front can be approximated by means of an equation of state together with the
Rankine-Hugoniot relations that are based on the conservation of mass, momentum
and energy through an adiabatic shock. These relations enable thermodynamic
variables to be determined downstream as well as upstream.
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3.4 Artificial bulk viscosity

Although they are mathematically treated as discontinuities, shocks do have a nar-
row thickness on the order of a few collision mean free path in the ambient gas. For
air at STP (Standard Temperature and Pressure), the mean free path is estimated
to 70 nanometer. Thus, to keep the accuracy of the results, the mesh size should
be scaled until the shock is resolvable by each individual element. In practice, this
method is not viable because the algorithm is requested to handle a massive amount
of CPU time.

Furthermore, the equations of conservation of mass, momentum and energy across
a shock require that kinetic energy be transformed into internal energy or heat. In
the absence of physical viscosity in the immediate vicinity of the shock, an artificial
unphysical one was added to dissipate the excess of energy. This has the effect
of thickening the shock and smearing the discontinuity into a smooth transition
zone, and thus, the shock is automatically captured on the computational mesh.
As implied by its designation, the artificial viscosity possesses the basic properties
of a real viscosity. This is a requirement to avoid significant unphysical results as
described in Caramana, et al (1998). That is:

• it generates entropy and decreases kinetic energy (dissipative);

• it varies uniformly with the velocity field;

• it vanishes with uniform compression and rotation; and, it vanishes with suf-
ficient expansion.

In LS-DYNA code, for each element, the artificial viscosity is formulated as fol-
lows:

Q = ρh(C0.h.(div(~v)2)−C1.a.hdiv(~v)) (11)

Where Q is a pressure term, added to the momentum and energy equations, C0 and
C1 are dimensionless constants, h the mesh size of the element, and a the speed of
sound in the element. The pressure term Q is only added for compression, when
the divergence of the velocity is negative, div(~v) < 0., and ignored for tension,
div(~v) > 0.

4 Numerical Simulations

ALE formulation was used to treat high explosive blast propagation. All calcula-
tions were performed on Linux Workstation platform with Linux 2.4.21 operating
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Figure 1: Finite element model with coarse mesh

system. The ALE blast model was explored by two means: comparison with exper-
imental data published in open literature and comparison with numerical solutions
based on a pure air blast calculation of above ground air-blast (no ground or re-
flections on obstacles were considered) of high explosives using CONWEP code,
see Kingery, et al (1984). Various parametric studies were also conducted in order
to correlate numerical results more closely to the experimental data and to assess
model independence upon mesh characteristics.

4.1 Simulations using Spherical and cubic domains

Air-blast geometric model consists of two concentric spheres, the inner one being
the explosive and the outer one representing the air (figure 1). A spherical ex-
plosive burst generates spherical blast waves expanding radially outward from the
point source. Thus, for the modelling of the ambient medium, this geometry was
preferred so as to ease radial wave propagation through the mesh. Given the prob-
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Figure 2: Comparison of numerical results (coarse mesh) with CONWEP and ex-
perimental data from Ref.3 (1lb C4). In the legend, P means pressure and I the
impulse

lem symmetry, simplification of the model was possible by considering a sphere
octant. As a result, symmetry conditions with 3 degree of freedom were set on
nodes lying on every cutting plane. Moreover, initial pressure loading and non-
reflecting boundary conditions corresponding were applied to all elements on the
air-sphere free surface. Hence, pressure waves were dissipated from the mesh at
the boundaries, therefore modelling an infinite domain. Air and explosive were
discretized into hexahedron elements. Care had been taken to keep element lengths
within reasonable range with the aim of maximizing computational precision with-
out degrading the time step. The sphere octant was approximately 3 m radius and
totalizing 302 000 elements, 270 000 for the air and 32 000 for the explosive. The
element volume varied between 1.2 E−10m3 and 6E−4 m3. The explosive mod-
elled for the purpose of this exploration was C4. Its radius was 0.0407 m with
mass 0.454 kg (1 lb). C4 was modelled with the with the Jones-Wilkins-Lee (JWL)
equation of state (Eq.3.14).

Pressure history from the numerical model was recorded at 200 kHz and 1.52 m
from the center of explosion likewise the experimental one. Note that no artificial
viscosity was used for these calculations. Comparison of the results with CONWEP
and experimental data showed mediocre correlation (see Fig. 2). The pressure jump
did not occur and the pressure value rose smoothly over a relatively long time lapse
(∼ 0.5 ms). The CONWEP peak pressure is 3.4 E5 Pa, the experimental peak
pressure is 2.8 E5 Pa and the obtained numerical peak pressure is 1.8 E5 Pa (repre-
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senting -36% relative error). The numerical impulse is 44% less than the CONWEP
impulse. In order to lighten the article, only comparisons with experimental result
were made. The second peak of pressure observed in the experimental data was due
to the reflection from the support of the charge (not ground) and was not modeled
numerically.

4.2 Mesh sensitivity analysis

A series of meshes with various coarsenesses were created in order to conduct
mesh sensitivity analysis. Details concerning these meshes are summarized in Fig.
3. Element ratio (i.e. its length divided by its width) was kept below 3:1 to ensure
a three-dimensional analysis. As expected, better agreement between numerical
and experimental results was achieved with increased mesh resolution. However,
accuracy did not significantly increase from a 77 850- elements mesh to a 302
000-elements mesh (corresponding to a factor of 4), whereas the calculation cost
increased appreciably. The elapsed time increased from 15 minutes to 1 hour 26
minutes and the memory usage quadrupled, all for a gain in accuracy on the peak
pressure of only 9% (Fig. 5). Two experimental impulse curves were given in
Fig. 4(with and without support for the explosive). Since the support was not mod-
eled, the numerical impulse was compared with the impulse curve corresponding
to the one without the explosive support. For the three meshes, the impulse curves
were different but with the same finale total impulse which was equal to 44.2 Pa.s
representing -16% relative error regarding the experimental impulse (equal to 52.6
Pa.s). Only impulse curve of the coarse mesh is given in Fig. 4. Computational time
and total memory usage for an explicit solution, when solving with single precision
and using one processor are presented in Table 2. In addition, double precision cal-
culations increased computational costs drastically without significantly affecting
the results.

Artificial viscosity was added to the model using equation (3.4). For improved

Table 2: Computational cost and relative errors for various mesh-coarseness

Coarse mesh Fine mesh Very fine mesh
Elements 56 700 77 850 302 000
Elapsed time Relative 13 min 21 s 14 min 56 s 1 h 26 min 02 s
Relative Error on peak
overpressure

-36% -31% -27%

Relative Error on total im-
pulse

-16% -16% -16%
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Figure 3: Total elements in coarse mesh (a), fine mesh (b) and very fine mesh (c)

results, a parametric study was performed to determine the quadratic coefficient
Co and its linear counterpart C1 in equation (3.5). LS-DYNA default values are
respectively 1.5 and 0.06. Various combinations of the coefficients were evaluated
( 0.01≤Co ≤ 0.35 and 0.001≤C1 ≤ 2.5 ). As shown in Fig6, the peak pressure and
the duration of the shock are both affected by artificial viscosity, whereas the total
impulse is not. Better agreement with the experimental data was achieved when
those coefficients were kept small, as high values resulted in excessive spreading
of the shock. Oscillations behind the shock front intensify was observed when Co

≤ C1. The maximum peak pressure, 2.17 E5 Pa, was obtained with Co = 0.09 and
C1 = 0.001, therefore, the use of artificial viscosity results in a 4.5% improvement
in the accuracy of the calculated peak pressure with a good approximation on the
duration and pressure profile.

Because of the discrepancy between the experimental and the numerical pressure,
a compensating scaling factor had to be prescribed to the explosive mass, the de-
termination of its value being discussed in the next sub-section.

A cube-shaped domain with identical boundary conditions as the spherical and the
same amount of explosive (1 lb of C4) was also used to assess numerical indepen-
dence upon mesh geometry. Air and explosive were discretized into hexahedron
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elements. To achieve an effective comparison, element size in the cubic domain
was matched with the dimensions of the elements at 1.52 m radial distance from the
center coordinate in the spherical model. Figure 5 shows the cubical mesh model.
Results were found to be identical, thus confirming numerical independence be-
tween these two types of meshing. For the following simulations, cube-shaped
domain was used over the spherical-shape domain for flexibility of a cube to be
meshed easily.

 

 
Figure 5: Cubical mesh

4.3 Explosive mass scaling

Using a cubic model developed previously, a parametric study was again con-
ducted. The correlation between experimental data and the numerical model for
the peak pressure and the impulse variable was assessed for various values of the
explosive weight. Some inaccuracies were introduced into the results due to the
mesh coarseness and to the inherent inaccuracy of the explosion is calculated on
nodes although pressure is accounted in the centre of elements. Thus, uncertain-
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ties were caused by an over or underestimation (±0.0167m) of the distance from
explosion.

The relative error between the maximum experimental overpressure and the nu-
merical model was computed for scenarios in which the explosive mass (l lb of C4)
was multiplied by a scaling factor. Good results were obtained when this factor
was equal to 1.18 as shown in Fig. 6. Finally, the simulation of small explosives
(containing only a few elements) is to avoid as the inherent coarseness of the mesh
may perturb the simulation of the pressure build-up in the explosive at detonation,
thereby introducing a substantial error in the measured pressure of the surrounding
air. Similarly, large radius explosives have to be modeled with care, for inexactness
of the simulation data might arise due to near field effects

Since the ultimate objective is the design of structure resisting to load blast, nu-
merical simulations can be included in shape design optimization with shape opti-
mal design techniques Souli et al (1993), and material optimization Erchiqui et al
(2007). Once simulations are validated by test results, it can be used as design tool
for the improvement of the system structure being involved.
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Figure 6: Comparison between experimental and the numerical pressure and im-
pulse profile using a mass-scaling factor
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5 Conclusion

In this work, we have presented the application of an Arbitray Lagrangian Eule-
rian (ALE) approach (ALE) for simulating blast wave propagation in ambient air.
Comparisons with experimental results from literature and CONWEP predictions
were made in order to validate the numerical model. Several parametric studies
were conducted. As a result, the model was explored by the means of an artifi-
cial viscosity together with an optimized mesh coarseness, geometry and scaling
of explosive mass. Good correlation between the numerical results and experimen-
tal data was obtained when using the right combination of solution parameters and
multiplying the explosive mass by a factor equal to 1.18. Further simulations must
be conducted in order to simulate well the shock wave from an explosive using
an ALE formulation (without using a mass-scaling factor). This may be done by
modelling the explosive as a spherical shell that contains high-pressured air with
specific profiles.

In order to calibrate the numerical models to experimental data, using raisonable
fine mesh, explosive masse scaling can be used. Good correlations in terms of
pressure and impulse between the numerical results and experimental data were
obtained when using the right combination of solution parameters and multiplying
the explosive mass by an appropriate scaling factor. As a result, the new simulation
procedure model can be utilised to research into the effects of changing the designs
of the structure to resist blast pressure loadings.

References

Aquelet N., Souli M., Olovson L. (2005): Euler Lagrange coupling with damping
effects: Application to slamming problems. Computer Methods in Applied Me-
chanics and Engineering, Vol. 195, pp 110-132

Benson, D.J. (1992): Computational Methods in Lagrangian and Eulerian Hy-
drocodes, Computer Method Applied Mech. and Eng. 99, 235-394

Caramana, E.J., Shashkov, M.J., Whalen, P.P. (1998): Formulations of artificial
viscosity for multidimensional shock wave computations. J. Comput. Phys. 144,
70-97.

Erchiqui F., Souli M., Ben Yedder R. (2007): Non isothermal finite-element anal-
ysis of thermoforming of polyethylene terephthalate sheet: Incomplete effect of the
forming stage. Polymer Engineering and Science, Volume 47, Issue 12, pp. 2129-
2144.

Gakwaya, A., Sharifi, H., Guillot, M. Souli, M., Erchiqui, F. (2011): ALE For-
mulation and Simulation Techniques in Integrated Computer Aided Design: En-



486 Copyright © 2012 Tech Science Press CMES, vol.86, no.5, pp.469-486, 2012

gineering System with Industrial Metal Forming Applications. CMES: Computer
Modeling in Engineering & Sciences Volume: 73, Issue: 3, Pages: 209-266.

Hallquist, J.O. (1998): LS-DYNA theoretical manual, Livermore Software Tech-
nology Company.

Kingery, C., Bulmarsh, G. (1984): Airblast Parameters from TNT spherical air
burst and hemispherical surface burst, ARBRL-TR-02555, U.S. Army Ballistic Re-
search Laboratory, Aberdeen Proving Ground, MD.

Longatte L., Bendjeddou Z., M.Souli M. (2003): Application of Arbitrary La-
grange Euler Formulations to Flow-Inuced Vibration problems. Journal of Pres-
sure Vessel and Technology Vol. 125, pp 411-417.

Longatte L., Verreman V., Souli M. (2009): Time marching for simulation of
Fluid-Structure Interaction Problems. Journal of Fluids and Structures, Volume
25, Issue 1, , Pages 95-111.

Souli M., Zolesio J.P. (1993): Shape Derivative of Discretized Problems. Com-
puter Methods in Applied Mechanics and Engineering 108, pp. 187–199.

Souli M. et al. (2006): High explosive simulation using multi-material formula-
tion. Applied Thermal Engineering, 26, 1032-1042.

Young, D.L. (1982): Time-dependent multi-material flow with large fluid distor-
tion, Numerical Methods for Fluids Dynamics, Ed. K. W. Morton and M.J. Baines,
Academic Press, New-York.


