
Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

Efficient Parallel Computing of Multifrontal Linear Solver
in Block Lanczos Algorithm for Large-Scale Structural

Eigenproblems

Wanil Byun1 and Seung Jo Kim2

Abstract: A structural eigensolver for large-scale finite element analysis is devel-
oped. The algorithms and data structures implemented in this paper are well suited
for a distributed memory environment. As an eigenvalue extracting algorithm, the
well-known M orthogonal block Lanczos iteration incorporated with a parallel mul-
tifrontal solver (PMFS) was chosen. Basically, for the better performance of this
algorithm in parallel computation, Lanczos vector allocation, mass matrix multi-
plication, and M inner product procedures were efficiently implemented. And the
PMFS for a linear equation which is the most time-consuming part during Lanczos
iterations was improved. The idea was to optimize network topologies of parallel
matrix subroutines which are working in a 2-dimensional block-cyclic processor
map, as well as to reduce both communication volume and idling time of paral-
lel matrix subroutines. To reduce the communication volume, we condensed the
parallel matrix multiplication subroutine from which duplicated communications
are observed in the Cholesky factorization phase. To reduce the idling time, we
adopted the least common multiple (LCM) concept by inverting a frontal matrix in
the triangular system.

Keywords: Parallel performance, finite element method, natural frequency, block
Lanczos algorithm, parallel multifrontal solver.

1 Introduction

Structural eigenvalue analysis considered in this paper is to obtain eigenvalues and
eigenvectors of an eigenvalue problem composed of large, sparse, and symmetric
positive definite (SPD) stiffness and mass matrix, and the eigenvalue problem can
be computed by well-known finite element method (FEM). An eigenvalue problem

1 School of Aerospace and Mechanical Engineering, Seoul National University, Seoul, Republic of
Korea

2 Korea Aerospace Research Institute, Daejeon, Republic of Korea

552 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

for structural vibrations is of the form:

Kx = λMx (1)

In general, stiffness matrix K and mass matrix M are large and sparse, and eigen-
value λ and eigenvector x are directly related to the natural frequencies and the
mode shapes in structural eigenvalue problems. Lanczos method has been pre-
ferred for extremal eigenvalues extraction and is widely implemented in commer-
cial softwares such as MSC.NASTRAN1, ABAQUS2, and ANSYS3. In many en-
gineering fields, a block Lanczos incorporated with a shift-invert transformation
[Arbenz, Hetmaniuk, Lehoucq and Tuminaro (2005)] is known to be the most so-
phisticated eigenvalue analysis method. The benefits of blocking Lanczos vectors
are that memory hierarchy of modern computer architecture can be fully utilized
by using algebraic libraries such as BLAS4 and LAPACK5 and that it shows better
convergence than single vector iteration methods [Baglama, Calvetti and Reichel
(2003)]. Additionally, PBLAS and ScaLAPACK can be used in a distributed mem-
ory environment. The shift-invert transform is one of the most effective methods
from the aspect of convergence rate as long as an efficient linear equation solver is
incorporated with it. The shifted and inverted eigenvalue problem is as follow:

1
α

LT x = LT (K−σM)−1 LLT x (2)

The shifted eigenvalue α is associated with original one by the relation of α = λ −
σ , and the matrix L is the lower triangular part of the factorized mass matrix. The
presence of an inverse of K−σM indicates that a linear equation solver is required
during Lanczos iterations, and the LT x implies that the Lanczos basis should be M
orthogonal. It is notable that the restarted Lanczos iteration [Calvetti, Reichel and
Sorensen (1994)] has been proposed as an alternative for the shift-invert transform.
However, since a generalized eigenvalue problem always requires a linear solver,
the shift-invert transformation is particularly useful for solving Eq.1.

In the present research, we implemented a parallel block Lanczos eigensolver us-
ing M orthogonal iteration equipped with a direct linear equation solver, which is
the shift-invert transformation. To accurately solve the linear equation with the co-
efficient matrix, K−σM, a direct method [Wu and Simon (1999)] is found to be

1 http://www.mscsoftware.com/
2 http://www.3ds.com/products/simulia/overview/
3 http://www.ansys.com/
4 Basic Linear Algebra Subprograms, http://www.netlib.org/blas/
5 Linear Algebra Package, http://www.netlib.org/lapack/

Efficient Parallel Computing of Multifrontal Linear Solver 553

one of the reliable means. Nowadays, due to bottlenecks in scalability and mem-
ory requirement of a parallel direct solver, using iterative linear equation solvers
or reduction methods are gaining attentions [Morgan and Scott (1993); Feng and
Owen (1996); Benninghof and Lehoucq (2004)]. However, since the linear equa-
tion solver should be more accurate than the desired accuracy of eigenvalues, an
iterative solver is less powerful even with its great parallel scalability and memory
efficiency.

Parallel Lanczos libraries are available at a few libraries such as PARPACK [Maschhoff
and Sorensen (1996)], BLZPACK [Marques (1995)], SLEPc [Hernández, Román,
Tomás and Vidal (2006)] and TRLAN [Wu and Simon (2000)]. However, some
libraries are generalized Lanczos iterators which mean they require user implemen-
tation of mass matrix multiplication and a linear equation solver. In that case, in
order to build a complete eigensolver based on Lanczos iteration, one should com-
bine it with a mass matrix multiplication routine and a linear equation solver. In
general, implementation of the mass matrix multiplication depends on sparse ma-
trix packages and the parallel linear equation solver is available in public libraries
such as MUMPS [Amestoy, Duff and L’Excellent (2000)], PARDISO [Schenk and
Gärtner (2004)] and SuperLU [Demmel, Gilbert and Li (1999)]. Although the li-
braries are black-box ones, it is apparent that each of them has been optimized in
the aspect of performance [Amestoy, Guermouche, L’Excellent and Pralet (2006);
Gupta and Karypis and Kumar (1997); Li and Demmel (2003); Schenk and Gärtner
(2006); Wu and Simon (1999)]. However, since the Lanczos iteration procedure is
deeply coupled with the mass matrix multiplication and the linear equation solver,
there are many factors affecting overall performance that cannot be optimized by
combining libraries which are developed and optimized independently.

The objective of this paper is to develop an optimized FEM-oriented parallel eigen-
solver based on the Lanczos iteration suited for a distributed memory environment
in the in-house FE software, IPSAP6. The direct linear equation solver combined
with the M orthogonal block Lanczos algorithm is the PMFS [Kim, Lee and Kim
(2002); Kim, Lee and Kim (2005); Kim and Kim (2012)], which is one of the most
suitable solvers for the FEM. Parallel computing efficiency of the developed code
is enhanced with the following procedures.

• Effective implementation of the mass matrix multiplication using the Lanc-
zos vector distribution technique

• Reducing idling time in solving the triangular system by partial inversion of
the frontal matrix and adopting the LCM concept

6 http://ipsap.snu.ac.kr/

554 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

• Reducing communication volume in the factorization phase by condensing
subroutines of the parallel matrix multiplication kernel

• Searching the best topology set by tuning communication topology parame-
ters of the subroutines

For the first two stages, we partially referred Mackay and Law (1996), Choi (1997)
and Raghavan (1998) which use different linear equation solvers. What we propose
is how much a structural eigensolver can be optimized and how feasible a direct
solver is as a linear equation solver when it is incorporated with a Lanczos iterator
in parallel environments. The four stages proposed above are associated with the
following three major costs in eigenvalue extraction.

• Maintenance of M orthogonality in the Lanczos iterator

• Factorization of K−σM

• Solving triangular systems in the Lanczos iterator

Reducing these prohibitive costs is the proposition of the present research. The ac-
celerating technique [Sorensen (1997)] of Lanczos iterator or graph partitioning by
METIS [Karypis and Kumar (1998)] for the parallel multifrontal solver is not the
scope of this paper. The paper is organized as follows. In Section 2, we describe
the characteristics and the costs of the M orthogonal block Lanczos method and
the PMFS incorporated with the Lanczos iterator in the distributed memory envi-
ronment parallel computing system. Section 3 presents bottlenecks in the structural
eigenvalue analysis and their amelioration. Finally, we present numerical experi-
ments and practical examples in Section 4, followed by conclusions.

2 Overview of the computational costs

In this section, the algorithms of the M orthogonal Lanczos iteration with the shift-
invert transformation and the associated direct solver are presented, and the com-
putational costs are estimated. For the structural eigenvalue problem in Eq. 1,
the M orthogonal Lanczos method [Meerbergen and Scott (2000)] is given by the
following form:

V j is a matrix composed of Lanczos vectors. B j and C j are off-diagonal and diag-
onal entities of the block triangular matrix T j in each loop. All procedures except
steps 2 and 7 can be referred to as a pure Lanczos iteration. Then, it is apparent
that parallelization of the pure Lanczos iteration is straightforward as long as QR
factorization (step 6), mass multiplication (step 1), and inner product (step 4) are

Efficient Parallel Computing of Multifrontal Linear Solver 555

Table 1: M orthogonal block Lanczos algorithm with shift-invert transformation

Let V0 be a set of initial vectors with VT
0 MV0 = I

j = 0
while(required eigenvalue > converged eigenvalue)

step 1 U j = MV j

step 2 (K−σM)W j = U j,solve for W j

step 3 W∗
j = W j−V j−1BT

j−1
step 4 C j = VT

j MW∗
j

step 5 W∗∗
j = W∗

j −V jC j

step 6 W∗∗
j = V j+1B j,QR factorize for V j+1

step 7 compute eigenvalue of T j, j = j +1
step 8 reorthogonalize V j+1 against Vi, i = 0... j−1

end

implemented appropriately. Reorthogonalization (step 8) of V j+1 is a similar pro-
cedure with step 4 and step 5. Providing B j and C j are shared by all processors,
the operations of step 3 and step 5 can be performed in a single processor with-
out affecting distributed manner of V j, W j and W∗

j . Thus, parallel effectiveness
depends upon the efficiency of the QR factorization and the mass matrix multi-
plication. In this study, the QR factorization subroutine is parallelized using the
classical Gram-Schmidt technique with reorthogonalization [Giraud, Langou and
Rozloznik (2005)], which needs a modification into a block version in order to use
the level 2 BLAS library as follows:

Table 2: Block version of CGS2 (classical Gram-Schmidt with reorthogonalization)

for i = 0, ... , n−1
w = iW∗∗

j
for k = 0, 1

1: i−1
i B(k)

j = 1: i−1VT
j+1Mw

w = w − 1: i−1V j+1
1: i−1
i B(k)

j
end
i
iB

(1)
j = wT Mw

V=
j+1w/i

iB
(1)
j

end
B=

j B(0)
j +B(1)

j

556 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

n is the block size of the Lanczos vector V j, and superscript and subscript in the left
side denote the row and column respectively. In the QR factorization process, inter-
processor communication occurs only at the mass matrix multiplication in the inner
product. As a consequence, parallel performance can be enhanced only through an
efficient mass matrix multiplication in the pure Lanczos iteration. The efficiency is
also related to how V j is distributed between the processors.

Step 2 in Tab. 1 is the linear equation solving procedure which takes most of
the time consumed in a structural eigenvalue analysis using Lanczos iteration. As
mentioned in Section 1, the PMFS was chosen as the linear equation solving sub-
routine. The algorithm of the solver can be regarded as an FEM-oriented version
of the conventional multifrontal solver. The computational profile of the PMFS is
similar with that of the conventional multifrontal algorithm in that the recursive
nested dissection ordering scheme [Karypis and Kumar (1996)] is used. However,
the difference is that the PMFS does not require a globally assembled stiffness ma-
trix while the element concept of the FE mesh is utilized as graph information.
Therefore, element matrices are assembled automatically during the factorization
phase. The PMFS is parallelized using the well-known Cholesky factorization im-
plemented in the subtree-subcube mapping because the element matrices are SPD
in the general FE eigenvalue problem for the natural frequencies. Also, the 2-
dimensional block-cyclic matrix distribution is utilized during the extend-add step.
It is noteworthy that the factorization needs to be conducted only once before the
Lanczos loop if the shifted value (σ) does not change. For a given FE mesh and
a decomposed domain shown in Fig. 1, the parallel sparse Cholesky factorization
can be understood as a post-order traverse through an elimination tree in Fig. 2.
The algorithm can be simplified as follows:

Figure 1: Partitioning domain from FE mesh and its ownership

Np is the number of processors participating the computation and Nd is the number
of domains assigned to each processor. The function rem(a,b) computes integer
remain after dividing an integer “a” by another integer “b”. It is remarkable that in

Efficient Parallel Computing of Multifrontal Linear Solver 557

Table 3: Parallel sparse Cholesky factorization

K f =
[

K22 SY M
K12 K11

]
factorize (K11, K12), update (K22)
j = i
while (rem(j,2)=1)

extend_add (K f) with another domain branch in tree
j=(j-1)/2

end
end

parallel procedure
n = 1
while (n < NP)

extend_add (K f) with another processor branch in tree
factorize (K11, K12), update (K22)
n = 2n

end

the second line, the frontal matrix K f is formed from K - σM. Further information
of the function extend_add(K f) is available in the reference [Gupta, Karypis and
Kumar (1997) and Kim, Lee, Kim, Joh and Lee (2003)].

In a matrix form, the Cholesky factorization, factorize (K11, K12), and the update
process of a dense matrix, update (K22), can be written by the following three steps.

K11 = L11LT
11 (3)

L11K∗
12 = K12 (4)

K∗
22 = K22−K∗T

12 K∗
12 (5)

Eq.3-5 are based on the assumption that the lower part of the symmetric frontal ma-
trix is active and that the sub-matrix Ki j is allocated following the memory struc-
ture in Fig. 3. The feature of the frontal matrix structure in Fig. 3 is that the
sub-matrix K22 is firstly assigned at the initial position of the allocated memory.
Such structure of the frontal matrix makes the extend_add(K f) operation be eas-
ily implemented because K∗

22 remains always at the head of the allocated memory.
If the extend_add operation is implemented appropriately, major communication
overhead of the proposed algorithm is caused by parallel dense matrix operations
such as factorize (K11, K12) and update (K22).

558 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

Figure 2: Domains assigned to Processor 0 and its domain-wise elimination tree

Figure 3: Memory structure of frontal matrix K

For solving a triangular system, a forward elimination followed by a backward sub-
stitution is a general procedure. Typically, processor mapping and frontal matrix
distribution techniques used for the tridiagonal system are identical to those in the
factorization phase. When the right-hand side is given as W, the forward elimina-
tion consists of the following two steps.

L11W∗
1 = W1 (6)

W∗
2 = W2−K∗T

12 W∗
1 (7)

The backward substitution is also completed by the next two steps.

W∗∗
1 = W∗

1−K∗
12W∗

2 (8)

LT
11W∗∗∗

1 = W∗∗
1 (9)

Here, W∗∗∗
1 is the solution of the given problem. Since the matrix is distributed

throughout the processors by a 2-dimensional block-cyclic manner in Eq. 3-9, an
expensive communication overhead is expected from parallel subroutines such as

Efficient Parallel Computing of Multifrontal Linear Solver 559

panel or block broadcast and summation, which is described with details in the next
section. It should be noted that the concept of a block in this paragraph is different
from that used for the Lanczos vectors. The main objectives for an efficient paral-
lel computing in these routines are to reduce total communication volume and to
minimize idling time during transferring panel or block matrices.

3 Overcome bottlenecks in parallel implementation

In implementing parallel computing routines, a factor that determines the overall
efficiency is the communication overhead, which is defined as the difference be-
tween the parallel processor-time product and the serial run time [Gupta, Karypis
and Kumar (1997)]. The communication overhead is proportional to the commu-
nication volume and is directly related to the idling time of the processors. Among
the four stages in Section 1 that were proposed to enhance efficiency in parallel
computing, the first and the third components are related to the communication
volume while the second part is the strategy to minimize idling time. Reducing
idling time is often considered as pipelining parallel operations.

In the pure Lanczos iteration defined in Section 2, the bottleneck is the mass matrix
multiplication with the blocked vector V j, W∗

j in Tab. 1 and the multiplication with
the single vector iW∗∗

j in Tab. 2. When implementing parallel routines, distribut-
ing vectors and mass matrices in the row-wise block is relatively simple although
it requires a sparse or dense matrix multiplication kernel for parallel computation
environment. While PBLAS and ScaLAPACK also support parallel multiplication
routine, in this research, a dense matrix multiplication kernel called PLASC (Par-
allel Linear Algebra Subroutines in C) is developed and applied which is also used
for the linear equation solver. Since the block size of V j is small, parallel perfor-
mance cannot be enhanced substantially. However in the domain level, the block
size is large and efficiency can be improved significantly when the developed mul-
tiplication kernel is used for the linear equation solver. As mentioned in Section 2,
the PMFS firstly divides the whole FE mesh into the number of domains assigned
to each processor. Our distribution approach for the Lanczos vector also bases on
the partitioned domain. In Fig. 4, the domain partitioned for four processors is
presented. The symbol Pi represents the unknowns belonging to i-th processor that
excludes unknowns at the interface (Ii j or Ii jkl).

On the interfaces such as I01, I02, I13, I23 and I0123, the processors share the Lanczos
vectors while the mass matrix is assembled independently in a sparse matrix format
within each processor. Mass matrix assembled in i-th domain, M(i), is composed

560 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

Figure 4: Domain partitioned for four processors

of three components as

M(i) =

[
M(i)

D M(i)T
C

M(i)
C M(i)

I

]
(10)

The subscripts D and I denote the entities belonging to the inner portion of the
domain and the interface (Ii j or Ii jkl), respectively. In a single processor, the mass
matrix multiplication with a blocked vector q is represented as M(i)q(i), where q(i) is
a blocked vector assigned to i-th processor which is shared with the other domains
at the interfaces. The frequently appearing mass inner products in Tab. 1 and Tab.
2 can be expressed using blocked vectors p and q for a single processor.

p(i)T M(i)q(i) =
[
p(i)T

D , p(i)T
I

] [M(i)
D M(i)T

C

M(i)
C M(i)

I

] [
q(i)

D

q(i)
I

]
(11)

Summing over the four domains in Fig. 4 yields:

3

∑
i=0

p(i)T M(i)q(i) =

3

∑
i=0

p(i)T
D M(i)

D q(i)
D +

3

∑
i=0

p(i)T
I M(i)

I q(i)
I +

3

∑
i=0

p(i)T
D M(i)T

C q(i)
I +

3

∑
i=0

p(i)T
I M(i)

C q(i)
D (12)

The right-hand side of Eq.12 is identical to the mass inner product of vectors p
and q since both p(i) and q(i) share the interface values across the processors. As
a consequence, the summation of (Nb×Nb) matrix by calling a parallel communi-
cation (i.e. MPI_ALLREDUCE) is sufficient for a block Lanczos iteration with a
block size Nb. The second case considered is the multiplication of a blocked vector

Efficient Parallel Computing of Multifrontal Linear Solver 561

q and the mass matrix which is used at step 2 in Tab. 1. For a serial calculation,
multiplication is conducted to form vectors q∗(i)D and q∗(i)I as follows:[

q∗(i)D

q∗(i)I

]
=

[
M(i)

D M(i)T
C

M(i)
C M(i)

I

] [
q(i)

D

q(i)
I

]
(13)

In this case, the blocked vector q∗(i)D is composed of fully summed values while q∗(i)I
on the interface comprises partial values. In other words, the fully summed values
of q∗(i)I can be obtained by summing over the processors sharing the unknowns.
However, since the multifrontal solver already sums the unknowns at the forward
elimination process, additional communication is not required for step 1 of Tab. 1.

(a) Forward panel sequence of TRSM

subroutine such as Eq.6

(b) Broadcasting sequence with the LCM

concept of GEMM subroutine such as
Eq.7 and Eq.8

(c) Backward panel sequence of TRMM

subroutine such as Eq.14

(d) Arbitrary panel sequence of modified

TRMM subroutine such as Eq.14

Figure 5: Broadcasting sequences for a triangular system

As for the linear equation solver, the Cholesky factorization in Tab. 3 should be
conducted at least once, while the triangular system (Eq.6-9) should be solved

562 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

repetitively at each iteration. In parallel computing environments, Eq.3-9 can be
computed by parallel dense matrix kernels such as PBLAS, ScaLAPACK or PLASC.
The first aspect to be considered is that the communication pattern in Eq.6 and Eq.9
is inefficient compared to that of Eq.7 and Eq.8. In fact, since data dependency of
Eq.6 in Fig. 5-(a) enforces the sequential panel broadcast, pipelining is unavoid-
ably disturbed. On the other hands, Eq.8 is more scalable if data-independency is
utilized by appropriately profiling the broadcasting sequence with the LCM con-
cept in Fig. 5-(b), where the LCM is the least common multiple of the processor
row and column sizes in the processor map. Fig. 6 shows the panel sequences for
the cases with and without LCM concept for a matrix distributed in a 2-dimensional
processor map. One advantage of the LCM concept is that since panel broadcast or
summation operation does not stop until the last block, idling time is minimized.
In order to apply this concept to Eq.6 and Eq.9, the factorization phase should be
modified such that the operation can be conducted with matrix multiplication only:

L−1
11 W1 = W∗

1 (14)

L−T
11 W∗∗

1 = W∗∗∗
1 (15)

Therefore, L−1
11 should be computed in the factorization phase. Once L−1

11 is com-
puted, the triangular system can be solved using the multiplication routine. In
general, W1 and W∗

1 share the same memory space, and the panel broadcasting pat-
tern for computing Eq.14 becomes backward sequence as presented in Fig. 5-(c)
which makes computing L−1

11 meaningless. Moreover, Eq.15 has the same problem.
However, if W1 and W∗∗

1 can be stored at separate buffered arrays, the panel broad-
casting pattern for computing Eq.14 and Eq.15 has arbitrary sequence as depicted
in Fig. 5-(d), then the LCM concept can be finally applied in the same manner of
Fig. 5-(b). Since the Lanczos block size is generally not so large, it is not difficult
to allocate temporary memory space for W1 and W∗∗

1 . It is noteworthy that when
the number of processor is small, benefit for the LCM concept may diminish since
computing L−1

11 increases the number of floating point operations.

Four subroutines (Eq.3, Eq.4, Eq.5 and inverting L11) have various block or panel
communication patterns as presented in Fig. 5. However, it is apparent that some of
the communications are duplicated among the subroutines. For example, Comm.2
of Fig. 7-(a) is similar to Comm.1 of Fig. 7-(b) and (d), and Comm.2 of Fig. 7-(b)
is the same communication as Comm.1 of Fig. 7-(c). It means that one can develop
a condensed subroutine which includes the functions of all four subroutines. If one
uses small number of processors, parallel performance of the condensed subrou-
tine will certainly be better than using the four subroutines separately because the
total amount of communication is smaller. However, data-independency of Eq.5

Efficient Parallel Computing of Multifrontal Linear Solver 563

is lost by condensing subroutines, and therefore, the LCM cannot be used. In ad-
dition, if the number of processors is large and the degree of freedom is small,
merging several routines may disturb the pipeline between the processors because
each processor would end up having too small frontal matrix. One should deter-
mine a criterion of frontal matrix size or a maximum number of processor that the
condensed subroutine would result in better performance than the sequential exe-
cution of the four subroutines. It is notable that the criterion is dependent on the
performance of each processor and the network speed. Furthermore, in case of ap-
plying the LCM concept with a small number of eigenvalues, it has a possibility
to be deteriorated due to the increased floating point operation by adding a partial
inverting subroutine. Therefore, for flexible application of the LCM concept and
to prevent pipeline disturbance, the condensed subroutine in this research is com-
posed of three subroutines while the inverse matrix subroutine (L−1

11 , Fig 7-(d)) is
excluded.

Figure 6: Panel broadcasting sequences without (left) and with (right) the LCM
concept

4 Numerical test and application to structural eigenproblems

In this section, a series of numerical tests is performed to verify how much the
modified methods improve parallel computing performance. The tests are also to
confirm that the performance of the structural eigensolver of IPSAP enhances once
the proposed approaches are used. Most time consuming part in the block Lanczos
algorithm (Tab. 1) is step 2, which is the linear algebra operation part. The step
2 is composed of the Cholesky factorization routine (Tab. 3 and Eq.3-5) and the
triangular system solving routine (Eq.6-9) of which Eq.6 and Eq.9 are replaced by

564 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

(a) POTRF subroutine

(b) TRSM subroutine

(c) SYRK subroutine

 (d) TRTRI subroutine

Figure 7: Communication patterns of various subroutines during the Cholesky fac-
torization phase

Efficient Parallel Computing of Multifrontal Linear Solver 565

Eq.14 and Eq.15 to utilize the LCM concept. For this linear equation, the eigen-
value analysis code of IPSAP applies the PMFS. For a single processor case, these
matrices are generally calculated using high performance libraries such as ‘TRSM’,
‘SYRK’, ‘GEMM’ subroutines of BLAS and ‘POTRF’, ‘TRTRI’ subroutines of
LAPACK. On the other hand, for a distributed parallel computing architecture, the
solver adopts ‘TRSM’, ‘TRMM’, ‘SYRK’, ‘GEMM’, ‘POTRF’, ‘TRTRI’ subrou-
tines of PLASC to maximize parallel computation performance. Different from
other libraries, subroutines of PLASC can be modified to fit developer’s intention
and can be combined with an optimal network topology set suited for a distributed
memory environment. Therefore, numerical tests to find the best combination of
network topologies of each subroutine were involved. There are two kinds of net-
work topology controls in the PLASC as shown in Fig. 8. One is an ‘increasing
ring’ option that has one-way communication flow, and the other is a ‘split ring’
option that has two-way communication flows.

Figure 8: Topology control in panel of block communication

Table 4: Elapsed time of subroutines used in the Cholesky factorization phase

Subroutine
Network topology set (unit: sec)

ss ii
POTRF 119.6 106.2

TRSM_NN 241.7 221.8
SYRK 321.0 320.6

Total elapsed time 682.3 648.6

Numerical tests and performance measurements are performed in the PEGASUS77

system – a parallel computing system with the distributed memory environment.
Various sets of the number of computing nodes and block sizes were tested. How-
ever, because the results show similar trends, we representatively investigated a test

7 http://astl.snu.ac.kr/ENG/Research/pegasus01.asp

566 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

case of 32,000x32,000 matrix size calculated using 64 computing nodes (64 pro-
cessors) in this study. The process map is 8x8 and the communication block size is
100. At first, the results of the ‘POTRF’, ‘TRSM_NN88’ and ‘SYRK’ subroutines
that correspond to the Cholesky factorization procedure (Eq.3 to Eq.5) are shown
in Tab. 4.

The network topology set of each subroutine consists of two topology options,
from which 4 cases are possible. Among them, when the same topology is repeated
(‘ii’ or ‘ss’), the performance is better than mixed cases (‘is’ or ‘si’). Also, ‘ii’
combination shows better computing performance than ‘ss’ combination in all three
subroutines.

As mentioned in section 3 and Fig. 7, there are duplicated communications among
‘POTRF’, ‘TRSM’ and ‘SYRK’ subroutines. Therefore, a condensed subroutine
‘CONDENSATION’ is developed in order to minimize communication volume,
and numerical test is also performed for an optimal network topology set. Since
three subroutines are combined, the condensed routine now has five network topol-
ogy controls. In other words, numerical tests for 32 cases should be considered
(Fig. 9). Performance is usually better when all topologies are in the same op-
tion. In contrast, ‘CONDENSATION’ subroutine has the best performance when
the combined network topology is ‘issii’. Total elapsed time of the condensed
subroutine (585.8sec) is found to be better than the uncondensed case in Tab. 4
(648.6sec). Performance is improved by at least 9.7%. It should be noted that the
optimal topology set is sensitive to the network environment.

To apply the LCM concept during the triangular system solving phase which have
the forward elimination (Eq.14 and Eq.7) and the backward substitution (Eq.8 and
Eq.15), inverse of L11 should be calculated using ‘TRTRI’ subroutine after the
Cholesky factorization. Therefore, numerical test of the matrix inverse routine is
also performed to find an optimal network topology set (Fig. 10). According to
Fig. 7-(d), ‘TRTRI’ is composed of three topology options (Comm.1 to Comm.3),
resulting in total 8 cases. As listed in Fig. 10, ‘iss’ set shows the best performance
as 123.3sec, while ‘sss’ set is also fine (123.4sec).

Results from the tests of the triangular system solving phase are presented. The left
part of Tab. 5 lists elapsed time of each subroutine corresponds to Eq.6 to Eq.9,
and the right part shows elapsed time of the subroutines correspond to Eq.14, Eq.7,
Eq.8 and Eq.15. Each subroutine is composed of two topology options, and ‘i’
combination set results in the best performance except for ‘TRTRI’ (Fig. 10) and
‘TRSM_TN’ (Tab. 5) subroutines. According to Tab. 5, the shortest total elapsed
time through Eq.6-7-8-9 procedure is 1,554.3sec and that through Eq.14-7-8-15

8 ‘N’ means a general matrix. cf) ‘T’ means a transposed matrix.

Efficient Parallel Computing of Multifrontal Linear Solver 567

Figure 9: Elapsed time of each network topology set of the ‘CONDENSATION’
subroutine for the Cholesky factorization phase

Figure 10: Elapsed time of each network topology set of the ‘TRTRI’ subroutine

568 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

procedure is 1,555.1sec. In other words, parallel performances for the two proce-
dures are almost same since ‘TRMM’ requires the same number of floating point
operations and the communication volume as ‘TRSM’ does. However, the LCM
concept can be applied to the latter case owing to the data-independent communi-
cation pattern. The elapsed time applied the LCM concept is 1,340.6sec, and the
total elapsed time (1,463.9sec) is reduced compared to the normal case (1,554.3sec)
in spite of an addition of inverting ‘TRTRI’ process which takes 123.3sec. Since
‘TRTRI’ subroutine is called only once before the Lanczos iteration for a fixed σ ,
parallel performance will be vastly improved especially when the number of Lanc-
zos iteration is large. On the other hand, at a small number of Lanczos iteration,
performance negotiation between the computational cost for calculating L−1

11 and
the efficiency upgrading from using ‘TRSM’ needs to be considered.

Table 5: Elapsed time of subroutines used in the triangular system solving phase

Eq.6-7-8-9
Network
topology set
(unit: sec)

Eq.14-7-8-15
Network topology
set (unit: sec)

ss ii ss ii ii &
LCM

TRSM_NN 241.7 221.8 TRMM_NN 246.8 230.0 202.0
GEMM_TN 592.5 577.3 GEMM_TN 592.5 577.3 498.6
GEMM_NN 384.3 369.6 GEMM_NN 384.3 369.6 340.4
TRSM_TN 385.6 412.5 TRMM_TN 388.5 378.2 299.6
Total
elapsed time

1554.3 Total
elapsed time

- 1555.1 1340.6

Lastly, the structural eigenvalue analyses for two different FE models are performed
applying the optimized topology sets on the parallel subroutines and using the
PMFS considered the results of numerical test. The first eigenvalue analysis is per-
formed for a square plate with two different mesh sizes. The FE models composed
of 8-node hexahedral (Hex8) solid elements are investigated using 64 processors,
and DOFs (degree of freedom) for the two models are 10 million (10M) and 24
million (24M). Tab. 6 lists the performance results, where symbols 1© and 2© rep-
resent elapsed times of the Cholesky factorization phase as well as the inverting
process (1©) and the triangular system solver (2©). Additionally, 3© indicates total
time taken for the PMFS which corresponds to the total elapsed time of step 2 in
Tab. 1. In Tab. 6, Case 1 is when conventional elimination-substitution with the
optimized network topology set is used. From this baseline case, Case 2 adopts
the ’CONDENSATION’ subroutine to the Cholesky factorization phase and Case

Efficient Parallel Computing of Multifrontal Linear Solver 569

Table 6: PMFS parallel performance of eigenvalue problems with a simple shape –
a square plate model

Problem description
PMFS elapsed time (unit: sec)

Case 1 Case 2 Case 3
Hex8 1260 x 1260 x 1 (10M DOF)
100 eigenvalues (36 loop)

1© 143.7
2© 1170.7
3© 1320.0

1© 135.5
2© 1166.3
3© 1307.4

1© 152.0
2© 909.1
3© 1066.8

Hex8 1260 x 1260 x 1 (10M DOF)
500 eigenvalues (134 loop)

1© 147.1
2© 4378.7
3© 4531.4

1© 139.7
2© 4374.5
3© 4519.9

1© 144.5
2© 3032.6
3© 3182.6

Hex8 1260 x 1260 x 1 (10M DOF)
1,000 eigenvalues (251 loop)

1© 143.2
2© 8414.7
3© 8563.5

1© 136.6
2© 8408.2
3© 8550.4

1© 143.1
2© 6215.3
3© 6364.0

Hex8 2000 x 2000 x 1 (24M DOF)
10 eigenvalues (9 loop)

1© 484.2
2© 797.1
3© 1296.6

1© 424.2
2© 791.1
3© 1230.6

1© 483.8
2© 694.1
3© 1193.2

3 further applies the LCM concept to the triangular system.

Fig. 11 shows times consumed for the Cholesky factorization phase relative to the
case when the condensed subroutine is used. Performance has been enhanced due
to condensing subroutines and reducing communication volume (compare Case 1-
1© and Case 2- 1©). Also, efficiency gain is larger since 24M model has larger
communication amount for each processor. Nevertheless, elapsed time of the fac-
torization phase in Case 3 is increased because Case 3 includes inevitable matrix
inverse routine to apply LCM. However, Case 3 has a room for further enhance-
ment as the number of iteration loop increases as shown in Fig. 12. Fig. 12 shows
relative time consumed for the triangular system scaled to the LCM cases. In fact,
total elapsed time for solving the triangular system is reduced significantly in Case
3 (compare Case 2- 2© and Case 3- 2©). Moreover, as the number of eigenvalue in-
creases, the performance gain becomes significant because the number of Lanczos
iteration increases. For example, performance is increased by 30% for the case of
calculating 500 eigenvalues for the 10M model.

FE analysis is also performed for a launch vehicle. Fig. 13 shows a FE model
composed of 0.25M Hex8 solid elements of which DOF is 1.2M [and Kim, Lee,
Kim, Joh and Lee (2003)]. FE analysis is performed for 100 and 1,000 eigenvalue
cases using 32 and 64 processors, respectively. Tab. 7 lists the performance of the
cases and Fig. 14 shows a couple of bending modes among the mode shapes. Tab. 7
shows that there is a similar trend in the performance enhancement compared to the

570 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

Figure 11: Elapsed time comparison of the Cholesky factorization phase of square
plate models for the norml case and the case using a condensed subroutine

Figure 12: Elapsed time comparison of solving triangular system of square plate
models

Efficient Parallel Computing of Multifrontal Linear Solver 571

Figure 13: FE model of a launch vehicle

Figure 14: Some mode shapes of FE
launch vehicle model

Figure 13: FE model of a launch vehicle

Figure 14: Some mode shapes of FE
launch vehicle model

square plate model in which elapsed time of the PMFS is reduced by approximately
17%. In this particular problem, parallel efficiency of the Cholesky factorization
phase is low, because the frontal matrix size per each node is small. Fig. 15 and
Fig. 16 show relative time consumed for the Cholesky factorization phase and the
triangular system, respectively.

Table 7: PMFS parallel performance of an eigenvalue problem with a complicated
shape – a launch vehicle model

Problem description
Elapsed time (unit: sec)

Case 1 Case 2 Case 3
100 eigenvalues (39 loop)
with 32 nodes (32 processors)

1© 60.4
2© 374.9
3© 437.1

1© 55.5
2© 368.4
3© 425.8

1© 59.0
2© 311.3
3© 372.2

1000 eigenvalues (291 loop)
with 64 nodes (64 processors)

1© 40.0
2© 3061.2
3© 3102.1

1© 37.1
2© 3060.4
3© 3098.4

1© 40.8
2© 2528.6
3© 2570.3

572 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

Figure 15: Elapsed time comparison of the Cholesky factorization phase of a launch
vehicle model

Figure 16: Elapsed time comparison of solving triangular system of a launch vehi-
cle model

Efficient Parallel Computing of Multifrontal Linear Solver 573

5 Conclusions

In this study, parallel performance for a structural eigensolver is enhanced in the
distributed memory environment. The M orthogonal block Lanczos algorithm with
the shift-invert transformation as the eigensolver is adopted for extracting large
amount of eigenvalues. This algorithm is also incorporated with the PMFS as a
linear equation solving subroutine. In general, the procedures require substantial
computational costs during extracting eigenvalues are reorthogonalization, factor-
ization ofK - σM, and solving triangular systems. For an efficient parallel comput-
ing performance, two factors are mainly concerned: reducing communication vol-
ume and reducing idling time. To reduce communication volume, Lanczos vector
distribution technique is used for mass matrix multiplication and repetitive similar
communication routines are condensed at the Cholesky factorization phase. Fur-
thermore, to reduce idling time, the LCM concept based on inverting the frontal
matrix is introduced in triangular system solving phase. While the proposed ap-
proaches show limited performance gain for smaller problems which uses fewer
processors, small number of Lanczos iterations, or small frontal matrix size, the
performance enhances significantly as the problem size increases. In fact, a set
of numerical experiments and eigenvalue analyses for structural problems suggest
that the parallel computing performance is improved by as much as 30% when the
proposed methods are used.

Acknowledgement: This work was supported by the National Space Lab pro-
gram through the National Research Foundation of Korea funded by the Ministry
of Education, Science and Technology (Contract No. 2009-0092052).

References

Amestoy, P. R.; Duff, I. S.; L’Excellent, J. -Y. (2000): Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers. Computer Methods in Applied Me-
chanics and Engineering, vol. 184, no. 2-4, pp. 501-520.

Amestoy, P. R.; Guermouche, A.; L’Excellent, J. -Y.; Pralet, S. (2006): Hybrid
Scheduling for the Parallel Solution of Linear Systems. Parallel Computing, Vol.
32, no.2, pp. 136-156.

Arbenz, P.; Hetmaniuk, U. L.; Lehoucq, R. B.; Tuminaro, R. S. (2005): A Com-
parison of Eigensolvers for Large-scale 3D Modal Analysis using AMG-Precondi-
tioned Iterative Methods. International Journal for Numerical Methods in Engi-
neering, vol. 64, no. 2, pp. 204-236.

Baglama, J.; Calvetti, D.; Reichel, L. (2003): IRBL: An Implicitly Restarted
Block Lanczos Method for Large-Scale Hermitian Eigenproblems. SIAM Journal

574 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

on Scientific Computing, vol. 24, no. 5, pp. 1650-1677.

Benninghof, J. K.; Lehoucq, R. B. (2004): An Automated Multilevel Substructur-
ing Method for Eigenspace Computation in Linear Elastodynamics. SIAM Journal
on Scientific Computing, vol. 25, no. 6, pp. 2084-2106.

Calvetti, D.; Reichel, L.; Sorensen, D. C. (1994): An Implicitly Restarted Lanc-
zos Method for Large Symmetric Eigenvalue Problems. Electronic Transaction on
Numerical Analysis, vol. 2, pp. 1-21.

Choi, J. (1997): A Fast Scalable Universal Matrix Multiplication Algorithm on
Distributed-Memory Concurrent Computers. Proceedings of the 11th International
Symposium on Parallel Processing, Switzerland, pp. 310-314.

Demmel, J. W.; Gilbert, J. R.; Li, X. S. (1999): An Asynchronous Parallel Su-
pernodal Algorithm for Sparse Gaussian Elimination. SIAM Journal on Matrix
Analysis and Applications, vol. 20, no. 4, pp. 915-952.

Feng, Y. T.; Owen, D. R. J. (1996): Conjugate Gradient Methods for Solving
the Smallest Eigenpair of Large Symmetric Eigenvalue Problems. International
Journal for Numerical Methods in Engineering, vol. 39, pp. 2209-2229.

Giraud, L.; Langou, J.; Rozloznik, M. (2005): The Loss of Orthogonality in
the Gram-Schmidt Orthogonalization Process. Computer and Mathematics with
Applications, vol. 50, no. 7, pp. 1069-1075.

Gupta, A.; Karypis, G.; Kumar, V. (1997): A Highly Scalable Parallel Algorithm
for Sparse Matrix Factorization. IEEE Transaction on Parallel and Distributed
Systems, vol. 8, no. 5, pp. 502-520.

Hernández, V.; Román, J. E.; Tomás, A.; Vidal, V. (2006): Lanczos Methods in
SLEPc. SLEPc Technical Report STR-5, UPV, Spain.

Karypis, G.; Kumar, V. (1996): Parallel Multilevel Graph Partitioning. Proceed-
ings of the 10th International Parallel Processing Symposium, Honolulu, HI, USA,
pp. 314-319.

Karypis, G.; Kumar, V. (1998): A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, vol. 20, no.
1, pp. 359-392.

Kim, S. J.; Lee, C. S.; Kim, J. H. (2002): Large-Scale Structural Analysis by Par-
allel Multifrontal Solver through Internet-Based Personal Computers. AIAA jour-
nal, vol. 40, no. 2, pp. 359-367.

Kim, S. J.; Lee, C. S.; Kim, J. H.; Joh, M. S.; Lee, S. S. (2003): IPSAP : A
High-Performance Parallel Finite Element Code for Large-Scale Structural Analy-
sis Based on Domain-Wise Multifrontal Technique. SC2003, Phoenix, AX, USA,
pp. 15-21.

Efficient Parallel Computing of Multifrontal Linear Solver 575

Kim, J. H.; Lee, C. S.; Kim, S. J. (2005): High-Performance Domainwise Parallel
Direct Solver for Large-Scale Structural Analysis. AIAA journal. vol. 43, no. 3,
pp. 662-670.

Kim, M. K.; Kim, S. J. (2012): Hybrid Parallelism of Multifrontal Linear Solution
Algorithm. CMES: Computer Modeling in Engineering & Sciences, vol. 84, no. 4,
pp. 297-331.

Li, X. S.; Demmel, J. W. (2003): SuperLU DIST: A Scalable Distributed-Memory
Sparse Direct Solver for Unsymmetric Linear Systems. ACM Transactions on
Mathematical Software (TOMS), vol. 29, no. 2, pp. 110-140.

Marques, O. A. (1995): BLZPACK: Description and User’s Guide. Technical
Report TR/PA/95/30, CERFACS, Toulouse, France.

Mackay, D. R.; Law, K. H. (1996): A Parallel Implementation of a Generalized
Lanczos Procedure for Structural Dynamic Analysis. International Journal of High
Speed Computing, vol. 8, no. 2, pp. 171-204.

Maschhoff, K. J.; Sorensen, D. C. (1996): A Portable Implementation of ARPACK
for Distributed Memory Parallel Architectures, Preliminary proceedings, Copper
Mountain Conference on Iterative Methods.

Meerbergen, K.; Scott, J. (2000): The Design of a Block Rational Lanczos Code
with Partial Reorthogonalization and Implicit Restarting. Technical Report RAL-
TR-2000-11.

Morgan, R. B.; Scott, D. S. (1993): Preconditioning the Lanczos Algorithm for
Sparse Symmetric Eigenvalue Problems, SIAM Journal on Scientific Computing,
vol. 14, no. 3, pp. 585-593.

Raghavan, P.; (1998): Efficient Parallel Triangular Solution Using Selective Inver-
sion. Parallel Processing Letters, vol. 9, no. 1, pp. 29-40.

Schenk, O.; Gärtner, K. (2004): Solving Unsymmetric Sparse Systems of Linear
Equations with PARDISO. Journal of Future Generation Computer Systems, vol.
20, no. 3, pp. 475-487.

Schenk, O.; Gärtner, K. (2006): On Fast Factorization Pivoting Methods for Sym-
metric Indefinite Systems. Electronic Transactions on Numerical Analysis, vol. 23,
no. 1, pp. 158-179.

Sorensen, D. C. (1992): Implicit Application of Polynomial Filters in a k-Step
Arnoldi Method. SIAM Journal on Matrix Analysis and Application, vol. 13, no.
1, pp. 357-385.

Wu, K.; Simon, H. (1999): An Evaluation of the Parallel Shift-and-Invert Lanc-
zos Method, Proceedings of International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, NV, USA, pp. 2913-2919.

576 Copyright © 2012 Tech Science Press CMES, vol.86, no.6, pp.551-576, 2012

Wu, K.; Simon, H. (1999): A Parallel Lanczos Method for Symmetric Generalized
Eigenvalue Problems. Computing and Visualization in Science, vol. 2, no. 1, pp.
37-46.

Wu, K.; Simon, H. (2000): Thick-Restart Lanczos Method for Large Symmetric
Eigenvalue Problems, SIAM Journal on Matrix Analysis and Applications, vol. 22,
no. 2, pp. 602-616

