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Identification of Material Parameters of Two-Dimensional
Anisotropic Bodies Using an Inverse Multi-Loading

Boundary Element Technique
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Abstract: An inverse technique, based on the boundary element method (BEM)
and elastostatic experiments for identification of elastic constants of orthotropic
and general anisotropic 2D bodies is presented. Displacement measurements at
several points on the boundary of the body, obtained by a few known load cases
are used in the inverse analysis to find the unknown elastic constants of the body.
Using data from more than one elastostatic experiment results in a more accurate
and stable solution for the identification problem. In the inverse analysis, sensitiv-
ities of displacements of only boundary points with respect to the elastic constants
are needed. Therefore, the BEM is a very useful and effective method for this pur-
pose. An iterative Tikhonov regularization method is used for the inverse analysis.
A method for simple computation of initial guesses for unknown elastic constants
and a procedure for appropriate selection of the regularization parameter appearing
in the inverse analysis is also proposed. Convergence and accuracy of the presented
method with respect to measurement errors and number of load cases are investi-
gated by presenting several examples.
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1 Introduction

Anisotropic composite materials are widely used in engineering structures. Some
natural materials and bio-structures show anisotropy too. Rock mass is gener-
ally considered anisotropic because of existence of micro cracks and joint sets
[Ohkami, Ichikawa, and Kawamoto (1991)]. Bamboo stalks contain longitudinal
fibers, which make bamboo an orthotropic material [Silva, Walters, and Paulino
(2006)]. Bone tissue, like most biological materials is anisotropic [Geng, Tan, and
Liu (2001); Fan et al. (2002); DeTolla et al. (2000)]. Identification of elastic param-
eters of man-made or natural anisotropic materials and structures is very important
for predicting their behavior.

Techniques for identification of elastic constants are based on inverse methods. In a
direct problem, the geometry, boundary conditions, material properties, and applied
loads are known and the objective is to find field variables in the domain and over
the boundary of the problem. However, in an inverse problem, boundary conditions,
material constants, or applied loads are fully or partially unknown, and instead, the
magnitude of the field variables at some points in the domain or on the boundary
of the problem are given. Input data for inverse problems are usually provided
by measurement, and therefore, they include some errors. Inverse problems are ill-
posed, i.e. they are very sensitive to small changes in input data [Hadamard (1923);
Ling and Atluri (2006)]. This behavior makes the inverse problems much more
complicated in comparison with the direct problems. To overcome this difficulty, a
regularization method is usually used in the inverse analysis and the regularization
parameter appearing in the formulation should be carefully selected [Wang and
Xiao (2001); Xie and Zou (2002); Khosravifard and Hematiyan, (2011); Liu and
Kuo (2011)].

The most important methods for identification of elastic constants are based on
either static or dynamic measurements. Some researchers have presented inverse
methods based on the finite element method (FEM) and static measurements; see
for example [Wang and Kam (2000); Lecompte et al. (2007)]. Cunha and Piranda
(2000) presented a method based on the FEM and dynamic measurements for iden-
tification of stiffness properties of composite tubes. Rikards, Chate, and Gailis
(2001) presented a method for identification of elastic constants of laminates based
on dynamic measurements. They also used the FEM in their formulation.

A few researchers have used the BEM for identification of elastic constants of or-
thotropic or anisotropic materials. Ohkami, Ichikawa, and Kawamoto (1991) pre-
sented an identification method based on static measurements and the BEM for a
2D orthotropic medium. They used the Gauss-Newton method in their formulation.
Huang et al. (2004) presented an inverse BEM based on the displacement measure-
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ments and the Levenberg-Marquardt method for identification of elastic parameters
of 2D orthotropic bodies. Comino and Gallego (2005) presented an inverse method
based on the BEM for identification of elastic constants of 2D anisotropic materi-
als. They used static measurements and the Levenberg-Marquardt method in their
inverse technique.

In the above-mentioned studies on mechanical property identification of anisotropic
materials, the unknowns have been computed using only one static load case. To
obtain an acceptable solution using only one static experiment, a complicated load
case should be considered. Often, it is impossible to make a sample with a sim-
ple standard geometry for performing the required measurements. In such cases,
the original body should be used for the measurements. On the other hand, set-
ting up a single experiment with a load case that efficiently includes effects of all
elastic constants may be impossible or difficult. Therefore, it is reasonable to carry
out several experiments with different simple load cases to find out the unknowns.
This is the main idea of the present paper. In this work, an inverse method based
on static experiments for identification of elastic constants of orthotropic and gen-
eral anisotropic 2D bodies is proposed. Displacements at several boundary points,
obtained by a few known load cases are considered as measured data. Equations
generated from the inverse formulation of all load cases are coupled and solved
simultaneously. The BEM is used for sensitivity analysis in the inverse method.
The BEM is a very useful and effective method for this purpose, because a sensi-
tivity analysis of displacements at only boundary points with respect to the elastic
constants is needed in the inverse analysis.

The iterative Tikhonov regularization method [Tikhonov and Arsenin (1977); Tik-
honov and Arsenin (1986)], including a regularization parameter, is used for the
inverse analysis. A procedure for appropriate selection of the regularization pa-
rameter is also proposed. A set of initial guesses should be considered for starting
the inverse analysis. An efficient method for simple computation of initial guesses
for unknown elastic constants is also presented. Some examples are presented to
demonstrate the rate of convergence and accuracy of the proposed method.

2 The BEM for elastostatic analysis of 2D anisotropic bodies

Before dealing with the core issue of the inverse analysis, it is useful to review
some fundamental equations in two-dimensional anisotropic elasticity and the cor-
responding formulation in the BEM. For a homogeneous generally anisotropic elas-
tic material in plane stress, the constitutive relations can be expressed in matrix
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form as
σ11
σ22
τ12

=

c11 c12 c16
c12 c22 c26
c16 c26 c66


ε11
ε22
2ε12

 ,


ε11
ε22
2ε12

=

a11 a12 a16
a12 a22 a26
a16 a26 a66


σ11
σ22
τ12

 ,

(1)

where σi j and εi j (i, j=1, 2) represent the stresses and strains, respectively, and the
coefficients cmn and amn are the elastic stiffness and compliance constants of the
material, respectively. These compliances may be given in terms of engineering
constants as follows [Lekhnitskii (1968)]:

a11 = 1/E1, a22 = 1/E2, a12 =−ν12/E1 =−ν21/E2,
a16 = η12,1/E1 = η1,12/G12, a26 = η12,2/E2 = η2,12/G12, a66 = 1/G12,

(2)

where Ek is the Young’s modulus in the direction of the xk-axis and G12 is the
shear modulus on the x1−x2 plane; ν i j is the Poisson’s ratio, and η i, jl , η i j,l are the
coefficients of mutual influence of the first and second kind, respectively. Equation
(2) is also applicable to the case of plane strain, provided b jk is substituted for a jk
by

b jk = a jk−a j3ak3/a33, ( j, k = 1, 2), (3)

where, with the index 3 referring to the x3-axis, am3 are given by

a j3 =−ν j3/E j =−ν3 j/E3, a33 = 1/E3, a63 = η12,3/E3 = η3,12/G12. (4)

By introducing Airy’s stress functions, Lekhnitskii (1968) has shown that the char-
acteristic equation for an anisotropic material in stable equilibrium is

a11µ
4−a16µ

3 +(2a12 +a66)µ
2−a26µ +a22 = 0. (5)

It has further been shown that the roots of this characteristic equation must be
complex, and are given by two distinct pairs of complex conjugates. These roots
are denoted by

µ j = α j + i β j, ( j = 1, 2), (6)

where i =
√
−1 and β j must be positive from thermodynamic considerations. By

following the above notation for material properties, the position of a general field
point at (x1, x2) can be described by

z j = x1 + µ jx2, ( j = 1, 2). (7)
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The analytical basis of the BEM is the boundary integral equation (BIE). Two key
requirements are necessary for its derivation, namely, (a) the fundamental solution
to the governing differential equations, and (b) a reciprocal theorem relating the dis-
placements and the tractions on the elastic body. These are provided, respectively,
by the unit load solutions for an infinite body, and the Betti-Rayleigh’s reciprocal
work theorem. Carrying out the usual limiting process results in the BIE, relating
the displacements ui and the tractions t i on the boundary S of the domain Ω, as
follows:

Ci j ui(P) = ∫
S

ti(Q)Ui j(P,Q)dS−∫
S

ui(Q)Ti j(P,Q)dS, (8)

in which P and Q represent the source point and the field point on S, respectively,
and Ci j are coefficients associated with the boundary geometry at P. In the bound-
ary integral equation, Ui j(P,Q) and Ti j(P,Q) are the fundamental solutions for dis-
placements and tractions at Q in the xi-direction, respectively, when a unit load is
applied at P in the x j-direction. Their explicit forms are given by [Cruse (1988)]:

Ui j(P,q) = 2Re{ri1 A j1 logz1 +ri2 A j2 logz2}, (9a)

T1 j(P,Q) = 2n1Re{µ
2
1 A j1 /z1 + µ

2
2 A j2 /z2}-2n2Re{µ1 A j1 /z1 + µ2 A j2 /z2}, (9b)

T2 j(P,Q) =−2n1Re{µ1 A j1 /z1 + µ2 A j2 /z2}+2n2Re{A j1 /z1 +A j2 /z2}, (9c)

where ri j and A ji are complex quantities associated with the material properties
[Cruse (1988)], Re{} is the operator which takes the real part of complex quantities,
and zi is a generalized complex variable. This variable for the field point Q at (x1,
x2), with reference to the source point P at (xp1, xp2), is defined as follows:

z = (x1−xp1)+ µi(x2−xp2) = ζ1 + µiζ2, (10)

where ζ i represent the local coordinates with the origin located at P. In Eqs. (9b)
and (9c), ni are components of the unit outward normal vector at Q. The BIE, Eq.
(8), can generally be solved only by numerical means. It involves, discretizing the
boundary into a mesh with, say, M elements and N distinct nodes. When using
quadratic isoparametric elements, the geometry and all the primary solution vari-
ables are assumed to vary in a quadratic manner over each element. With the use of
interpolation by shape functions Nc(ζ ) expressed in terms of the intrinsic coordi-
nate ζ (−1≤ ζ ≤ 1), the coordinates and solution variables at a general field point
can then be expressed as

xi(ζ ) =
3

∑
c=1

Nc(ζ )xc
i , µi(ζ ) =

3

∑
c=1

Nc(ζ )µ
c
i , ti(ζ ) =

3

∑
c=1

Nc(ζ )tc
i , (11)
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where Nc(ζ ) are given by

N1(ζ ) =−ζ (1−ζ )/2, N2(ζ ) = (1−ζ
2), N3(ζ ) = ζ (1+ζ )/2. (12)

By substituting Eqs. (11) and (12) into the BIE, Eq. (8), the discretized form of the
boundary integral equation is obtained, as follows:

Ci j(Pa)ui j(Pa) =
M

∑
b=1

3

∑
c=1

btc
i

∫
S
Ui j(Pa,Q)Nc(ζ )J(ζ )dS

−
M

∑
b=1

3

∑
c=1

buc
i

∫
S

Ti j(Pa,Q)Nc(ζ )J(ζ )dS

(13)

where Pa stands for the a-th node of the mesh (Pa=1∼N) and the superscripts b and
crepresent the b-th element and the c-th node of each element, respectively. J (ζ )
is the Jacobian of coordinate transformation. Equation (13) represents a set of 2N
linear algebraic equations for the unknown displacements/tractions at the boundary
nodes. It can be solved by, for example, the Gaussian elimination method.

3 Inverse analysis

An anisotropic elastic problem under stable equilibrium in which the material prop-
erties, displacement boundary conditions, and applied loads are known is a well-
posed problem, i.e. it possesses a unique solution. However, an inverse problem
with unknown elastic constants is an ill-posed problem. In the inverse problem, the
unknowns are to be found by using some additional information obtained by mea-
surements. In an inverse analysis, an optimization method including a sensitivity
analysis and a regularization technique should be employed.

3.1 The inverse problem statement and formulation

A general 2D anisotropic body with unknown elastic constants is considered. The
vector of elastic constants which contains these unknowns is defined as follows

C =
[
C1 C2 · · · C6

]T (14)

where

C1 = c11, C2 = c22, C3 = c66, C4 = c12, C5 = c16, C6 = c26 (15)

To find these material constants, a few elastostatic experiments with different load
conditions and constraints are performed. The number of experiments may be
two, three, or more. We consider three load cases to formulate the problem. The
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formulation with a different number of load cases is similarly accomplished. An
anisotropic body under three different load and constraint conditions is shown in
Fig. 1.

In each load case, the displacements at some selected boundary points are mea-
sured. The location of measurements can be different in each load case. Assume
that there are N1, N2, and N3 measurement data in the load cases 1, 2, and 3, re-
spectively.

Figure 1: A body subjected to three different load cases

The vectors of measured data are represented by Y(1), Y(2), and Y(3), where, for
example, Y(1) contains measured data obtained from the load case 1 and can be
expressed as follows:

Y(1) =
[
Y (1)

1 Y (1)
2 · · · Y (1)

N1

]T
(16)

The vector of displacements at the sampling points in the load case 1 computed by
considering a set of elastic constants is represented by U(1), which can be expressed
as follows:

U(1) =
[
U (1)

1 U (1)
2 · · · U (1)

N1

]T
(17)

Vectors U(2) and U(3) are similarly defined. To find the vector of elastic constants,
the Tikhonov regularization method is used. In this method, the following objective
function S is formed [Tikhonov and Arsenin (1977)]:

S = (Y−U)T(Y−U)+ µCTC, (18)
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where the vectors Y and U are expressed as follows

Y =

Y(1)

Y(2)

Y(3)

 , U =

U(1)

U(2)

U(3)

 (19)

The unknown vector C is found by minimizing the summation S. In Eq. (18),
µ is a regularization parameter. The first term in Eq. (18) is used to make sure
that the difference between the vectors Y and U is small. The second term in Eq.
(18) is used to prevent the elastic constants vector having a large norm. Small
values of µ lead to oscillatory solutions in some cases. Increasing the value of the
regularization parameter damps the oscillations; however, the difference between
the measured and computed values of the displacements at the sampling points
increases. Minimization of S with respect to the vector C leads to

∂S
∂C

=−2XT(Y−U)+2µC = 0 (20)

The matrix X in Eq. (20) is the sensitivity matrix of all load cases, which can be
expressed as follows:

X =

X(1)

X(2)

X(3)

 (21)

where X(L) is the sensitivity matrix of the load case L and is expressed as

X(L) =


X (L)

11 X (L)
12 · · · X (L)

16

X (L)
21 X (L)

22 · · · X (L)
26

...
X (L)

NL1 X (L)
NL2 · · · X (L)

NL6

 L = 1, 2, and 3 (22)

The components of the sensitivity matrix X(L) can be expressed as follows

X (L)
i j =

∂U (L)
i

∂C j
(23)

In order to compute the components of the sensitivity matrix given in Eq. (22),
the derivative of boundary displacements with respect to the elastic constants must
be obtained. Two main approaches are usually used for this purpose. One is the
finite difference scheme, and the second is by direct differentiation of the integral or
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matrix equations, representing the problem. The latter is much more complicated;
in this work, the finite difference method is used.

The unknown vector C can be found using Eq. (20) by an iterative procedure.
Suppose that the vector C̃ is an estimate for the vector of elastic constants, and
Ũ(1), Ũ(2), and Ũ(3) are the corresponding displacement vectors for the load cases
1, 2, and 3, respectively. The displacement vector can be approximated as follows

U = Ũ+X(C− C̃) (24)

where

Ũ =

Ũ(1)

Ũ(2)

Ũ(3)

 (25)

Substituting Eq. (24) into Eq. (20) and after some mathematical manipulations, the
following relationship is obtained

C = [XTX+ µI]−1[XT(Y− Ũ)+XTXC̃]. (26)

Eq. (26) is to be used in an iterative procedure, therefore, it is appropriately written
in the following form

Ck+1 = [(Xk)TXk + µ
kI]−1[(Xk)T(Y−Uk)+(Xk)TXkCk] (27)

where k and k+1 represent iteration numbers. The convergence criterion is then
defined as∥∥Ck+1−Ck

∥∥≤ e (28)

where e is a specified tolerance.

The existence and uniqueness of the solution for the inverse problem may be as-
sured by physical reasoning. If a sufficient number of measured data (greater than
the number of unknowns) are used in the inverse analysis, a solution very close to
the exact solution can be obtained even in case of noisy input data.

3.2 Selection of the regularization parameter

The regularization parameter µk in Eq. (27) should be carefully selected at each
iteration. The L-curve method [Hansen (1998)] is a well-known method for find-
ing the optimum value of the regularization parameter. However, an alternative
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method based on measurement errors is used here instead. Suppose that the mea-
sured data have a Gaussian noise distribution, and each measured displacement can
be expressed as follows:

Yi = Y exact
i + eiY exact

i i = 1, 2, ..., Nt (29)

where Nt is the total number of measured data and ei is the relative error. ei is a
random number from a Gaussian distribution with a zero mean and the standard
deviation σ̂ . We usually have sufficient information about the measurement error
and there exists a suitable estimation for the standard deviation. Assuming the
vector E contains errors of computed displacements with respect to measured data,
and using Eq. (24), we can write:

E = U(Ck+1)−Y = Uk +Xk(Ck+1−Ck)−Y (30)

When we use a small number of measurement data, for example, equal to the num-
ber of unknowns, with µk = 0, the computed vector Ck+1 will be very noisy; how-
ever, the value of ‖E‖ will be very small and

STD(E) < σ̂ (31)

where STD stands for the standard deviation. In this case, selecting a positive
value for µk will result in a much better solution for Ck+1 with a larger STD(E).
The regularization parameter µk is selected in a such way that

STD(E)≈ σ̂ (32)

When a sufficient number of measurement data (considerably more than the num-
ber of unknowns) is used, STD(E) > σ̂ even with µk = 0. In this case, satisfactory
results can be obtained with µk = 0

3.3 Sensitivity analysis of boundary displacements with respect to the elastic
constants

In order to compute the components of the sensitivity matrix given in Eq. (23),
the derivative of boundary displacements with respect to the elastic constants is re-
quired. Two main approaches are usually used for this purpose. One is the use of
finite differences [Ohkami (1991)], and the second is carried out by direct differ-
entiation of the integral or matrix equations, representing the problem [Huang et al
(2004); Comino and Gallego (2005); Gallego Comino, and Ruiz-Cabello (2005)].
The computational cost of the second approach is less than the first one; however,
the second approach is much more complicated. In this work, the approach based
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on the finite difference method is used. The sensitivity coefficient given in Eq. (23)
can be approximated by a finite difference as follows:

X (L)
i j =

∂U (L)
i

∂C j
=

U (L)
i

∣∣∣
C j+εC j

−U (L)
i

∣∣∣
C j

εC j
(33)

where ε is a small value. The value of ε = 0.001 is used in the present work.

3.4 Initial guesses for the elastic constants

Using suitable initial guesses for the elastic constants results in a smaller number
of total iterations in the inverse analysis. Often, there exist some information about
the material constants, and it is possible to suggest suitable initial guesses for the
unknown constants. For cases where there is no information about the values of the
elastic constants, a method for generating initial guesses should be proposed. In
this part of the paper, methods for computing initial guesses for orthotropic as well
as general anisotropic materials are presented.

3.4.1 Initial guesses for orthotropic materials

We use elastic constants of an isotropic material as initial guesses for unknown
elastic constants of the orthotropic material. Elastic constants of an isotropic ma-
terial in terms of the elastic modulus E and the Poisson’s ratio ν can be expressed
as

C1 = E
1−ν2 , C2 = E

1−ν2 , C3 = E
2(1+ν) ,

C4 = Eν

1−ν2 , C5 = 0, C6 = 0
(34)

for plane stress conditions and

C1 = E(1−ν)
(1+ν)(1−2ν) , C2 = E(1−ν)

(1+ν)(1−2ν) , C3 = E
2(1+ν) ,

C4 = Eν

(1+ν)(1−2ν) , C5 = 0, C6 = 0
(35)

for plane strain conditions.

Now we attempt to find the elastic modulus of an isotropic material with ν = 0.3,
which approximately gives measured data in the load case 1. Suppose that the vec-
tor of displacements at sampling points in the load case 1 obtained by considering
an isotropic material with E = 1 and

ν = 0.3 is denoted by Ū1, i.e.

Ū1 = U1(E = 1,ν = 0.3) (36)
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We also define ŪE as follows:

ŪE = U1(E,ν = 0.3) (37)

Due to the linearity of displacement with respect to 1/E, it is possible to write

ŪE = aŪ1 (38)

where a = 1/E

To find a suitable value of a we can minimize the following function

F = (Y1−aŪ1)T(Y1−aŪ1) (39)

which leads to

∂F
∂a

=−2ŪT
1 (Y1−aŪ1) = 0 (40)

Therefore, the following relationship is obtained:

E =
1
a

=
ŪT

1 Ū1

ŪT
1 Y1

(41)

We can calculate E by Eq. (41) without any iteration and regularization. The initial
guesses for the unknown elastic constants can be found by substituting the com-
puted value of E and ν = 0.3 into Eq. (34) or Eq. (35). The numerical examples
presented in Section 4 show that the proposed method for computation of initial
guesses for the elastic constants is very actually effective indeed

3.4.2 Initial guesses for general anisotropic materials

Similar to the case of orthotropic materials, we use elastic constants of an isotropic
material as initial guesses for C1 to C4. Non-zero initial guesses should be selected
for C5 and C6 too. The constants C5 and C6 may be positive or negative. We can
use ±0.1a−1 as initial guesses for C5 and C6. The example in Section 4 shows
that using these initial guesses results in a very good convergence of the inverse
analysis.

4 Numerical examples

In this section, the proposed inverse technique is applied for identification of elastic
constants of bodies. Two different cases are considered. In the first case, the body
is made of an orthotropic material, while it is made of an anisotropic material in
the second case. In both cases, it is considered that no preliminary knowledge of
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the elastic constants is available. The method described in Sec. 3.4 is first used to
obtain reasonable initial guesses for the inverse method. Then, the initial guesses
are iteratively updated until the algorithm converges. In each case, a direct analysis
is performed and the displacements at several boundary points obtained using this
direct analysis, are used in place of experimental measurements. To account for the
inherent experimental errors, a vector of errors with Gaussian distribution is added
to the results of the direct analysis. The effect of the standard deviation of the errors
on the identified elastic constants is also studied.

The shape of the body for which the elastic constants are sought is shown in Fig.
2. For the sensitivity analysis by the BEM, the boundary of the body is discretized
into 34 quadratic boundary elements.

Figure 2: The geometry of the problem along with 34 boundary elements

Fig. 3 shows the three load cases used for identification of the material constants.
In this figure, the value of the applied traction q, for each case is equal to 104 N/m.
20 sampling points are selected on the boundary of the body in each load case. The
dots in the figure represent the sampling points where the measurements are made.

The elastic constants of the body are obtained in three different situations. First, the
measurements of only the first load case are used for identification of the material
constants. Then, the measurements of the first and the second load cases are used
together, and another set of constants are identified. Finally, the measurements of
all the three load cases are used together to obtain material constants. The results
of these three situations are compared to a case in which all loadings are applied to
the body simultaneously (see Fig. 4).
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Figure 3: The three load cases used for determination of material constants

Figure 4: The load case with simultaneous application of various loadings
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4.1 Case I: Identification of the elastic constants of an orthotropic body

In this case, it is assumed that the body shown in Fig. 2 is made of an orthotropic
material for which the vector of elastic constants is:

C =
[
10 5 3.5 1.5

]T GPa (42)

The relative error of measured data is assumed 10%, i.e. a relative error with a
Gaussian distribution and the standard deviation of σ̂ = 0.033 is assumed. Using
the measured data and employing the method described in Sec. 3.4, the following
initial guess for the vector C is obtained:

C0 =
[
6.5 6.5 2.3 1.9

]T GPa (43)

It is clear that the proposed method results in a vector of elastic constants whose
values are relatively close to the exact values. In this way, the number of iterations
needed for the convergence of the algorithm is efficiently reduced. Table 1, gives
the values of elastic constants obtained by load cases of Fig. 3. This table also lists
the values of the elastic constant obtained by application of all the loads together in
one experiment (see Fig. 4).

Table 1: The identified elastic constants (in GPa) of the orthotropic material with
various load cases (with 10% measurement error)

c11 (error) c22 (error) c66 (error) c12 (error)
Exact value 10 5 3.5 1.5
1-test 10.41 (4.1%) 4.95 (1.0%) 3.53 (0.9%) 1.17 (22%)
2-test 11.32 (13%) 5.02 (0.3%) 3.61 (3.1%) 1.69 (12%)
3-test 10.38 (3.8%) 5.02 (0.3%) 3.43 (2.0%) 1.41 (5.8%)
1-test (all-in-one
loading)

10.06 (0.6%) 5.13 (2.5%) 2.99 (15%) 1.42 (5.6%)

Table 1 suggests that the most reliable results are obtained in the case that three
different experiments are performed and the results of all three experiments are
used together for identification of the elastic constants. Another benefit of using
more than one test is that relatively simple tests can be performed in each case for
identification of the constants. If only one test is to be used, the applied loads will
need to be much more complicated.

The effect of measurement errors on the identified elastic constants is investigated.
The standard deviation of the error is so chosen as to result in 3, 5, 10, and 20



70 Copyright © 2012 Tech Science Press CMES, vol.87, no.1, pp.55-76, 2012

Table 2: Effect of measurement error on the identified elastic constants of the or-
thotropic body

c11 (error) c22 (error) c66 (error) c12 (error)
Exact value (GPa) 10 5 3.5 1.5
3% measurement
error

10.11 (1.1%) 5.00 (0.1%) 3.48 (0.6%) 1.48 (1.6%)

5% measurement
error

10.19 (1.9%) 5.01 (0.2%) 3.45 (1.0%) 1.46 (2.8%)

10% measure-
ment error

10.38 (3.8%) 5.02 (0.3%) 3.43 (2.0%) 1.41 (5.8%)

20% measure-
ment error

10.80 (8.0%) 5.03 (0.7%) 3.36 (3.9%) 1.32 (13%)

percent tolerance of measurements error. Table 2, shows the elastic constants pre-
dicted for each case. The results of this table are obtained using the three load cases
shown in Fig. 3.

Fig. 5 and Fig. 6 depict the values of the elastic constants versus the iteration
number for the case with three tests and with 10% and 20% measurement error,
respectively. These figures clearly show that the convergence of the method is very
fast. The reason for this high rate of convergence is the reasonable initial guess that
is selected here

4.2 Case II: Identification of the elastic constants of an anisotropic body

In this case, it is assumed that the body shown in Fig. 2 is made of an anisotropic
material for which the vector of elastic constants is as follows:

C =
[
544.8 531.1 243.5 153.6 −81.2 89.7

]T GPa (44)

These values correspond to those for alumina crystal, the three principal axes of
which have been rotated clockwise by 30o, 45o and 60o, respectively as reported
in a paper by Tan, Shiah, and Lin (2009). Following the procedure described in
Sections 3.4.1 and 3.4.2, the following four vectors of initial guesses are obtained.

C0 =
[
486.6 486.6 170.3 146.0 48.7 48.7

]T GPa
C0 =

[
486.6 486.6 170.3 146.0 −48.7 48.7

]T GPa
C0 =

[
486.6 486.6 170.3 146.0 48.7 −48.7

]T GPa
C0 =

[
486.6 486.6 170.3 146.0 −48.7 −48.7

]T GPa

(45)

The results for this example are obtained by utilizing the first vector of initial
guesses given in Eq. (45), mentioning that other vectors give converged solutions.
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Figure 5: Convergence of the proposed method for identification of the elastic con-
stants of the orthotropic body (with 10% measurement error)

Figure 6: Convergence of the proposed method for identification of the elastic con-
stants of the orthotropic body (with 20% measurement error)
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Table 3 lists the identified elastic constants based on the load cases of Fig. 3. The
results are also compared with those obtained by the load case of Fig. 4. A close
review of the table suggests that the most reliable results are obtained in the case
that three tests with the three load cases are conducted and the measurements are
used together. The values reported in Table 3, are obtained when the tolerance of
measurement errors is considered to be 10%.

In order to have a good appreciation of the usefulness of the obtained vector of
initial guesses, a vector with seemingly appropriate initial guesses is selected as
follows:

C0 =
[
300 250 150 150 −100 100

]T GPa (46)

Although the values of the initial guesses given in Eq. (46) are close to the exact
values and even the signs of the constants c16 and c26 are consistent with the actual
values, the inverse algorithm would not converge with this vector.

To investigate the effect of measurement errors on the identified elastic constants,
a vector of errors with Gaussian distribution is generated. The standard deviation
of the errors for the same vector is so chosen as to result in 3, 5, 10, and 20 percent
tolerance of measurement error. Table 4, reports the elastic constants predicted for
each case. The results of this table are obtained with the three loading cases shown
in Fig. 3.

To illustrate graphically the convergence characteristics of the proposed inverse
technique, the values of elastic constants are plotted against the iteration number in
Fig. 7 and Fig. 8. The results presented in these figures correspond to the case with
10% and 20% tolerance of measurement error, respectively.

5 Conclusions

An inverse method for identification of the elastic constants of 2D orthotropic and
anisotropic materials has been presented. The proposed method is based on the
BEM and static measurements. This method uses measured data from more than
one experiment. In the numerical examples, it was observed that using two or three
experiments instead of one experiment results in solutions that are more accurate.
Since the number of measured data obtained from several experiments is consider-
ably larger than the number of unknowns, the inverse analysis can be carried out
simply even without any regularization. Initial guesses have an important effect on
the convergence of the inverse method. A simple, yet effective, method for com-
puting suitable initial guesses has also been presented. It was observed that this
method can compute appropriate initial guesses for a problem without any prior
information about the elastic constants.
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Figure 7: Convergence of the proposed method for identification of the elastic con-
stants of the anisotropic body (with 10% measurement error)

Figure 8: Convergence of the proposed method for identification of the elastic con-
stants of the anisotropic body (with 20% measurement error)
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