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An Improved Numerical Evaluation Scheme of the
Fundamental Solution and its Derivatives for 3D
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Abstract: The fundamental solution, or Green’s function, for 3D anisotropic
elastostatics as derived by Ting and Lee (1997) [Q.J. Mech. Appl. Math.; 50:
407-426] is one that is fully explicit and algebraic in form. It has, however, only
been utilized in boundary element method (BEM) formulations quite recently even
though it is relatively straightforward and direct to implement. This Green’s func-
tion and its derivatives are necessary items in this numerical analysis technique.
By virtue of the periodic nature of the angles when it is expressed in the spherical
coordinate system, the present authors have very recently represented the Green’s
function as a double Fourier series for their efficient numerical evaluation. The
Fourier coefficients are determined only once, independent of the total number of
field points involved in the BEM analysis of a problem. The derivatives of the fun-
damental solution can also be obtained simply by direct spatial differentiation of the
double Fourier series without further numerical or significant analytical steps. This
paper presents a re-formulation of the same scheme by taking advantage of some
characteristic features of the Fourier coefficients and re-arranging and simplifying
the terms. In so doing, the total number of terms necessary for the series summa-
tion is significantly reduced thereby enhancing further its computational efficiency,
especially when large number of field points are involved as is typically the case
when modeling practical engineering problems. Numerical examples are presented
to demonstrate the veracity of the proposed scheme. It is also simpler to implement
into BEM codes because of the formulation is considerably less elaborate as com-
pared to the direct evaluation approaches of the exact analytical solution, its full
explicit algebraic form notwithstanding.
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1 Introduction

The fundamental solution or Green’s function to the governing differential equation
of the physical problem and its derivatives are essential items in the direct formu-
lation of the boundary element method (BEM) and some meshless methods. In
elastic stress analysis, the Green’s function for displacements and its first deriva-
tives are used in the derivation of the conventional displacement-boundary integral
equation (BIE); higher order derivatives of this fundamental solution are required
for evaluating the stresses at interior points via Somigliana’s identity, and in, e.g.,
the formulation of the traction-BIE. The fundamental solution for displacements in
a 3D generally anisotropic solid that was first derived by Lifschitz and Rozentsweig
(1947) was not of closed-form and is expressed as a line integral around a unit cir-
cle. Over the past few decades, much attention has been devoted to simplifying the
line integral into more explicit analytical forms as well as on the development of
efficient algorithms for their accurate and stable numerical evaluation. The papers
by, for example, Barnett (1972), Wilson and Cruse (1978), Schlar (1994), Gray et
al (1996), Wang (1997), Sales (1998), Tonon et al (2001), Phan et al (2004), Wang
and Denda (2007), Tavara et al (2008), Shiah and Tan (2008), Tan et al (2009) and
Buroni and Saez (2010) provide a selection of these works using the various ap-
proaches and in the context of BEM development; a more extensive review is given
in, e.g. Tan and Shiah (2009), Shiah et al (2010).

Ting and Lee (1997) and Lee (2003) have also derived an algebraic, real variable
form of the Green’s function for displacements and its derivatives in a 3D generally
anisotropic solid, respectively. They are expressed in terms of Stroh’s eigenval-
ues. The explicit forms of these fundamental solutions make their implementation
into existing BEM codes relatively simpler as compared to previous ones. This
was, however, only recognized quite recently; its introduction into BEM formula-
tions was first carried out by Tavara et al (2008) for the special case of transverse
isotropy, and by the present lead authors for full general anisotropy (Shiah et al
(2008), Tan et al (2009)), as well as by Buroni and Saez (2010). The BEM imple-
mentation in these latter three papers, although fairly straightforward, revealed the
disproportionate amount of computational effort taken in evaluating higher order
derivatives of the fundamental solution because of the presence of very high order
tensor terms (up to 10th order for 2nd order derivatives). This prompted Lee (2009)
to re-examine the problem and new general forms of the Green’s function deriva-
tives, expressed in terms of spherical coordinates, were obtained without the very
high order tensor terms present. Using this revised approach and the residue theo-
rem for high-order poles, the lead authors derived the explicit algebraic expressions
of the 1st and 2nd order derivatives, and implemented them in the BEM for comput-
ing internal point stresses in 3D generally anisotropic solids recently (Shiah et al
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(2010)), demonstrating too (Shiah et al (2011, 2012)) the better computational per-
formance, typically by a factor of about 2 for practical problems over the previous
formulation. These explicit forms of the derivatives are, however, rather lengthy
and tedious; their implementation, although still relatively straightforward, is quite
involved. It can be expected that this will be more so for even higher-order deriva-
tives of the Green function that are required in, for example, hyper-singular BEM
formulations.

An alternative approach to evaluate Ting and Lee’s (1997) fundamental solution
and its derivatives was proposed by the present authors very recently in Shiah et al
(2012). It is recognized that the angles in the spherical coordinate system used in
Ting and Lee’s solution are periodic. For the purpose of numerical evaluation, the
Green’s function can thus be represented by a double Fourier series. The Fourier
coefficients are numerically determined, and this is done only once irrespective of
the number of field points in the numerical solution domain. The derivatives of the
fundamental solution are obtained by direct spatial differentiation on the Fourier
series. The implementation of this approach into the BEM code for the computa-
tion of the fundamental solution and its derivatives is considerably less elaborate.
In that study, it is also shown that very significant savings in computer CPU time
is achieved without, for all intents and purposes, any sacrifice on the numerical ac-
curacy. This makes the scheme a very attractive efficient alternative for practical
engineering problems as the number of field points at which the fundamental solu-
tion and its derivatives are required is very large indeed, typically in the order of
106 or higher.

The present study deals with an extension of the work reported in Shiah et al (2012).
In this paper, advantage is taken of some characteristic features of the Fourier coef-
ficients, thereby re-formulating some of the expressions for the series summation.
By doing so, it will be shown that further increase in efficiency of the computational
effort to compute the fundamental solution and its derivatives can be achieved. The
veracity of the numerical values obtained are demonstrated by examples in which
the quantities are obtained at some sample field points and compared with the exact
values calculated using the previous direct approaches of Shiah et al (2008), Tan
et al (2009), hereinafter referred to as Approach 1; and Shiah et al (2010, 2011),
hereafter referred to as Approach 2. Ways to overcome the numerical singularity
that can occur for some very special cases are also discussed. The relative CPU run
times for evaluating the fundamental solution and its first and second derivatives
using the present Fourier series scheme and those presented in Shiah et al (2012)
are then compared for increasing number of field points. First, however, a brief
review of the fundamental solution of Ting and Lee (1997) is in order.
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2 Fundamental solution for displacements

The fundamental solution in elastostatics, Ui j(P,Q) ≡ U(x), is defined as the dis-
placement in the xi-direction at the field point Q due to a unit load applied in
the x j-direction at P in a homogeneous infinite elastic solid. That for 3D gen-
eral anisotropic elasticity as derived by Ting and Lee (1997) is of a fully explicit,
algebraic form, unlike those derived by others previously. It can be expressed in
simple closed-form as

U(x) =
1

4πr
H[x], (1a)

or, in spherical coordinates, as

U(r,θ ,φ) =
H(θ ,φ)

4πr
, (1b)
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Figure 1: Unit circle, |n*|= 1, on the oblique plane at the field point.

In Eq. (1), r is the radial distance between the load point and field point, and
H(θ ,φ), the Barnett-Lothe tensor, depends only on the spherical angles (θ , φ )
defined in the usual sense, as shown in Figure 1. With reference to this figure, the
vectors n, m along with n*≡x/r form a right-handed triad [n, m, x / r]. The general
form of n and m can be expressed as

n = (cosφ cosθ , cosφ sinθ , −sinφ),
m = (−sinθ , cosθ , 0),

(2)
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where 0≤ θ < 2π and 0≤ φ ≤ π .

The Barnett-Lothe tensor can be expressed in terms of Stroh’s eigenvalues as

H(θ ,φ) =
1
|κκκ|

4

∑
n=0

qnΓ̂ΓΓ
(n)

, (3)

where the explicit expressions for qn, Γ̂ΓΓ
(n)

, and κκκ are given by

qn =


−1

2β1β2β3

[
Re
{

3
∑

t=1

pn
t

(pt−p̄t+1)(pt−p̄t+2)

}
−δn2

]
for n = 0,1,2,

1
2β1β2β3

Re
{

3
∑

t=1

pn−2
t p̄t+1 p̄t+2

(pt−p̄t+1)(pt−p̄t+2)

}
for n = 3, 4,

(4a)

Γ̂
(n)
i j = Γ̃

(n)
(i+1)( j+1)(i+2)( j+2)− Γ̃

(n)
(i+1)( j+2)(i+2)( j+1), (i, j = 1, 2, 3), (4b)

κκκ ≡ κik = Ci jksm jms (4c)

where Ci jks are the elastic stiffness tensor of the anisotropic material and Γ̂ΓΓ
(n)

is the
adjoint of the matrix ΓΓΓ(p) defined as

ΓΓΓ(p) = Q+ pV+ p2
κκκ (5)

where

V = (R+RT ) (6)

and

Q≡ Qik = Ci jksn jns, R≡ Rik = Ci jksn jms. (7)

In Eq. (4a), the Stroh eigenvalues, pi, are the roots of the sextic equation, namely,
|Γ(p)| = 0. They are complex for positive strain energy and appear as three pairs
of complex conjugates; these quantities can be expressed as

pv = αv + iβv, βv > 0, (ν = 1, 2, 3) (8)

with i =
√

(-1), and the overbar on pi denoting the corresponding conjugate. With
some basic algebraic manipulation, the tensor Γ̃ΓΓ

(n) can be shown to be

Γ̃
(4)
pqrs = κpqκrs,

Γ̃
(3)
pqrs = Vpqκrs +κpqVrs,

Γ̃
(2)
pqrs = κpqQrs +κrsQpq + VpqVrs,

Γ̃
(1)
pqrs = VpqQrs + VrsQpq,

Γ̃
(0)
pqrs = QpqQrs.

(9)
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With the explicit expressions presented above, it is evident that the calculations
involved for obtaining the numerical value of U(x) are relatively straightforward.
The only numerical scheme required in any of the above steps is to obtain the roots
of the sextic equation for the Stroh’s eigenvalues.

3 Fourier-series representations of U and its derivatives

Instead of computing the Bartnett-Lothe tensor, H[x]≡H(θ ,φ), directly, the present
authors have very recently proposed that it be represented by a double Fourier se-
ries (Shiah et al (2012)). It offers an efficient alternative for its numerical evaluation
when the number of field points is very large, as is typically the case in practical
engineering problems. Writing this tensor in the spherical coordinate system, the
Fourier series representation may be expressed as follows,

Huv(θ ,φ) =
α

∑
m=−α

α

∑
n=−α

λ
(m,n)
uv ei(mθ+nφ), (u, v = 1, 2, 3) , (10)

where α is an integer large enough to ensure convergence of the series; λ
(m,n)
uv

are unknown coefficients to be determined. This is feasible because the tensor is
periodic with an interval width 2π , that is,

Huv (θ , φ +2π) = Huv (θ , φ) (11)

The Fourier coefficients, λ
(m,n)
uv are determined, from the theory of Fourier series,

by

λ
(m,n)
uv =

1
4π2

∫
π

−π

∫
π

−π

Huv (θ ,φ) e−i(mθ+nφ)dθ dφ . (12)

The integrals in Eq. (12) can be numerically evaluated. For example, if Gaussian
quadrature is employed, Eq. (12) may be rewritten as

λ
(m,n)
uv =

1
4

k

∑
p=1

k

∑
q=1

wpwq f (m,n)
uv (π ξp, π ξq) , (13)

where k is the number of the Gauss abscissa ξp, and wp is the corresponding weight;
f (m,n)
uv (θ , φ) represents the integrand in Eq.(12). Each computation of λ

(m,n)
uv re-

quires the evaluation of Huv (θ ,φ) at the k2 number of points,(π ξp, π ξq), with
Eqs.(4)-(9). For large values of m and n as are typically required in practice, the
rapid fluctuations of f (m,n)

uv (θ , φ) as shown in Shiah et al (2012) makes it usually
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necessary to use a relatively large number of Gauss points (typically greater than
30) to accurately perform the numerical integrations; k= 64 was used in that study
and will be used here as well. Since the computational evaluation of the Fourier
coefficients by Eq. (13) is carried out only once irrespective of the number of field
points in an engineering analysis, the CPU time for this process is relatively small
in comparison with computing directly Eq. (1) for every field point in the same
BEM analysis of the problem.

The above numerical scheme in Shiah et al (2012) can be made even more efficient,
as follows. When summing up the series terms, one can take advantage of the fact
that, in Eq.(12), λ

(m,n)
uv and λ

(−m,−n)
uv are complex conjugates, i.e.

λ
(−m,−n)
uv = λ

(m,n)
uv . (14)

Let λ
(m,n)
uv be separated into the real part R(m,n)

uv and the imaginary part I(m,n)
uv as

shown below,

λ
(m,n)
uv = R(m,n)

uv + iI(m,n)
uv . (15)

As the imaginary part of Huv(θ ,φ) must vanish, Eq.(10) can be rewritten as

Huv(θ ,φ) =
α

∑
m=−α

α

∑
n=−α

h(m,n)
uv (θ ,φ), (16)

where h(m,n)
uv (θ ,φ) is defined by

h(m,n)
uv (θ ,φ) = R(m,n)

uv cos(mθ +nφ)− I(m,n)
uv sin(mθ +nφ). (17)

By invoking Eq.(14), Eq. (16) above can be further simplified into

Huv(θ ,φ) = 2
α

∑
m=1

{
α

∑
n=1

h(m,n)
uv (θ ,φ)+

−1

∑
n=−α

h(m,n)
uv (θ ,φ)

}

+2
α

∑
n=1

h(0,n)
uv (θ ,φ)+2

α

∑
m=1

h(m,0)
uv (θ ,φ)+R(0,0)

uv

. (18)

Substituting Eq. (17) into Eq. (18) and then into Eq. (1b), the fundamental solution
U can now expressed as

Uuv =
1

2πr


α

∑
m=1

α

∑
n=1

 (
R̃(m,n)

uv cosmθ − Ĩ(m,n)
uv sinmθ

)
cosnφ

−
(

R̂(m,n)
uv sinmθ + Î(m,n)

uv cosmθ

)
sinnφ


+

α

∑
m=1

(
R(0,m)

uv cosmφ − I(0,m)
uv sinmφ

+R(m,0)
uv cosmθ − I(m,0)

uv sinmθ

)
+ R(0,0)

uv
2


, (19)
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where R̃(m,n)
uv , R̂(m,n)

uv , Ĩ(m,n)
uv , and Î(m,n)

uv are given by

R̃(m,n)
uv = R(m,n)

uv +R(m,−n)
uv , R̂(m,n)

uv = R(m,n)
uv −R(m,−n)

uv ,

Ĩ(m,n)
uv = I(m,n)

uv + I(m,−n)
uv , Î(m,n)

uv = I(m,n)
uv − I(m,−n)

uv .
(20)

It is worth noting that no operations of complex numbers are involved when evalu-
ating U with Eq. (19). As the number of terms in the series has been reduced, this
equation, being just as straightforward in form, is thus more efficient to use for the
computations than the original formulation with Eqs. (10-13) reported in Shiah et
al (012).

For the first and second order derivatives of U, as denoted here by for U’ and U", re-
spectively, the steps involved and the exact explicit algebraic expressions obtained
from the differentiation of Eq. (1) have been presented by Lee (2003, 2009) and
Shiah et al (2008, 2010). Instead of using these exact analytical expressions, the
present authors have shown that the derivatives can be accurately determined as
well from direct spatial differentiations of Eq. (10) (Shiah et al (2012)). However,
from the above re-formulation of the Fourier series summation, it can be expected
that the same spatial differentiation will yield expressions that are more computa-
tionally efficient to evaluate too. Using the chain rule, the 1st-order derivatives of
the Green’s function may be obtained from the following operation,

U’ ≡ Uuv,l =
∂Uuv

∂ r
∂ r
∂xl

+
∂Uuv

∂θ

∂θ

∂xl
+

∂Uuv

∂φ

∂φ

∂xl
. (21)

Let ωl(θ ,φ), ω ′l (θ ,φ), and ω ′′l (θ ,φ) represent spatial differentiations defined as
follows:

ωl(θ ,φ) = r
∂ r
∂xl

=


sinφ cosθ , (for l = 1)
sinφ sinθ , ( f or l = 2)
cosφ , ( f or l = 3)

(22a)

ω
′
l (θ ,φ) = r

∂θ

∂xl
=


−sinθ/sinφ , (for l = 1)

cosθ/sinφ , (for l = 2)
0, (for l = 3)

(22b)

ω
′′
l (θ ,φ) = r

∂φ

∂xl
=


cosφ cosθ , (for l = 1)
cosφ sinθ , (for l = 2)
− sinφ , (for l = 3)

(22c)
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Direct partial differentiation of Uwith respect to the spherical coordinates and using
Eq. (21) would yield the following, as shown in Shiah et al (2012),

Uuv,l =

1
4πr2



α

∑
m=−α

α

∑
n=−α

λ
(m,n)
uv ei(mθ+nφ)

[
−cosθ (sinφ − in cosφ)
− im sinθ/sinφ

]
for l = 1

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
uv ei(mθ+nφ)

[
−sinθ (sinφ − in cosφ)
+ im cosθ/sinφ

]
for l = 2

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
uv ei(mθ+nφ) [−(cosφ + i n sinφ)] for l = 3

.

(23)

One may however use Eq.(19) instead for the differentiations; this will result in the
following,

Uuv,l =
1

2πr2



−ωl(θ ,φ)


α

∑
m=1

α

∑
n=1

(
←−
Γ

(m,n)
uv (θ)cosnφ −−→Γ

(m,n)
uv (θ)sinnφ

)
+

α

∑
m=1

(γm
uv(θ)+ γ̌m

uv(φ))+ R(0,0)
uv
2


−ω ′l (θ ,φ)


α

∑
m=1

α

∑
n=1

m
(

Γ̃
(m,n)
uv (θ)cosnφ + Γ̂

(m,n)
uv (θ)sinnφ

)
+

α

∑
m=1

m · γ̃m
uv(θ)


−ω ′′l (θ ,φ)


α

∑
m=1

α

∑
n=1

n
(
←−
Γ

(m,n)
uv (θ)sinnφ +

−→
Γ

(m,n)
uv (θ)cosnφ

)
+

α

∑
m=1

m · γ̂m
uv(φ)





,

(24)

where

←−
Γ

(m,n)
uv (θ) = R̃(m,n)

uv cosmθ − Ĩ(m,n)
uv sinmθ ,

−→
Γ

(m,n)
uv (θ) = R̂(m,n)

uv sinmθ + Î(m,n)
uv cosmθ ,

Γ̃
(m,n)
uv (θ) = R̃(m,n)

uv sinmθ + Ĩ(m,n)
uv cosmθ , Γ̂

(m,n)
uv (θ) = R̂(m,n)

uv cosmθ − Î(m,n)
uv sinmθ ,

γ
m
uv(θ) = R(m,0)

uv cosmθ − I(m,0)
uv sinmθ , γ̌

m
uv(φ) = R(0,m)

uv cosmφ − I(0,m)
uv sinmφ ,

γ̃
m
uv(θ) = R(m,0)

uv sinmθ + I(m,0)
uv cosmθ , γ̂

m
uv(φ) = R(0,m)

uv sinmφ + I(0,m)
uv cosmφ .

(25)

It should be noted that in Eq.(24), ωl , ω ′l , and ω ′′l are factors of the Fourier series
sums; their evaluations are carried out only once for each of the field points. Al-
though Eq. (24) may appear more elaborate in form than the original Fourier series
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form of Eq. (23), it is structurally formulated to offer better efficiency in the sum-
mation process. This is evident from the reduction in the number of terms in the
series summation and the absence of inter-linked algebraic operations. In practice
too, a very significant number of the calculated coefficients are, for all intents and
purposes, zero. The terms associated with them can therefore be skipped, thereby
further reducing the processing time of the calculations.

There is the possibility of numerical singularity for U′ at φ = 0 and φ = π that
needs to be addressed. These conditions correspond to cases where the load and
field points are both on the x3-axis. As has been discussed in Shiah et al (2012),
this is due to the fact that the spherical angle θ and its derivative at these locations
become multi-valued and are ill-defined for l=1 and l=2. This problem may be eas-
ily resolved by introducing a small perturbation for φ , say φ= 10−6, and selecting
θ = 0 for l = 1 (i.e. ω ′1(θ ,φ) = 0) and θ = π/2 for l = 2 (i.e. ω ′2(θ ,φ) = 0).
For convenience, θ = 0 can be selected for l=3. Since all the calculations involved
can be carried out by directly substituting the proper angular values in eq.(24), no
explicit expression for this special case is presented here.

In the same manner, the 2nd-order derivatives of U can be derived by directly taking
differentiations of U′ in the spherical coordinates as follows:

Uuv,lk =
∂Uuv,l

∂ r
∂ r
∂xk

+
∂Uuv,l

∂θ

∂θ

∂xk
+

∂Uuv,l

∂φ

∂φ

∂xk
. (26)

By taking differentiations of Eq. (23) and substituting it in Eq.(26), Shiah et al
(2012) have derived the expressions for the six components of U", they are not
presented here. In the present work, the 2nd-order derivatives are alternatively ob-
tained by differentiating Eq.(24) instead in the spherical coordinate system. With
this, and following some re-arrangement of the various algebraic terms, the 2nd-
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order derivatives are expressed as

Uuv,lk =
1

2πr3

Ω
(1)
lk (θ ,φ)

[
α

∑
m=1

α

∑
n=1

Λ̃
(m,n)
uv (θ ,φ)+

α

∑
m=1

(γ̂m
uv(θ)+ γ̌m

uv(φ))+ R(0,0)
uv
2

]
+Ω

(2)
lk (θ ,φ)

[
α

∑
m=1

α

∑
n=1

m
(

Γ̃
(m,n)
uv (θ)cosnφ + Γ̂

(m,n)
uv (θ)sinnφ

)
+

α

∑
m=1

m γ̃m
uv(θ)

]
+Ω

(3)
lk (θ ,φ)

[
α

∑
m=1

α

∑
n=1

n
(
←−
Γ

(m,n)
uv (θ)sinnφ +

−→
Γ

(m,n)
uv (θ)cosnφ

)
+

α

∑
m=1

m γ̂m
uv(φ)

]
+Ω

(4)
lk (θ ,φ)

α

∑
m=1

α

∑
n=1

mn
(

Γ̃
(m,n)
uv (θ)sinnφ − Γ̂

(m,n)
uv (θ)cosnφ

)
+Ω

(5)
lk (θ ,φ)

(
α

∑
m=1

α

∑
n=1

m2Λ̃
(m,n)
uv (θ ,φ)+

α

∑
m=1

m2γ
m
uv(θ)

)
+Ω

(6)
lk (θ ,φ)

(
α

∑
m=1

α

∑
n=1

n2Λ̃
(m,n)
uv (θ ,φ)+

α

∑
m=1

m2γ̌m
uv(φ)

)



,

(27)

where the function Λ̃
(m,n)
uv , repeatedly appearing in the series, is defined as

Λ̃
(m,n)
uv (θ ,φ) =

(
←−
Γ

(m,n)
uv (θ)cosnφ −−→Γ (m,n)

uv (θ)sinnφ

)
, (28)

and the other angular functions are defined as

Ω
(1)
lk (θ ,φ) = 2ωl(θ ,φ)ωk(θ ,φ)− ∂ωl(θ ,φ)

∂θ
ω
′
k(θ ,φ)− ∂ωl(θ ,φ)

∂φ
ω
′′
k (θ ,φ),

Ω
(2)
lk (θ ,φ) = 2ω

′
l (θ ,φ)ωk(θ ,φ)+

(
ωl(θ ,φ)−

∂ω ′l (θ ,φ)
∂θ

)
ω
′
k(θ ,φ)

−
∂ω ′l (θ ,φ)

∂φ
ω
′′
k (θ ,φ),

Ω
(3)
lk (θ ,φ) = 2ω

′′
l (θ ,φ)ωk(θ ,φ)−

∂ω ′′l (θ ,φ)
∂θ

ω
′
k(θ ,φ)

+
(

ωl(θ ,φ)−
∂ω ′′l (θ ,φ)

∂φ

)
ω
′′
k (θ ,φ),

Ω
(4)
lk (θ ,φ) = ω

′′
l (θ ,φ) ω

′
k(θ ,φ)+ω

′
l (θ ,φ)ω ′′k (θ ,φ),

Ω
(5)
lk (θ ,φ) =−ω

′
l (θ ,φ) ω

′
k(θ ,φ),

Ω
(6)
lk (θ ,φ) =−ω

′′
l (θ ,φ)ω ′′k (θ ,φ).

(29)
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It is worth pointing out that the angular functions Ω
(1)
lk (θ ,φ) ∼ Ω

(6)
lk (θ ,φ) in Eq.

(29), which are symmetrical about (l, k), are all independent of m, n; thus, they
need be computed only once for each of the field points. Substituting Eqs. (22a-c)
into Eq.(29), they can be explicitly expressed as

Ω
(1)
lk (θ ,φ) =



1.5(1− cos2φ)cos2 θ −1, (l,k = 1,1)
1.5sin2θ sin2

φ , (l,k = 1,2)
1.5cosθ sin2φ , (l,k = 1,3)
1.5(1− cos2φ)sin2

θ −1, (l,k = 2,2)
1.5sinθ sin2φ , (l,k = 2,3)
1.5cos2φ +0.5, (l,k = 3,3)

(30a)

Ω
(2)
lk (θ ,φ) =



−sin2θ(1+1/sin2
φ), (l,k = 1,1)

cos2θ(1+1/sin2
φ), (l,k = 1,2)

−sinθ cotφ , (l,k = 1,3)
sin2θ(1+1/sin2

φ), (l,k = 2,2)
cosθ cotφ , (l,k = 2,3)
0, (l,k = 3,3)

(30b)

Ω
(3)
lk (θ ,φ) =



2cos2 θ sin2φ − sin2
θ cotφ , (l,k = 1,1)

sin2θ (0.5cotφ + sin2φ) , (l,k = 1,2)
2cosθ cos2φ , (l,k = 1,3)
2sin2

θ sin2φ − cos2 θ cotφ , (l,k = 2,2)
2sinθ cos2φ , (l,k = 2,3)
−2sin2φ , (l,k = 3,3)

(30c)

Ω
(4)
lk (θ ,φ) =



−sin2θ cotφ , (l,k = 1,1)
cos2θ cotφ , (l,k = 1,2)
sinθ , (l,k = 1,3)
sin2θ cotφ , (l,k = 2,2)
−cosθ , (l,k = 2,3)
0, (l,k = 3,3)

(30d)
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Ω
(5)
lk (θ ,φ) =



−sin2
θ/sin2

φ , (l,k = 1,1)
0.5sin2θ/sin2

φ , (l,k = 1,2)
0, (l,k = 1,3)
−cos2 θ/sin2

φ , (l,k = 2,2)
0, (l,k = 2,3)
0, (l,k = 3,3)

(30e)

Ω
(6)
lk (θ ,φ) =



−cos2 θ cos2 φ , (l,k = 1,1)
−0.5sin2θ cos2 φ , (l,k = 1,2)
0.5cosθ sin2φ , (l,k = 1,3)
−sin2

θ cos2 φ , (l,k = 2,2)
0.5sinθ sin2φ , (l,k = 2,3)
−sin2

φ , (l,k = 3,3)

(30f)

It is evident that in Eqs. (19), (24), and (27), there are numerous common terms
appearing in the series; they require once-only calculation for a field point. In ad-
dition, all algebraic operations independent of m,n have been completely separated
from the series. Although the original Fourier series formulations are more com-
pact in the analytical form, their computations require more algebraic operations
than this revised formulation.

The same numerical singularity issue exists for the condition when the load and
field points simultaneously lie along the x3-axis for the 2nd order derivatives, except
Ui j,33. As proposed by Shiah et al (2012), this problem can be easily overcome
by the re-definition of the coordinates as shown in Fig. 2. For a point P on the
x3-axis, the corresponding φ̂ is defined by π/2; for the other angle, θ̂ = −π/2
and θ̂ = π/2 are used for x3<0 and x3>0, respectively. For these situations, the
constitutive equation of generally anisotropic elasticity in the original Cartesian
system, namely,

σ11
σ22
σ33
σ23
σ13
σ12

=



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66





ε11
ε22
ε33
2ε23
2ε13
2ε12

 , (31)

where σ i j and ε i j represent the stresses and strains, respectively, needs to be trans-
formed into the rotated coordinate system. The transformed stiffness coefficients



14 Copyright © 2012 Tech Science Press CMES, vol.87, no.1, pp.1-22, 2012

C̄i j are given by

C̄22 = C11, C̄23 = C12, C̄21 = C13, C̄25 = C14, C̄26 = C15, C̄24 = C16,

C̄33 = C22, C̄31 = C23, C̄35 = C24, C̄36 = C25, C̄34 = C26, C̄11 = C33,

C̄15 = C34, C̄16 = C35, C̄14 = C36, C̄55 = C44, C̄56 = C45, C̄54 = C46,

C̄66 = C55, C̄64 = C56, C̄44 = C66. (32)

Performing the Fourier series analysis with the re-defined stiffness coefficients
gives the corresponding Fourier coefficientsλ̂

(m,n)
uv . The values of U” for this case

can then be obtained via the following substitutions:

U11,12 = Ū33,13, U12,12 = Ū13,13, U13,12 = Ū23,13,

U22,12 = Ū11,13, U23,12 = Ū12,13, U33,12 = Ū22,13, (33)

where Ūi j,mn denotes the 2nd order derivatives defined in the rotated coordinate
system. Since the computations of the Fourier coefficients in this rotated system
need to be performed only once if it ever arises in practice, this process is thus a
trivial matter in terms of overall CPU time in a BEM analysis. It should also be
reminded that in conventional displacement-BEM analysis, U" are only required
when the stresses at internal points of the domain are required. Also this numerical
singularity problem arises only when the internal point of interest is located exactly
at the same (x1, x2) coordinates of any of the Gauss integration field points.

 
 
 
 
 
 
 
 
 
 
 

(a)          (b) 
 

r 
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3x  
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θ 
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φ̂  
θ̂  

3x̂  

1̂x  
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Q 

r 

Figure 2: Spherical coordinates for (a) the original domain, and (b) the transformed
domain
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4 Numerical Examples

Some examples are presented here to demonstrate the veracity of the revised Fourier
series scheme for the numerical evaluation of the fundamental solution U and its
derivatives. Numerical values of U, U′ and U” are obtained for some arbitrary field
points in an anisotropic medium; their accuracy can be checked with those calcu-
lated from the corresponding exact solutions using two direct approaches, namely,
Approach 1, as reported in Shiah et al (2008) and Tan et al (2009); and Approach 2
of Shiah et al (2010, 2011). As has been mentioned earlier, the CPU time involved
in carrying out an engineering analysis using Approach 2 is typically half that of
using Approach 1. The present authors have already shown, however, that the origi-
nal Fourier series scheme is significantly more computationally efficient than these
two approaches, besides its even simpler and easier implementation into a BEM
code, Shiah et al (2012). This is particularly true when there are a large number
of field points. It should be reminded that the present revised Fourier scheme pre-
sented in Section 3 is analytically equivalent to the original scheme and thus should
produce identical numbers; it has just been re-formulated to take advantage of some
of the features of the series to enhance the computer run-times. This superior CPU
performance over the original Fourier series scheme will be demonstrated here as
well.

For the numerical tests, the material chosen is Al2O3 crystal which has the follow-
ing non-zero stiffness coefficients (Huntington (1958)):

C11 = 465GPa, C33 = 563GPa, C44 = 233GPa,

C12 = 124GPa, C13 = 117GPa, C14 = 101GPa. (34)

As a demonstration of the present scheme to treat full anisotropy, the principal ma-
terial axes in the x1-, x2- and x3-directions of the alumina are arbitrarily rotated
clockwise in sequence by 15o, 30o and 70o, respectively. The resulting fully popu-
lated stiffness matrix of the elastic constants in the Cartesian coordinate system as
shown below has characteristics of a fully general anisotropic material:

[C] =



447.1 60.4 199.1 −35.3 −33.1 −43.5
60.4 531.1 61.0 18.7 7.5 86.7
199.1 61.0 509.6 57.9 31.5 −39.4
−35.3 18.7 57.9 176.6 −36.5 12.0
−33.1 7.5 31.5 −36.5 294.6 −3.8
−43.5 86.7 −39.4 12.0 −3.8 127.7

GPa. (35)

The numerical values of the six independent Green’s functions are obtained for an
arbitrarily chosen field point with the spherical coordinates (r=2.0, θ=π/5, φ=π/6).
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They are computed directly from Ting & Lee’s (1997) exact solution using the for-
mulations of Approach 1 (or Approach 2) and the present revised Fourier series
scheme for increasing values of α in Eq. (19). The numerical values obtained are
listed in Table 1 for up to 6 significant decimal digits. Excellent accuracy of the
results from the present scheme is achieved even with α = 12, the percentage er-
rors being of the order of 10−2; with increasing values of α , the percentage errors
decrease very quickly and are generally of the order of 10−4 when α = 20. The
computed values of the first and second derivatives of U at this sample point using
the re-formulated Fourier series scheme with α = 20 are listed in Tables 2 and 3,
respectively. Also shown are the corresponding exact solutions. As can be seen,
the accuracy of the numerical evaluations of these quantities achieved using the
Fourier series approach remains excellent indeed. It should be mentioned that the
calculations in the Fourier series scheme have been carried out with double preci-
sion arithmetic. Although this is not really necessary, the rate of convergence of
the results with α has been found from some limited numerical experiments to be
somewhat better than with single precision arithmetic. Also, this rate of conver-
gence of the different components of the Green function derivatives in particular
would obviously not be uniform in general as it depends very much on the degree
of anisotropy, i.e. on how rapidly the material properties change with the orienta-
tion of the different coordinate directions. In any case, it should also be remarked
that mechanical properties of materials are typically given with only 3 or 4 signifi-
cant figures in accuracy. Thus, the very small percentage errors seen in these tables
for the results of U, U′ and U” are more than acceptable for engineering analysis.

To demonstrate the veracity of the perturbation scheme to resolve the numerical
singularity problem in some of the derivatives of U when the load and field point
both lie on the x3-axis, the sample field point (0, 0, 2) is chosen. As discussed
in Section 3, the perturbation of the spherical angle φ is carried out for the first
derivatives by setting φ=10−6, and θ=0 for Ui j,1 and Ui j,3; and θ=π/2 for Ui j,2.
This is similarly done for the second derivatives, with φ=10−6, the angle θ is set as
θ=0 for Ui j,11 and Ui j,13; and θ=π/2 for Ui j,22 and Ui j,23. For Ui j,12, the coordinate
transformation with Eq. (32-33) is employed. The computed results of U′ and U”

using the Fourier series scheme for this special case are shown in Tables 4 and 5,
respectively, together with the corresponding exact solution. The percentage errors
are, again, very small indeed.

Finally, the relative computational efficiency of the present re-formulated Fourier
series scheme is compared to the original scheme proposed by the authors in Shiah
et al (2012). To this end, the CPU times for evaluating U, U’ and U" altogether,
with α = 20, for increasing number of field points Nusing a PC with a quad-core
Intel processor are recorded; they are compared to those reported in the paper. N
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Table 1: Computed values of the Green’s function Ui j (10−12m) at r=2.0, θ=π/5,
φ=π/6

Ui j Ting & Lee Fourier series α = 12 α = 14 α = 16 α = 18 α = 20
U11 0.193135 Series Sum

(|%Diff.|)
0.193121
(0.007%)

0.193127
(0.004%)

0.193134
(0.001%)

0.193135
(0.000%)

0.193135
(0.000%)

U12 -0.009009 Series Sum
(|%Diff.|)

-0.009004
(0.056%)

-0.009010
(0.011%)

-0.009008
(0.011%)

-0.009009
(0.000%)

-0.009009
(0.000%)

U13 0.038025 Series Sum
(|%Diff.|)

0.037996
(0.076%)

0.038019
(0.016%)

0.038023
(0.005%)

0.038025
(0.000%)

0.038025
(0.000%)

U22 0.167744 Series Sum
(|%Diff.|)

0.167747
(0.002%)

0.167743
(0.001%)

0.167744
(0.000%)

0.167744
(0.000%)

0.167744
(0.000%)

U23 -0.006888 Series Sum
(|%Diff.|)

-0.006892
(0.058%)

-0.006887
(0.015%)

-0.006888
(0.000%)

-0.006888
(0.000%)

-0.006888
(0.000%)

U33 0.209534 Series Sum
(|%Diff.|)

0.209509
(0.012%)

0.209525
(0.004%)

0.209532
(0.001%)

0.209533
(0.000%)

0.209534
(0.000%)

Table 2: Computed 1st order derivatives of Ui j (10−12) at a sample field point (2.0,
π/5, π/6).

Ui j,l Approach 1, 2 Fourier Series |%Diff.| Ui j,l Approach 1, 2 Fourier Series |%Diff.|
U11,1 -0.027079 -0.027079 0.000% U22,1 -0.044581 -0.044581 0.000%
U11,2 -0.058920 -0.058918 0.003% U22,2 0.000658 0.000658 0.000%
U11,3 -0.078864 -0.078864 0.000% U22,3 -0.076247 -0.076247 0.000%
U12,1 -0.011159 -0.011159 0.000% U23,1 -0.021226 -0.021227 0.005%
U12,2 0.019726 0.019725 0.005% U23,2 0.024888 0.024888 0.000%
U12,3 0.003719 0.003719 0.000% U23,3 0.005445 0.005445 0.000%
U13,1 0.019569 0.019570 0.005% U33,1 -0.043524 -0.043522 0.005%
U13,2 -0.049041 -0.049038 0.006% U33,2 -0.051609 -0.051604 0.010%
U13,3 -0.014452 -0.014453 0.007% U33,3 -0.083131 -0.083134 0.004%

was varied from N = 5 to N = 106 and the CPU processing times are listed on Table
6. When normalized with respect to the corresponding times using Approach 1, the
rate of decrease in the relative CPU time with increasing value of N, when using the
Fourier series schemes, is illustrated in Fig. 3; in the figure, Fourier 1 and Fourier
2 refer to the original and re-formulated schemes, respectively. It can be seen from
these results that when N = 106, the re-formulated Fourier series scheme takes only
about 35% of the CPU time of that using the original Fourier series scheme which
is already 3 times faster than Approach 1 to perform the same tasks.

Some qualifying remarks should perhaps be made about these enhanced perfor-
mance numbers of both Fourier series schemes, however. In the case of BEM
analysis based on the displacement-BIE, the second-order derivatives, U”, are only
calculated if and when interior point stress solutions are required. Even then, they
would typically be required for a very limited number of interior points. Thus, U”
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Table 3: Computed 2nd order derivatives of Ui j (10−12) at a sample field point (2.0,
π/5, π/6).

Ui j,lk Approach 1,2 Fourier Series |%Diff.| Ui j,lk Approach 1,2 Fourier Series |%Diff.|
U11,11 -0.037976 -0.037966 0.026% U22,11 -0.013541 -0.013542 0.007%
U11,12 -0.010723 -0.010715 0.075% U22,12 0.000625 0.000624 0.160%
U11,13 0.052645 0.052637 0.015% U22,13 0.057590 0.057591 0.002%
U11,22 -0.008117 -0.008123 0.074% U22,22 -0.004864 -0.004870 0.123%
U11,23 0.075798 0.075794 0.005% U22,23 0.000599 0.000601 0.334%
U11,33 0.040751 0.040757 0.015% U22,33 0.060940 0.060939 0.002%
U12,11 -0.002100 -0.002100 0.000% U23,11 0.014032 0.014033 0.007%
U12,12 0.008214 0.008215 0.012% U23,12 0.001968 0.001970 0.102%
U12,13 0.011078 0.011078 0.000% U23,13 0.017288 0.017287 0.006%
U12,22 -0.015174 -0.015177 0.020% U23,22 -0.027170 -0.027161 0.033%
U12,23 -0.021465 -0.021463 0.009% U23,23 -0.020437 -0.020441 0.020%
U12,33 -0.002184 -0.002185 0.046% U23,33 -0.007427 -0.007426 0.013%
U13,11 -0.078767 -0.078753 0.018% U33,11 -0.070616 -0.070599 0.024%
U13,12 -0.023311 -0.023302 0.039% U33,12 -0.017369 -0.017364 0.029%
U13,13 0.022105 0.022094 0.050% U33,13 0.089135 0.089123 0.013%
U13,22 0.019411 0.019411 0.000% U33,22 -0.063196 -0.063217 0.033%
U13,23 0.060930 0.060921 0.015% U33,23 0.089151 0.089151 0.000%
U13,33 -0.014315 -0.014305 0.070% U33,33 0.024104 0.024113 0.037%

Table 4: Computed 1st order derivatives of Ui j (10−12) at field point (0, 0, 2).
Ui j,l Approach 1,2 Fourier Series |%Diff.| Ui j,l Approach 1,2 Fourier Series |%Diff.|

U11,1 -0.001469 -0.001466 0.204% U22,1 0.000966 0.000967 0.104%
U11,2 0.004723 0.004723 0.000% U22,2 0.002815 0.002815 0.000%
U11,3 -0.095345 -0.095345 0.000% U22,3 -0.081803 -0.081803 0.000%
U12,1 -0.007406 -0.007404 0.027% U23,1 -0.013368 -0.013368 0.000%
U12,2 0.002116 0.002115 0.047% U23,2 0.016962 0.016962 0.000%
U12,3 0.003751 0.003751 0.000% U23,3 0.001652 0.001652 0.000%
U13,1 0.058453 0.058439 0.024% U33,1 0.022486 0.022480 0.027%
U13,2 -0.011015 -0.011015 0.000% U33,2 0.040571 0.040571 0.000%
U13,3 -0.003579 -0.003579 0.000% U33,3 -0.089485 -0.089485 0.000%

is not calculated simultaneously at every field point of the boundary elements un-
like U and U′ . In practice therefore, the savings in CPU time of the Fourier series
scheme, although still significant, may not be as dramatic as is shown here when,
say, α = 20 is employed. On the other hand, it is also evident from Table 1 that even
with lower values of α , the accuracy of the computed Green function values is still
highly acceptable for practical engineering analysis. This will reduce the computer
processing time further as there will be even fewer terms in the series summation.
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Table 5: Computed 2nd order derivatives of Ui j (10−12) at the field point (0, 0, 2).
Ui j,lk Approach 1, 2 Fourier Series |%Diff.| Ui j,lk Approach 1, 2 Fourier Series |%Diff.|

U11,11 0.014164 0.014149 0.106% U22,11 -0.063683 -0.063693 0.016%
U11,12 0.000616 0.000628 1.948% U22,12 -0.003897 -0.003873 0.616%
U11,13 0.001469 0.001466 0.204% U22,13 -0.000966 -0.000967 0.104%
U11,22 -0.082170 -0.082172 0.002% U22,22 -0.011774 -0.011772 0.017%
U11,23 -0.004723 -0.004723 0.000% U22,23 -0.002815 -0.002815 0.000%
U11,33 0.095345 0.095345 0.000% U22,33 0.081803 0.081803 0.000%
U12,11 -0.014477 -0.014446 0.214% U23,11 -0.022131 -0.022119 0.054%
U12,12 0.010444 0.010442 0.019% U23,12 -0.017284 -0.017299 0.087%
U12,13 0.007406 0.007404 0.027% U23,13 0.013368 0.013368 0.000%
U12,22 0.011114 0.011115 0.009% U23,22 0.005416 0.005416 0.000%
U12,23 -0.002116 -0.002115 0.047% U23,23 -0.016962 -0.016962 0.000%
U12,33 -0.003751 -0.003751 0.000% U23,33 -0.001652 -0.001652 0.000%
U13,11 0.004743 0.004657 1.813% U33,11 0.005989 0.005996 0.117%
U13,12 -0.002212 -0.002201 0.497% U33,12 -0.008724 -0.008720 0.046%
U13,13 -0.058453 -0.058439 0.024% U33,13 -0.022486 -0.022480 0.027%
U13,22 -0.015159 -0.015158 0.007% U33,22 -0.037554 -0.037553 0.003%
U13,23 0.011015 0.011015 0.000% U33,23 -0.040571 -0.040571 0.000%
U13,33 0.003579 0.003579 0.000% U33,33 0.089485 0.089485 0.000%

Table 6: CPU-times for computing U, U′ and U” with increasing number of field
points, N.

N Approach 1 (Seconds) Fourier 1 (Seconds) Fourier 2 (Seconds)
5 0.0156 0.7500 0.4056
10 0.0156 0.7600 0.4056
50 0.0312 0.7800 0.4056
102 0.0624 0.7800 0.4056

5×102 0.2800 0.8400 0.4212
103 0.5800 0.9400 0.4524

5×103 2.8900 1.6700 0.7176
104 5.7700 2.5400 1.0452

5×104 28.7000 9.7500 3.5880
105 57.4600 18.7200 6.7704

5×105 286.6400 90.7100 32.1986
106 573.4800 180.6500 63.9604

5 Conclusions

A double Fourier series representation of Ting and Lee’s (1997) explicit, real vari-
able, algebraic form fundamental solution for 3D anisotropic elasticity was reported
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Figure 3: Variation of CPU time, normalized with respect to that using Approach
1, for computing U, U′ and U” together with increasing number of field points, N.

by the present authors very recently. Derivatives of the fundamental solution can
also be obtained from direct spatial differentiation on the Fourier series via the
chain rule. It was shown to offer considerable savings in the computational effort
for the numerically evaluation of the Green’s function and its derivatives without
any significant loss in accuracy. In addition, it is even simpler to implement into
a BEM code due to the less elaborate formulation. The better computational effi-
ciency stems primarily from the fact that the Fourier coefficients need to be evalu-
ated only once and is independent of the number of field points in the problem.

In this study, advantage has been taken of some features of the coefficients Fourier
series, and upon re-arrangement and further simplification of the series. In doing
so, the total number of terms that need to be calculated in the series summations
has been drastically reduced. This has enhanced the efficiency of the Fourier series
scheme to compute the fundamental solution and its derivatives for 3D general
anisotropy. The efficacy of this re-formulated scheme has been demonstrated with
some examples. Ways to overcome some numerical singularity problems, should
they occur have also been described and verified by an example. With computations
of the fundamental solution and its derivatives required at every field point in a
BEM analysis, this scheme offers an even more attractive alternative to the direct
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evaluation of their exact analytical forms.
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