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Abstract: The aim of this paper is to present numerical simulations of Cathodic
Protection (CP) Systems using a Genetic Algorithm (GA) and the Method of Fun-
damental Solutions (MFS). MFS is used to obtain the solution of the associated
homogeneous equation with the non-homogeneous equation subject to nonlinear
boundary conditions defined as polarization curves. The adopted GA minimizes a
nonlinear error function, whose design variables are the coefficients of the linear su-
perposition of fundamental solutions and the positions of the source points, located
outside the problem domain. In this work, the anodes added to the CP system are
considered as point sources and therefore the integral that represents the particular
solution can be obtained analytically. The results presented here include a com-
parison with a direct boundary element (BEM) solution procedure. Simulations
are performed considering finite and infinite regions in R2. For external problems
a constant was added to the fundamental solution to impose the conservation of
current between the anodes and cathodes of the problem.
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1 Introduction

Cathodic Protection (CP) is a technique used to control the corrosion of a metal
surface by making it the cathode of an electrochemical cell. The technique is com-
monly used for protecting metallic structures placed in aggressive environments,
e.g. ship hulls, offshore structures, storage tanks and underground pipelines.

In a CP system, the location and the impressed current of the anodes have to be
determined with the goal of providing, as much as possible, a uniform potential
distribution on the metal surface and below a critical potential (φc). The elec-
trochemical potential problem is governed by the Poisson equation with boundary
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conditions given by a polarization curve, which is a non-linear relationship between
the electrochemical potential (φ) and current density (i).
The BEM is one of the most appropriate techniques to solve problems involving CP
systems. Several applications of BEM to study CP systems have been reported in
the literature. Telles, Mansur, Wrobel, and Marinho (1990) described the PROCAT
computer system based on the boundary element method, which can be applied
to two-dimensional, axisymmetric or fully three-dimensional problems and makes
simulations used to assist the design of cathodic protection systems. Santiago and
Telles (1997) developed a BEM formulation for CP problems with dynamic po-
larization curves determined from potentiostatic data obtained from measurements.
The mathematical model presented by Nisancioglu (1987) was used to represent the
dynamic polarization curves. The commercial software Boundary Element Anal-
ysis System [BEASY (2000)] has also been used to predict the performance of
cathodic protection systems for several metallic structures placed in an electrolyte.
Also, Miltiadou and Wrobel (2004) presented a boundary element methodology
coupled to Genetic Algorithms for: identification of polarization parameters, iden-
tification of coating holidays and the optimization of anode positioning and their
impressed current.

The MFS is a technique which can similarly be applied to CP problems, even
though not as many references can be found in the literature. The MFS belongs to
the class of meshless methods. In the MFS, the approximate solution of the prob-
lem is represented in the form of a linear superposition of fundamental solutions
with singular points located outside the domain of the problem. These singular
points are called source points and form a "pseudo-boundary" having no common
points with the actual boundary of the region. The essence of the MFS is the use
of a fundamental solution which satisfies the associated homogeneous differential
equation in every point except at the source point. The unknown source intensities,
responsible for producing the approximate solution, are determined by imposing
satisfaction of the boundary conditions at a set of boundary points (collocation
points).

The basic ideas for the formulation of the MFS were first proposed by Kupradze
and Aleksidze (1963). Its numerical implementation was carried out by Mathon and
Johnson (1977). Just like BEM, MFS is applicable when a fundamental solution of
the differential equation in question is known, with the advantage of not requiring
any integration procedure or specific treatment for accommodating the singularities
of the fundamental solution.

The problem for the application of the MFS is first the determination of the posi-
tions of the source points. Generally, in 2-D applications the arrangement of the
source points is on a circular contour or on a contour geometrically similar to the



An Application of GAs and the MFS to Simulate Cathodic Protection Systems 25

actual boundary of the region under consideration. However, the accuracy of the
numerical solution is usually quite dependent on the radius of such a circle or on
the distance from the source points over the geometrically similar boundary to the
actual problem boundary. Nishimura, Nishihara, Nishimori, and Ishihara (2003),
for instance, proposed a Genetic Algorithm for the optimal positioning of source
points. The second difficulty commonly encountered is the ill-conditioning of the
equations system. Here, the singular value decomposition (SVD) idea can also pro-
vide means to obtain acceptable solutions to the ill-conditioned equations system
and has been successfully applied to MFS [Ramachandran (2002)].

For external problems governed by the Laplace equation, the Gauss condition needs
especial attention since the integral of flux over the boundary is automatically bal-
anced by a compensating flux from infinity [Brebbia, Telles, and Wrobel (1984)].
Telles, Mansur, and Wrobel (1984) added a constant was added to the fundamen-
tal solution, allowing to impose the conservation of current between the anodes
and cathodes for CP problems in infinite regions solved by BEM. A generalization
of this procedure, which ensures current conservation using BEM, even for finite
domains, can be found in Telles and de Paula (1991).

The present work uses MFS to obtain the numerical solution of the associated ho-
mogeneous equation which, added to the particular solution, represents the electro-
chemical potential of metal surfaces immersed in electrolytes (domains). The aim
is to simulate CP systems capable of providing an ideally homogeneous potential
distribution on the metallic structure surface below the critical potential. The physi-
cal behaviour of metal surfaces is modelled by a nonlinear polarization curve which
describes the nonlinear relation between potential and current densities. Thus, the
unknown coefficients of the linear superposition of fundamental solutions and the
positions of source points are determined by minimizing a nonlinear error func-
tion. This is here accomplished using a GA. Examples of application are presented
considering finite and infinite regions in R2 with different geometries. For external
problems a constant was added to the fundamental solution to ensure the current
conservation between the anodes and cathodes.

2 The MFS for CP

The mathematical model of the problem, within this conducting domain Ω (elec-
trolyte), is based on a Poisson equation for the electrochemical potential:

k∇
2
φ(x) = b(x),x ∈Ω, (1)

where b is a known function representing the anodes as external sources and k is
the conductivity of electrolyte.
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In the present work, the metal surfaces are considered to be in direct contact with
the electrolyte and therefore the boundary conditions related to Eq. 1 are given in
the following form

i(x) = F(φ),x ∈ Γ, (2)

where Γ is the boundary of Ω, i(x) is the current density in the outward normal
direction n and F(φ) is a nonlinear function of φ .

The general solution (φg) of Eq. 1 is given by adding a particular solution (φp) to
the solution of the associated homogeneous equation (φh), subjected to the corre-
sponding homogeneous boundary conditions.

Any particular solutions of Eq. 1 can be written in integral form as follows

φp(x) =
∫

Ω

G(ξ ,x)b(ξ )dΩ. (3)

The function G(ξ ,x) is a fundamental solution of Laplace’s equation given by

G(ξ ,x) =
1

2πk
ln
(

1
r

)
, (4)

where r is the Euclidean distance between point ξ and the field point x.

Treating the anodes as point sources, the term b(ξ ) is equal to

b(ξ ) =
nps

∑
m=1

P(xps
m )δ (xps

m ,ξ ), (5)

where xps are the coordinates of the point sources, P(xps) is the intensity of the
source given in amps (A), δ is the Dirac delta "function" and nps is the number of
point sources inserted in the electrolyte. Therefore

φp(x) =
nps

∑
m=1

P(xps
m )
∫

Ω

G(ξ ,x)δ (xps
m ,ξ )dξ

=
1

2πk

nps

∑
m=1

P(xps
m )ln

(
1
r

)
, (6)

where now r is the Euclidean distance between point xps
m and the point x.

In addition, from Ohm’s law, the particular solution for a current density is equal to

ip(x) = k
∂φp

∂n
=− 1

2π

nps

∑
m=1

P(xps
m )

1
r

∂ r
∂n

. (7)
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The numerical solution (φh) can be obtained by BEM or MFS. This paper presents
the formulation of MFS.

The approximate solution of the problem by MFS is represented in the form of
a linear superposition of fundamental solutions with singular points (xsp) located
outside the domain of the problem. Thus, the electrochemical potential may be
written by the summation

φh(x) =
nsp

∑
j=1

G(x,xsp
j )c j, (8)

with nsp being the number of source points and the coefficients that occur in the
approximate solution are the unknown constants.

Similarly, defining H = k ∂G
∂n , the homogeneous solution for the current density (ih)

is given as

ih(x) =
nsp

∑
j=1

H(x,xsp
j )c j. (9)

The aim of MFS is to determine the coefficients c j satisfying the boundary condi-
tion at the collocation points.

The polarization curve of the structure describes data obtained by a series of exper-
iments in a standard corrosion cell using the dc-potentiodynamic technique [Yan,
Pakalapati, Nguyen, and White (1992)], and is given by the expression:

i = F(φ) = e
φ+693.91

β1 −
[

1
i1

+ e
φ+521.6

β2

]−1

− e−
φ+707.57

β3 , (10)

with φ and i having units mV and µA/cm2, respectively. Here, β1, β2, β3 and i1
are given constant parameters: β1 = 24mV , β2 = 23.47mV , β3 = 55mV and i1 =
86.06µA/cm2. The conductivity of the electrolyte is equal to k = 0.0479Ω−1cm−1

and the critical value of the electrochemical potential is φc =−850mV (vs. SCE).

The general solution of the problem must satisfy Eq. 10, i.e., ig = ip + ih = F(φp +
φh) = F(φg). This relationship results in a problem of nonlinear least squares with
the design variables defined as the coefficients c j’s and the positions of the source
points. The optimization is solved using a GA, which will minimize the following
objective function

Z(c,xsp) =

√
1

ncp

ncp

∑
n=1

[
ing−F(φ n

g )
]2

, (11)
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where Z represents the difference between the current density (ip + ih) calculated
values and the consistent values of Eq. 10, applied in the general solution of the
electrochemical potential, at each collocation point. Also, ncp is the number of
collocation points and c is a vector containing the coefficients c j.

The adopted GA used for the minimization of Eq. 11 has a binary representation
and is inspired by the algorithm presented in Michalewicz (1996). However, some
characteristics were included as the two-point crossover, the elitism and the proba-
bilities of mutation and crossover will vary linearly over the generations.

3 BEM and MFS for external problems

In external problems the equation systems for BEM and MFS can be solved produc-
ing a solution that does not necessarily ensure conservation of current between the
anodes and cathodes. This property can be included into the formulation through
the satisfaction of∫

Γ+
i(x)dΓ(x) = 0, (12)

for the standard Laplace equation and

∫
Γ+

i(x)dΓ(x) =−
nps

∑
m=1

P(xps
m ), (13)

for the Poisson equation with point sources of intensity P, where Γ+ represent the
boundary Γ with positive orientation in relation to the infinite domain Ω.

A boundary integral equation equivalent to Eq. 1, Eq. 2 and Eq. 5 can be written as
[Brebbia, Telles, and Wrobel (1984)]

d(ξ )φ(ξ ) =
∫

Γ+
G(ξ ,x)i(x)dΓ(x)−

∫
Γ+

φ(x)H(ξ ,x)dΓ(x)

+
nps

∑
m=1

P(xps
m )G(xps

m ,x), ξ , x ∈ Γ, (14)

where d(ξ ) depends on the boundary geometry at the source point ξ .

In case of BEM, the conservation of current between the anodes and cathodes can
be imposed in Eq. 14 by considering a constant K in the fundamental solution
[Telles, Mansur, and Wrobel (1984)], using the following expression



An Application of GAs and the MFS to Simulate Cathodic Protection Systems 29

G(ξ ,x) = G(ξ ,x)+K, (15)

where G(ξ ,x) is defined in Eq. 4.

Considering this new fundamental solution, the following extra term is added in
Eq. 14

K

(∫
Γ+

i(x)dΓ(x)+
nps

∑
m=1

P(xps
m )

)
, (16)

this term is associated with the equilibrium presented in Eq. 13. Hence, Eq. 14
with the new term added produces a system of equations yielding a solution with
the conservation of current between anodes and cathodes. The added constant K
multiplied by the imbalance is considered as an unknown value in the equations
system of BEM.

In the case of MFS, the general solution is the contribution of the source points plus
the contribution of the point sources, i.e.,

φg(x) =
nsp

∑
j=1

G(x,xsp
j )c j +

nps

∑
m=1

G(x,xps
m )P(xps

m ). (17)

The adoption of the new fundamental solution adds to Eq. 17 the following term

K

(
nsp

∑
j=1

c j +
nps

∑
m=1

P(xps
m )

)
, (18)

which now is associated with the equilibrium:
nsp

∑
j=1

c j =−
nps

∑
m=1

P(xps
m ). (19)

In CP systems, Eq. 19 will ensure that the structure to be protected becomes the
cathode of an electrolytic cell while the source points and point sources have an
anodic behaviour. The right-had-side of Eq. 19 is zero for the standard Laplace
equation case.

Notice that conservation of current between the anodes and cathodes is satisfied in
finite regions, whereas for infinite regions with cavities the following integral can
be written∫

Γ−
i(x)dΓ(x) =−

nsp

∑
j=1

c j, (20)
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where Γ− represents the part Γ with negative orientation (cavities) in relation to the
infinite domain.

Considering that the identity below is satisfied by the MFS solution:∫
Γ+

i(x)dΓ(x) =−
∫

Γ−
i(x)dΓ(x), (21)

and using Eq. 19 and Eq. 20, it is possible to write the following expression

∫
Γ+

i(x)dΓ(x) =−
∫

Γ−
i(x)dΓ(x) =

nsp

∑
j=1

c j =−
nps

∑
m=1

P(xps
m ). (22)

Hence, Eq. 22 proves that the MFS solution satisfies the current conservation be-
tween anodes and cathodes for infinite regions when the Eq. 18 is included in the
formulation.

The constant K added to the fundamental solution is a design variable of the opti-
mization problem, Z = Z(c,xsp,K). Furthermore, all the candidate solutions of GA
must satisfy the equation:

nsp

∑
j=1

c j =−
nps

∑
m=1

P(xps
m )+ ε, (23)

where ε is a given tolerance. Thus, every individuals of the GA will satisfy approx-
imately Eq. 19. In the simulations, the authors used ε =±2000µA. In addition, the
following objective function is considered to external problems

Z(c,xsp,K) =

√
1

ncp

ncp

∑
n=1

[
ing−F(φ n

g )
]2 +

∣∣∣∣∣ nsp

∑
j=1

c j−

(
−

nps

∑
m=1

P(xps
m )

)∣∣∣∣∣ . (24)

Eq. 24 provides a solution that satisfies the boundary conditions and the conserva-
tion of current for infinite regions.

In several simulations involving external problems, overflows have been detected
as a result of the exponential terms present in Eq. 10. This fact occurred due to the
addition of the constant K to the fundamental solution and the non exact satisfac-
tion of Eq. 18, in particular at the beginning of the optimization process. For this
reason, only potential values within the interval −2000.0mV < φ < φcorrosion have
been allowed to occur (φcorrosion ≈ −611.0mV vs. SCE - corresponds to zero cur-
rent). Fig. 1 and Fig. 2 show the behaviour of the polarization curve in the intervals
−1000.0mV < φ < φcorrosion and −2000.0mV < φ < φcorrosion, respectively. It can
be noticed that i→−∞ when φ →−∞.
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Figure 1: Polarization curve with −1000.0mV < φ <−611.0mV

Figure 2: Polarization curve with −2000.0mV < φ <−611.0mV

4 Applications

Simulations have been performed considering metal surfaces in contact with an
electrolyte and modelled by polarization curves defined by Eq. 10. Anodes are
placed in the electrolyte with the goal of providing a potential distribution on the
metal surface under the critical potential φc =−850mV (vs. SCE).

In the following applications, nsp = ncp
2 . The regular number of design variables

is equal to 3nsp, it includes the coefficients c j and the positions of source points,
xsp = (xsp,ysp). The number of design variables is increased to 3nsp +1 for external
problem simulations.
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All simulations have been carried out considering finite and infinite regions in R2.
The range of c j values is assumed to be [−5000.0,5000.0] for finite regions and
[0.0,1000.0] for the infinite region example. In addition, the following values
are used for the GA: population size=30, initial crossover probability=60, final
crossover probability=50, initial mutation probability=0.1 and final mutation prob-
ability=0.5.

4.1 Finite regions

4.1.1 Example 1

In the first simulation a metallic structure in the form of a rectangle with a localized
reentrance in the upper right corner is studied. The dimensions of the structure are
100cm× 50cm. Anodes are placed in the electrolyte with a current intensity of
−8200.00µA, sufficient to maintain the potential on the metal surface below the
critical potential. The positions of anodes were obtained using an optimization
performed in Santos, Santiago, and Telles (2011).

The calculations were performed for ncp = 150 collocation points, nsp = 75 source
points and 225 design variables. The distance between any source points and the
geometry was kept not to be greater than 30cm.

The plot of the source points arrangement determined by GA after 5000 generations
is presented in Fig. 3. Fig. 4 presents the potential distribution on the metal deter-
mined by MFS and by BEM with 150 constant boundary elements. The average
difference - defined in Eq. 11 - between the potential values on the boundary deter-
mined by BEM and MFS is 0.27748mV . The computational time for convergence
was approximately 2.3min.

Figure 3: Anodes (×) and source points arrangement by GA
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Figure 4: Potential distribution on the metal

In Fig. 5 the potential distribution in the electrolyte using BEM is presented and in
Fig. 6 the MFS counterpart result is depicted. The average difference between the
potential values at the internal points determined by BEM and MFS is 0.11275mV .

Figure 5: Potential in the electrolyte using BEM

The results show a good agreement between the potential values obtained by BEM
and GA MFS. However, due to the large number of design variables (225), the
computational time for convergence was also large (2.3 min).

4.1.2 Example 2

The next simulation this a metallic structure in the form of a square cross. The
dimensions of the structure are 150cm× 150cm. Similarly to the first example,
anodes are placed in the electrolyte with current intensity given by −16600.00µA.
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Figure 6: Potential in the electrolyte using MFS

The calculations were performed for ncp = 168 collocation points, nsp = 84 source
points and 252 design variables. The distance between source points and the bound-
ary geometry has been restricted to be less than 25cm.

The plot of source points arrangement determined by GA after 10000 generations
is presented in Fig. 7. In Fig. 8 the potential distribution on the metal determined
by MFS and by BEM with 168 constant boundary elements is presented. The dif-
ference between the potential values on the boundary determined by BEM and the
MFS is 0.429267mV . The computational time for convergence was approximately
5.6min.

Figure 7: Anodes (×) and source points arrangement by GA

Fig. 9 presents the potential distribution on the electrolyte using BEM and Fig. 10
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Figure 8: Potential distribution on the metal

depicts the MFS solution. The difference between the potential values at the inter-
nal points determined by BEM and MFS is 0.191975mV .

Figure 9: Potential in the electrolyte using BEM

In the second example, it was necessary to make more generations with the GA.
Only with 10000 generations was possible to reach a error of the order of 0.1mV .
This fact, can be explicated due to complex geometry and the increasing number of
design variables (252).
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Figure 10: Potential in the electrolyte using MFS

4.2 Infinite regions

4.2.1 Example 1

The last simulation this a submerged metallic structure with square shape. The di-
mensions of the structure are 100cm×100cm. Anodes are placed in the electrolyte
with current intensity given by −11000.00µA.

The calculations were performed for ncp = 152 collocation points, nsp = 76 source
points and 229 design variables. The source points are localized outside the prob-
lem domain, i.e., these are localized inside the square. Therefore, the range for
the position of the source points can be assumed as [−49.9cm,49.9cm]. The new
design variable K had a range of [10.0,5000.0].
The plot of source points arrangement determined by GA after 5000 generations
is presented in Fig. 11. In Fig. 12 the potential distribution on the metal surface
determined by MFS and by BEM with 152 constant boundary elements is pre-
sented. The discrepancy between the potential values on the boundary determined
by BEM and the MFS is 0.186397mV . The computational time for convergence
was approximately 4.0min.

Fig. 13 presents the potential distribution in the electrolyte using BEM and Fig. 14
shows the MFS solution. The difference between the potential values at internal
points determined by BEM and MFS is 0.788147mV .

The new design variable converged to K = 2442.5727. The summation of the co-
efficients that occur in the MFS solution was ∑

nsp
j=1 c j = 43999.5727278276. The
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Figure 11: Source points arrangement by GA

Figure 12: Potential distribution on the metal

summation of the four point sources is ∑
nps
m=1 P(xps

m ) =−44000.0µA.

The flux integral was calculated using simple Gauss quadrature rules with a large
number of integration points. The flux integral obtained was

∫
Γ+ i(x)dΓ(x) =

43999.5727278268.

In this simulation, the computational time has increased mainly due to the extra
condition imposed to all the candidate solutions of GA, see Eq. 23, and the recursive
calculation of the new objective function, see Eq. 24.
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Figure 13: Potential in the electrolyte using BEM

Figure 14: Potential in the electrolyte using MFS

5 Conclusions

The analyzes performed using constant elements BEM and the proposed GA MFS
indicate a good agreement between the electrochemical potential distribution on
the metal surface and within the electrolyte. The results found confirm GA as a
robust optimization procedure to work on such problems. In the first example were
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determined 225 design variables, in the second example there were 252 design
variables and in the last example there were 229 design variables.

The GA MFS model converged only after many generations due to the large number
of design variables. It is important to consider new search algorithms for this non-
linear optimization. For example, a deterministic nonlinear least square procedure
can be coupled with GA to improve runtime efficiency of the algorithm. This will
be the subject of a future publication.
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