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A BEM Approach for Inelastic Analysis of
Beam-Foundation Systems under Cyclic Loading

E.J. Sapountzakis1 and A.E. Kampitsis2

Abstract: In this paper a Boundary Element Method (BEM) is developed for
the inelastic analysis of beams of arbitrarily shaped constant cross section having
at least one axis of symmetry, resting on nonlinear inelastic foundation. The beam
is subjected to arbitrarily distributed or concentrated vertical cyclic loading along
its length, while its edges are subjected to the most general boundary conditions.
A displacement based formulation is developed and inelastic redistribution is mod-
elled through a distributed plasticity model exploiting material constitutive laws
and numerical integration over the cross sections. An incremental - iterative solu-
tion strategy is adopted to resolve both the plastic part of stress resultants and the
foundation reaction along with an efficient iterative process to integrate the inelas-
tic rate equations. The arising boundary value problem is solved employing BEM.
Numerical examples are worked out to illustrate the efficiency, the accuracy and
the range of applications of the developed method.

Keywords: inelastic analysis, cyclic loading, beam on foundation, inelastic Win-
kler model, distributed plasticity, boundary element method

1 Introduction

In engineering practice we often come across the analysis of beams on/in soil
medium. The beam-foundation analysis is often required in piles, pile-columns
and pile groups embedded in soil medium as well as in beam-columns and railway
tracks resting on soil half space. These beam-foundation systems under the action
of cyclic loading are usually leaded to the structural’s element and/or soil yielding
[Allotey and El Naggar (2008); Li et al (2012); Poulos (1981, 1989)]. Moreover,
design of beams and engineering structures based on elastic analysis are most likely
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to be extremely conservative not only due to significant difference between initial
yield and full plastification in a cross section, but also due to the unaccounted for
yet significant reserves of strength that are not mobilized in redundant members un-
til after inelastic redistribution takes place. Thus, material nonlinearity is important
for investigating the ultimate strength of a beam that resists bending loading, while
distributed plasticity models are acknowledged in the literature [Nukala and White
(2004); Teh and Clarke (1999); Saritas and Filippou (2009)] to capture more
rigorously material nonlinearities than cross sectional stress resultant approaches
[Attalla et al (1994)] or lumped plasticity idealizations [Orbison et al (1982);
Ngo-Huu et al (2007)].

During past decades extensive research efforts have been presented concerning
elastic analysis of beams resting on single or multi-layer elastic bilateral foun-
dation models. The majority of the adopted models employed numerical methods
such as the finite element method [DasGupta (1974); Zhaohua and Cook (1983);
Chiwanga and Valsangkar (1988); Shirm and Giger (1990); Onu (2000); Kim and
Shin (2010)] while analytical formulations [Niyogi (1973); Avramidis IE, Mor-
fidis K. (2006)] have also been employed. However, elastic analysis of beams on
elastic foundation, taking into account the realistic tensionless character of the sub-
grade reaction has received limited amount of literature. To begin with, Weitsman
(1972) studied the contact area developed between a beam under concentrated load
and an elastic half-space. Kaschiev and Mikhajlov (1995) presented a formula-
tion based on the use of Newton’s method and the finite element method for beams
resting on tensionless Winkler foundation, while for the same problem Zhang and
Murphy (2004) presented an analytical/numerical solution making no assumption
about either the contact area or the kinematics associated with the transverse deflec-
tion of the beam subjected to lateral point load assuming either free or pinned ends.
Silveira et al (2008) presented a nonlinear semi-analytical methodology using a
Ritz type approach, for the elastic equilibrium and instability analysis of beams,
columns and arches resting on a tensionless Winkler elastic foundation, employing
Newton-Raphson method together with arc-length iteration procedure in order to
solve the nonlinear equations. Zhang (2008) analyzed a beam resting on a ten-
sionless Reissner foundation and demonstrated the improvements of the Reissner
foundation model compared with the Winkler one, while Ma et al (2009) used
the transfer displacement function method (TDFM) to present the response of an
infinite beam resting on a tensionless Pasternak foundation subjected to linearly
varying distributed loads. Finally, Sapountzakis and Kampitsis (2010) developed
a boundary element method for the nonlinear dynamic analysis of beam-columns
of arbitrary doubly symmetric simply or multiply connected constant cross section,
partially supported on tensionless Winkler foundation undergoing moderate large
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deflections under general boundary conditions, taking into account the effects of
shear deformation and rotary inertia.

To account for the nonlinear nature of the soil, several researches employed the
concept of elastic beam on nonlinear foundation. In that formulation, the foun-
dation load-displacement relation is assumed to follow a nonlinear law while the
beam remains elastic throughout the analysis. Sharma and DasGupta (1975) em-
ployed an iteration method using Green’s functions for the analysis of uniformly
loaded axially constrained Bernoulli beams hinged at both ends assuming an ex-
ponential build-up of the foundation reaction with the displacement increment.
Beaufait and Hoadley (1980) approximated the nonlinear load-displacement re-
lationship of the Winkle foundation with a bilinear curve and utilized the midpoint
difference method to analyze the beam coupled with the weighted averages scheme
to estimate the spring stiffness for each iteration, followed by Yankelevsky DZ,
Eisenberger M, Adin MA. (1989) who presented an iterative procedure based on
the exact stiffness matrix for the beam on Winkler foundation by approximating
the load-displacement curve by three to five regions rather than two. Kaliszky and
Logo (1994) adopted the extremum principle to analyze a nonlinear elastic beam
on nonlinear elastic foundation. Both the beam and the Winkler springs were as-
sumed to follow a bilinear material model while the beam was subdivided into
series of rigid bars and the deformation was concentrated in the hinges and spring
elements. Sapountzakis and Kampitsis (2011a) studied the nonlinear static anal-
ysis of shear deformable beam-columns of arbitrary doubly symmetric simply or
multiply connected constant cross-section, partially supported on tensionless three
parameter foundation, undergoing moderate large deflections under general bound-
ary conditions, while in Sapountzakis and Kampitsis (2011b) the same authors
confirmed the importance of the tensionless nonlinear three-parameter viscoelastic
foundation in the nonlinear dynamic analysis of beams under the combined action
of arbitrarily distributed or concentrated transverse moving loading.

Contrary to the large amount of research concerning the elastic analysis of beams
on either linear or nonlinear elastic foundation, only few studies have taken into
account the inelastic behavior of both the beam and the foundation. According
to this, the beam stress-strain and the foundation load-displacement relations are
assumed to follow nonlinear inelastic constitutive laws. Consequently, such beam-
foundation models are not commonly used due to the complexity of the problem.
Ayoub (2003) presented an inelastic finite element formulation for that is capable
of capturing the nonlinear behaviour of both the beam and the foundation. The
element is derived from a two-field mixed formulation with independent approx-
imation of forces and displacements and compared with the displacement based
formulation. Finally, Mullapudi and Ayoub (2010) expanded the research in in-
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elastic analysis of beams resting on two-parameter foundation where the values
for the parameters are derived through an iterative technique that is based on an
assumption of plane strain for the soil medium.

In this paper, a Boundary Element Method (BEM) is developed for the inelastic
analysis of beams of arbitrarily shaped constant cross section having at least one
axis of symmetry, resting on nonlinear inelastic foundation. The beam is subjected
to arbitrarily distributed or concentrated vertical cyclic loading along its length,
while its edges are subjected to the most general boundary conditions. A dis-
placement based formulation is developed and inelastic redistribution is modelled
through a distributed plasticity model exploiting material constitutive laws and nu-
merical integration over the cross sections. An incremental - iterative solution strat-
egy is adopted to resolve both the plastic part of stress resultants and the foundation
reaction along with an efficient iterative process to integrate the inelastic rate equa-
tions [Ortiz and Simo (1986)]. The arising boundary value problem is solved
employing BEM [Katsikadelis (2002)]. The essential features and novel aspects of
the present formulation compared with previous ones are summarized as follows

• The formulation is a displacement based one taking into account inelastic
redistribution along the beam axis by exploiting material constitutive laws
and numerical integration over the cross sections (distributed plasticity ap-
proach).

• The cyclic response of the beam-foundation system is thoroughly examined
and the influence of the material hardening is investigated.

• The inelasticity of the soil medium is taken into account, employing the non-
linear Winkler foundation model.

• The tensionless character of the foundation is also taken into consideration.

• An incremental - iterative solution strategy is adopted to restore global equi-
librium of the beam.

• The beam is supported by the most general nonlinear boundary conditions
including elastic support or restrain, while its cross section is an arbitrarily
one having at least one axis of symmetry (z-axis).

• To the authors’ knowledge, a BEM approach has not yet been used for the so-
lution of the aforementioned problem, while the developed procedure retains
most of the advantages of a BEM solution even though domain discretization
is required.
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Numerical examples are worked out to illustrate the efficiency, the accuracy and
the range of applications of the developed method.

2 Statement of the problem

2.1 Displacements, strains, stresses

Let us consider a prismatic beam of length l (Fig. 1a) of arbitrary constant cross-
section having at least one axis of symmetry (z-axis), occupying the two dimen-
sional multiply connected region Ω of the y,z plane bounded by the Γ j ( j = 1,2, ...,K)
boundary curves, which are piecewise smooth, i.e. they may have a finite number
of corners. In Fig. 1b Cyz is the principal bending coordinate system through
the cross section’s centroid. The normal stress-strain relationship for the material
is assumed to be elastic-plastic-strain hardening with initial modulus of elasticity
and yield stress Eand σY 0, respectively. The beam is resting on nonlinear inelastic
tensionless Winkler type foundation and thus the foundation reaction is expressed
as

p f =

{
kww if p f > 0
0 if p f ≤ 0

(1)

where kw = kw (w,wy) is the Winkler nonlinear inelastic functions depending on the
yielding displacement and the current one.

The beam is subjected to the combined action of arbitrarily distributed or concen-
trated cyclic transverse loading pz = pz (x) and bending moment my = my (x) acting
in the x direction (Fig. 1a). Under the action of the aforementioned loading, the
displacement field of the beam is given as

ū(x,z) = u(x)+ zθy (2a)

w̄(x) = w(x) (2b)

where ū, w̄ are the axial and transverse beam displacement components with respect
to the Cyz system of axes; u(x), w(x) are the corresponding components of the cen-
troid C and θy (x, t) is the angle of rotation due to bending of the cross-section with
respect to its centroid. Employing the strain-displacement relations considering
small deflections and adopting the Euler-Bernoulli assumption the following strain
components are obtained

εxx =−z
d2w
dx2 (3a)
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     (a)

            (b)
 
 

Figure 1: Prismatic beam resting on an inelastic foundation subjected to cyclic
bending loading (a) with an arbitrary cross-section having at least one axis of sym-
metry, occupying the two dimensional region Ω (b).

γxz = 0⇒ θy =−dw
dx

(3b)

Considering strains to be small, employing the Cauchy stress tensor and assuming
an isotropic and homogeneous material without exhibiting any damage during its
plastification, the normal stress rate is defined in terms of the corresponding strain
one as

dσxx = E∗dε
el
xx (4)

where d (·) denotes infinitesimal incremental quantities over time (rates), the super-
script el denotes the elastic part of the strain component and E∗= E(1−ν)

(1+ν)(1−2ν) . If the
plane stress hypothesis is undertaken then E∗ = E

1−ν2 holds [Vlasov (1963)], while
E is frequently considered instead of E∗ (E∗ ≈ E) in beam formulations [Vlasov
(1963); Armenakas (2006)]. This last consideration has been followed throughout
the paper, while any other reasonable expression of E∗ could also be used without
any difficulty in many beam formulations.
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As long as the material remains elastic or elastic unloading occurs (dεxx = dεel
xx)

the stress rate is given with respect to the strain one from eqn. (4). If plastic flow
occurs then dεxx = dεel

xx + dε
pl
xx , where the superscript pl denotes the plastic part

of the strain component. A simplified Von Mises yielding criterion is considered
ignoring the influence of shear stresses and the yield condition is satisfied when the
normal stress is equated with the yield stress of the material, that is

f = σxx−σY

(
ε

pl
eq

)
= 0 (5)

where σY is the yield stress of the material and ε
pl
eq is the equivalent plastic strain,

the rate of which is defined in [Crisfield (1991)] and is given as dε
pl
eq = dλ (dλ is

the proportionality factor [Crisfield (1991)]). Moreover, the plastic modulus h is
defined as h = dσY /dε

pl
eq or dσY = hdλ and can be estimated from a tension test as

h = EtE/(E−Et) (Fig. 2). The stress rate is given with respect to the total strain
one through eqn. (3) and the strain components as

dσxx = Edεxx−Edε
pl
xx (6)

 σ 

εΕ 

σΥ0 

O
εY0 

Εt 

(a)

σY

pl
eqε

 O

σY0

 h 

(b)
 

Figure 2: Normal stress - strain (a) and yield stress - equivalent plastic strain (b)
relationships.

2.2 Equations of global equilibrium

To establish global equilibrium equations, the principle of virtual work neglecting
body forces is employed, that is∫
V

(σxxδεxx)dV =
∫
l

(
pzδw−myδw′

)
dx−

∫
l

(
p f

)
δwdx (7)
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where the integral quantities represent the strain energy, the external load and foun-
dation reaction work while δ (·) denotes virtual quantities, V is the volume and l is
the length of the beam. The stress resultant corresponding to the internal bending
moment of the beam is defined as

SMy =
∫
Ω

σxxzdΩ (8)

After substituting eqn. (8) into eqn. (7) and conducting some algebraic manipula-
tions, the global equilibrium equations of the beam is obtained as

−
d2SMy

dx2 + p f (x) = pz (x)+
dmy (x)

dx
(9)

along with its corresponding boundary conditions

α1
dSMy

dx
+α2w = α3 (10a)

β1SMy +β2
dw
dx

= β3 (10b)

where αi, βi (i = 1,2,3) are functions specified at the beam ends. The boundary
conditions (10) are the most general ones for the problem at hand, including also the
elastic support. It is apparent that all types of the conventional boundary conditions
(clamped, simply supported, free or guided edge) may be derived from eqns (10)
by specifying appropriately the functions αi and βi (e.g. for a clamped edge it is
α2 = β2 = 1, α1 = α3 = β1 = β3 = 0).

Since an incremental - iterative approach is adopted for the problem at hand, the
incremental version of eqns (9, 10) is firstly written down as

−
d2∆SMy

dx2 +∆p f (x) = ∆pz (x)+
d∆my (x)

dx
(11)

where ∆(·) denotes incremental quantities (over time), while the incremental stress
resultant is given by virtue of eqns (8) and (6) as

∆SMy =−EIy∆w′′−∆SMpl
y (12)

where Iy is the moment of inertia with respect to the principle bending axis y and
SMpl

y is the plastic quantity defined as

∆SMpl
y = E

∫
Ω

∆ε
plzdΩ (13)
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By substituting eqn. (12) in eqn. (11) and forming the incremental version of
the boundary conditions (eqns. (10)), the following boundary value problem is
obtained

EIy∆w′′′′+∆(p f ) = ∆pz (x)+
d∆my (x)

dx
− d2∆SMpl

y

dx2 inside the beam (14)

a1
d∆SMy

dx
+a2∆w = ∆a3 (15)

β1∆SMy +β2
d∆w
dx

= ∆β3 (16)

at the beam ends x = 0, l.

By dropping the plastic quantities of the above equations, the boundary value prob-
lem of the examined problem under elastic conditions is formulated.

3 Integral Representations – Numerical Solution

3.1 Integral representations for the displacement w

According to the precedent analysis, the inelastic problem of beams resting on
resting on nonlinear inelastic foundation. reduces to establishing the displacement
component ∆w(x) having continuous derivatives up to the fourth order with respect
to x and satisfying the boundary value problem described by the governing differen-
tial equation (14) along the beam and the boundary conditions (15-16) at the beam
ends x = 0, l.

This boundary value problem (eqns (14), (15-16)) is solved employing the BEM
[Katsikadelis (2002)], as this is developed in Sapountzakis (2000) for the solution
of a fourth order differential equation with constant coefficients. According to this
method, let u(x) = ∆w(x) be the sought solution of the problem. The solution of
the fourth order differential equation d4u/dx4 = ∆w′′′′ is given in integral form as
[Katsikadelis (2002)]

u(ξ ) =
l∫

0

d4u
dx4 u∗dx−

[
u∗

d3u
dx3 −

∂u∗

∂x
d2u
dx2 +

∂ 2u∗

∂x2
du
dx
− ∂ 3u∗

∂x3 u
]l

0
(17)

where u∗ is the fundamental solution given as [Katsikadelis (2002)]

u∗ =
1
12

(
|r|3−3l |r|2 +2l3

)
(18)
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with r = x− ξ , x,ξ points of the beam. Since EIy is independent of x, eqn. (17)
can be written as

EIyu(ξ ) =
l∫

0
EIy

d4u
dx4 Λ4(r)dx

−EIy

[
Λ4(r)d3u

dx3 −Λ3(r)d2u
dx2 +Λ2(r)du

dx −Λ1(r)u
]l

0

(19)

where the kernels Λ j (r) ( j = 1,2,3,4) are given as

Λ1 (r) =
1
2

sgnr Λ2 (r) =
1
2

(|r|− l) (20a)

Λ3 (r) =
1
4
|r|(|r|−2l)sgnr Λ4 (r) =

1
12

(
|r|3−3l |r|2 +2l3

)
(20b)

Solving eqn. (14) with respect to EIy∆w′′′′ and substituting the result in eqn. (19),
the following integral representation is obtained

EIyu(ξ ) =
l∫

0

(
∆pz (x)+ d∆my(x)

dx − d2∆SMpl
y

dx2 −∆(p f )
)

Λ4(r)dx

−EIy

[
Λ4(r)d3u

dx3 −Λ3(r)d2u
dx2 +Λ2(r)du

dx −Λ1(r)u
]l

0

(21)

After carrying out several integrations by parts and employing equations (1), eqn.
(21) yields

EIyu(ξ ) =
l∫

0

∆pz (x)Λ4(r)dx−
l∫

0

∆my (x)Λ3(r)dx

−
l∫

0

∆SMpl
y Λ2(r)dx−

l∫
0

∆(kww)Λ4(r)dx

+
[

Λ4(r)
d∆SMy

dx
−Λ3(r)∆SMy +EIyΛ2(r)

du
dx
−EIyΛ1(r)u

]l

0

(22)

Having in mind that the first derivative of u is contained in eqns (15-16), eqn. (22)
is differentiated once with respect to ξ yielding

EIy
du(ξ )

dξ
=−

l∫
0

∆pz (x)Λ3(r)dx+
l∫

0
∆my (x)Λ2(r)dx+

l∫
0

∆SMpl
y Λ1(r)dx

−
l∫

0
∆(kww)Λ3(r)dx−

[
Λ3(r)

d∆SMy
dx −Λ2(r)∆SMy +EIyΛ1(r)du

dx

]l

0

(23)
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Observing eqns. (22)-(23), it is deduced that they have been brought into a con-
venient form to establish a numerical computation of the unknown quantity ∆w.
Thus, the interval (0, l) is divided into L elements, on each of which ∆w is assumed
to vary according to a certain law (constant, linear, parabolic etc). The linear el-
ement assumption is employed here (Fig. 3) as the numerical implementation is
simple and the obtained results are very good. It is worth here noting that this tech-
nique does not require either differentiation of shape functions or finite differences
application.
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l
x
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Figure 3: Discretization of the beam interval into linear elements, distribution of
the nodal points and approximation of several quantities.

Employing the aforementioned procedure and a collocation technique, a set of L+1
algebraic equations is obtained with respect to L+7 unknowns, namely the values
of (∆w)i, (i = 2,3, ...,L) at the L−1 internal nodal points and the boundary values

of (∆w) j,
(d∆w

dx

)
j(∆SMy) j,

(
d∆SMy

dx

)
j

( j = 1 and L + 1) at the beam ends ξ1 = 0,

ξL+1 = l (Fig. 3)). Two additional algebraic equations are obtained by applying the
integral representation (23) at the beam ends ξ = 0, l. These L+3 equations along
with the four boundary conditions (eqns (15-16)) yield a linear system of L + 7
simultaneous algebraic equations

[K]{∆d}= {∆bext}+
{

∆bpl
}

(24)

where [K] is a known generalized stiffness matrix, {∆d} is a generalized incremen-
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tal unknown vector given as

{∆d}T =
{
{(∆w)1 (∆w)2 ... (∆w)L+1

(d∆w
dx

)
1

(d∆w
dx

)
L+1

(∆SMy)1 (∆SMy)L+1

(
d∆SMy

dx

)
1

(
d∆SMy

dx

)
L+1

}
(25)

while {∆bext},
{

∆bpl
}

are known vectors representing all the terms related to the
incremental externally applied loading and incremental plastic quantities, respec-
tively.

After solving the system of eqns (24), a post-processing step is required to obtain
the derivatives du

dx , d2u
dx2 at any nodal point ξi (i = 1,2, ...,L + 1) which is essential

to the solution algorithm. The first derivative is obtained from eqn. (23), while the
second one from the following integral representation

EIy
d2u(ξ )

dξ 2 =
l∫

0
∆pz (x)Λ2(r)dx−

l∫
0

∆my (x)Λ1(r)dx−∆SMpl
y −

l∫
0

∆(kww)Λ2(r)dx

+
[
Λ2(r)

d∆SMy
dx −Λ1(r)∆SMy

]l

0

(26)

which is obtained after differentiating eqn. (22) twice with respect to ξ . The
presented integral representations may also be employed to compute u(x) and its
derivatives at any interior point of the beam other than ξi (i = 1,2, ...,L+1).

3.2 Incremental - iterative solution algorithm

Load control over the incremental steps is used and load stations are chosen accord-
ing to load history and convergence requirements. Incremental stress resultants are
decomposed into elastic and plastic part (eqns (12)). They are computed through
an iterative procedure since usually, changes between the plastic part of incremen-
tal stress resultants of two successive iterations are not negligible. Thus, using the
subscript m to denote the load step, the superscript l to denote the iterative cycle
and the symbol ∆(·) to denote incremental quantities, the l-th iteration of the m-th
load step of the incremental - iterative solution algorithm will be described.

Evaluation of the generalized iterative unknown vector {∆d}l
m from the solution of

the linear system of equations (eqn. (24))

[K]{∆d}l
m = {∆bext}m +

{
∆bpl

}l−1
m (27)
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If m = 1 and l = 1, it is assumed that
{

∆bpl
}0

1 = {0}. If m > 1 and l = 1, it

is assumed that
{

∆bpl
}0

m = {0} or
{

∆bpl
}0

m =
{

∆bpl
}n

m−1, where n is the total
number of iterations performed in the previous increment m−1.

Evaluation of the incremental unknown derivatives [∆w′ (ξi)]
l
m, [∆w′′ (ξi)]

l
m (i =

1,2, ...,L+1) by introducing {∆d}l
m into eqns (23) and (26), respectively.

Elastic prediction step: For each monitoring station k of the i− th cross section
of the beam (k = 1,2, ...,Ndo f , i = 1,2, ...,L + 1): Evaluation of the trial stress
components as(
σ

Tr
xx (ξi,zk)

)l
m = (σxx (ξi,zk))

0
m +

(
∆σ

Tr
xx (ξi,zk)

)l
m (28)

where the incremental trial stress components are obtained by employing eqns (3),
(4) as

(
∆σ

Tr
xx (ξi,zk)

)l
m = E

[
−d2∆w(ξi)

dx2

]l

m
(z)k (29)

Perform the yield criterion at each monitoring station k of the i− th cross section
of the beam (k = 1,2, ...,Ndo f , i = 1,2, ...,L+1) employing eqn. (5).

If f Tr ≤ 0 then the trial state is the final state and the incremental plastic strain
components along with the equivalent plastic strain are updated as(

∆ε
pl
xx

)l

m
= 0

(
ε

pl
eq

)l

m
=
(

ε
pl
eq

)0

m
(30)

If f Tr > 0 then plastic flow occurs and return must be made to yield surface (plastic
correction step). The plastic flow rule and the loading/unloading conditions can
easily be formulated [40, 41].

For each monitoring cross section of the beam i: Evaluation of the plastic quantities[
∆SMpl

y (ξi)
]l

m
(i = 1,2, ...,L+1) by employing a two-dimensional numerical inte-

gration scheme to approximate the domain integrals of eqn. (13). In this study, the
beam’s monitoring cross sections are divided into a number of triangular or quadri-
lateral cells and standard two-dimensional Gauss quadrature rules are employed in
each cell. Thus, the monitoring stations of each cross section coincide with the
Gauss points of its cells. If the same number of Gauss points is employed in every
cell, then Ndo f = Ncells×NGauss holds. Exact patch between adjacent cells is not re-
quired due to the combined use of BEM to compute Iy and the fact that only domain
integrals are approximated without performing any structural discretization.
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Employ the obtained plastic quantities
[
∆SMpl

y (ξi)
]l

m
(i = 1,2, ...,L + 1) to eval-

uate (a) the vector
{

∆bpl
}l

m representing all the terms of eqn. (22), related to
plastic quantities and (b) terms of eqns. (23), (26) related to plastic quantities
required to perform step (ii) for the next iteration l + 1. Apart from elementary
computations, the current step requires the computation of line integrals of the

form
l∫

0
Λ j(r)∆SMpl

y dx ( j = 1,2) (eqns (22), (23)). A numerical integration scheme

must be employed to resolve these integrals since plastic quantities are not known
in the whole beam interval (0, l). A semi-analytical scheme has been implemented,
according to which ∆SMpl

y vary on an element k (k = 1,2, ...,L) (Fig. 2) of the beam
interval following the same law that is used to approximate ∆w (see section 3.1).
This leads to the integration of kernels being products of functions Λi(r) and two-
node linear shape functions, thus it is performed analytically without any difficulty.

Check convergence. Convergence occurs if
∥∥∥∥[∆SMpl

y (ξi)
]l

m
−
[
∆SMpl

y (ξi)
]l−1

m

∥∥∥∥ is

sufficiently small. The iterations continue until the specified accuracy is reached.
If convergence is achieved after n iterations then:

For each monitoring station k of the i−th cross section of the beam (k = 1,2, ...,Ndo f ,
i = 1,2, ...,L+1): Initialize the stress components along with the equivalent plastic
strain for the next increment m+1 as

(σxx)
0
m+1 = (σxx)

n
m

(
ε

pl
eq

)0

m+1
=
(

ε
pl
eq

)n

m
(31)

Resolve (a) the vector {∆bext}m+1 representing all the terms of eqns (15-16) and
(22) related to externally applied loading and (b) terms of eqns (23) and (26) related
to externally applied loading required to perform step (ii) for the next increment.
Apart from elementary computations, the current step requires the computation of

line integrals of the form
l∫

0
Λi(r)∆pzdx,

l∫
0

Λi(r)∆mydx (i = 1,2,3,4). Since the

distributions of pz and my are usually prescribed in codes and regulations with
simple analytical relations, these integrals are evaluated analytically, demonstrating
the efficiency of the developed numerical procedure (e.g. concentrated loads may
be treated using the Dirac function, without adhering to any simplifications).

Since convergence is achieved then the foundation reaction is computed employing
a simplified Von Mises yielding criterion. The parameters are updated and the
process described by steps (i)-(vii) is repeated until the foundation convergence
criterion is achieved by using a prescribed tolerance of tol f ound = 10−10.

The increments of the external loading continue till total loading is undertaken or
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till convergence cannot be satisfied, which means that the last additional increment
cannot be undertaken (plastic collapse).

4 Numerical Examples

On the basis of the analytical and numerical procedures presented in the previous
sections, a computer program has been written and representative examples have
been studied to demonstrate the efficiency, the accuracy and the range of applica-
tions of the developed method.

4.1 Example 1

In the first numerical example a rectangular cross section (h = 0.60m, b = 0.30m)
pinned - fixed beam of length l = 6.0mresting on an elastic-plastic Winkler foun-
dation with initial stiffness kw = 20MPa and yielding force PwY = 100kN/m has
been studied (Fig.4a), employing 20 linear longitudinal elements, 400 boundary
elements, 72 quadrilateral cells (12 fibers) and a 3× 3 Gauss integration scheme
for each cell (cross sectional discretization). The beam is subjected to a cyclic
uniformly distributed loading acting at 0 ≤ x ≤ 3.0m, as presented in Fig. 4a,b.
Two material cases have been analyzed, namely an elastic-perfectly plastic with
E = 32318.4MPa, σY 0 = 20MN/m2 and Et = 0 and an elastoplastic-strain harden-
ing with Et = 650MPa.

In Figs 5, 6 the load-displacement curves at the midpoint w(l/2) of the beam are
presented for different types of material properties, as compared with a 3-D FEM
solution [NX Nastran (2007)] employing 2561 solid elements, ignoring the foun-
dation reaction. Moreover, in Table 1 the normal stress σxx distribution along the
beam’s length is presented for different load stages, as compared with the corre-
sponding deformed 3-D FEM contour representation. From this figure and table,
a very good agreement between the results is observed verifying the accuracy and
applicability of the proposed formulation.

Furthermore, the load-displacement curves at the midpoint w(l/2) of the beam
on elastic-plastic Winkler foundation for different types of material properties are
depicted in Figs 7, 8, as compared with a FEM solution [NX Nastran (2007)]
obtained by employing 2561 solid elements and 81 nonlinear springs following the
elastic-plastic law given above. Finally, in Table 2 the maximum beam deflection
wmax is presented for different load stages and material properties as compared with
those obtained from two FEM models, namely the aforementioned 3-D solid one
and a one dimensional model employing 120 beam and spring elements, observing
the convergence between the proposed formulation and the solid simulation, as well
as the inability of the FEM beam model to capture accurately the systems response.
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From these figures and table, the significant influence of the inelastic analysis to
the beam-foundation response, as well as the reliability of the proposed method are
verified.
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Figure 4: Pinned-fixed beam resting on an elastic-plastic Winkler foundation (a)
subjected to a uniformly distributed cyclic loading (b).

4.2 Example 2

For comparison reasons the special case of an I-shaped cross section (total height
h = 0.3m, total width b = 0.3m, flange width t f = 0.02m, web width tw = 0.01m)
fixed-pinned beam of length l = 8m has been studied, employing 40 linear longi-
tudinal elements, 400 boundary elements, 43 quadrilateral cells (15 fibers) and a
3× 3 Gauss integration scheme for each cell (cross sectional discretization). The
computational model implemented in the proposed formulation is presented in Fig.
9a. Two material cases have been analyzed, namely an elastic-perfectly plastic one
with E = 213.4GPa, σY 0 = 285MPa, Et = 0 and an elastoplastic-strain hardening
one with Et = 6000MPa. The beam is subjected to uniformly distributed cyclic
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Figure 5: Load – displacement curve at the midpoint of the beam of example 1, in
case of elastic-perfectly plastic material.
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Figure 6: Load – displacement curve at the midpoint of the beam of example 1, in
case of elastoplastic-strain hardening material.
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Table 1: Normal stress distribution along the beam’s length for different load stages
compared with the corresponding deformed 3-D FEM contour representation.

(a) 

(b) 
 

 

(c) 
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Figure 7: Load – displacement curve at the midpoint of the beam on elastic-plastic
Winkler foundation of example 1, in case of elastic-perfectly plastic beam material.
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Figure 8: Load – displacement curve at the midpoint of the beam on elastic-plastic
Winkler foundation of example 1, in case of elastoplastic-strain hardening beam
material.
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Table 2: Maximum deflection wmax (cm) of the beam of example 1, for different
types of beam and foundation material properties.

 

 

Elastic Winkler Foundation  

max

zp
w
 

Perfectly Plastic 0tE =  Strain Hardening 2650 /tE MN m=  

Present 
Study 

FEM [NX Nastran (2007)] Present 
Study 

FEM [NX Nastran (2007)] 

Solid Beam Solid Beam 

500 0.987 1.002 1.100 0.980 0.984 1.041 

550 1.202 1.213 - 1.158 1.170 1.252 

600 1.438 1.468 - 1.364 1.384 1.483 

Perfectly Plastic Winkler Foundation  

max

zp
w
 

Perfectly Plastic 0tE =  Strain Hardening 2650 /tE MN m=  

Present 
Study 

FEM [NX Nastran (2007)] Present 
Study 

FEM [NX Nastran (2007)] 

Solid Beam Solid Beam 

350 0.567 0.589 0.576 0.566 0.585 0.586 

400 0.767 0.780 0.758 0.756 0.769 0.811 

440 1.657 1.659 - 1.199 1.215 2.128 

Hardening ( 1.0wtk MPa= ) Winkler Foundation  

max

zp
w
 

Perfectly Plastic 0tE =  Strain Hardening 2650 /tE MN m=  

Present 
Study 

FEM [NX Nastran (2007)] Present 
Study 

FEM [NX Nastran (2007)] 

Solid Beam Solid Beam 

400 0.750 0.773 0.810 0.743 0.766 0.789 

450 1.663 1.632 - 1.254 1.285 1.938 

500 5.689 5.651 - 2.618 2.678 3.876 
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loading, as presented in Fig.10. The solution obtained from the proposed formula-
tion is compared with a FEM solution [NX Nastran (2007)] obtained employing
2881 quadrilateral shell elements (Fig. 9b).

To demonstrate the convergence of the developed numerical procedure, in Table
3 pairs of applied transverse loading and displacement values at the midpoint of
the beam are presented, for both cases of material properties, for three longitudinal
discretization schemes. The first loading level of the table corresponds to an elastic
behaviour, while the remaining ones refer to inelastic response. Moreover, in this
table the ultimate transverse load pu

z that can be undertaken by the beam (plastic
collapse load) is also presented for the aforementioned longitudinal discretization
schemes. Moreover, in Figs 11, 12 the load-displacement curves are presented
as compared with the aforedescribed FEM solution [NX Nastran (2007)], taking
into account or ignoring the material elastoplastic hardening. Excellent agreement
between the obtained results and the shell finite element model is observed, illus-
trating once again the accuracy of the proposed method.

 31

 

 

(a)

(b)
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Figure 9: Fixed pinned beam subjected to a uniformly distributed cyclic loading (a)
and shell model FEM mesh [NX Nastran (2007)] (b).
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Figure 10: Normalized cyclic excitation of example 2.

4.3 Example 3

As the final numerical example, a mono-symmetric I-shaped cross section of total
height h = 0.3m, upper/lower flange width btop

f = 0.3m/bbot
f = 0.4m, thickness t f =

0.02m, and wed thickness tw = 0.01m, clamped beam (E = 213400MPa, σY 0 =
285MPa) of length l = 7m resting on an inelastic Winkler foundation (kw = 25MPa,
PwY = 100kN/m, kwt = 2.5MPa) has been studied, employing 32 linear longitudinal
elements, 400 boundary elements, 43 quadrilateral cells (15 fibers) and a 3× 3
Gauss integration scheme for each cell (cross sectional discretization). The beam
is subjected to a cyclic concentrated load acting at x = 2.5mfrom the left support.

In Fig. 13 the load-displacement curves at the loading point are presented for differ-
ent types of beam and soil material properties in case of monotonically increasing
concentrate load, verifying the significant influence of the inelastic analysis to the
beam-foundation system response and the importance of the subgrade modeling
to the beam deflections. Moreover, in Figs 14, 15 the load-displacement curves
are presented accounting for or ignoring the beam’s and Winkler’s spring harden-
ing slope, verifying the importance of the soil nonlinearity to the system’s cyclic
response.
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Figure 11: Load – displacement curve at the midpoint of the beam of example 2, in
case of elastic-perfectly plastic material.
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Figure 12: Load – displacement curve at the midpoint of the beam of example 2, in
case of elastoplastic-strain hardening material.
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 Figure 13: Load – displacement curve at the loading point of the beam of example
3 resting on nonlinear foundation.
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Figure 14: Load – displacement curve at the loading point of the beam of example
3, in case of elastic-perfectly plastic beam material.
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Table 3: Applied load versus displacement at x = l/2 along with ultimate transverse
load pu

z undertaken by the beam of example 2, for various longitudinal discretiza-
tion schemes.

 Elastic-perfectly plastic 
material 

Elastoplastic-strain hardening 
material 

Number of 
elements 15 30 40 15 30 40 

( )kN/mzp  ( )-2
/2 10lw m×  

65 2.597 2.598 2.598 2.597 2.598 2.598 

80 3.688 3.719 3.721 3.405 3.518 3.522 

90 4.653 4.665 4.671 4.180 4.236 4.288 

95 5.020 5.150 5.164 4.598 4.674 4.682 

 ( )/u
tp kN m  

 99.8 99.8 100 - 

 

5 Concluding remarks

In this paper a BEM approach is developed for the inelastic analysis of beams
of arbitrarily shaped constant cross section having at least one axis of symmetry,
resting on tensionless inelastic foundation. The main conclusions that can be drawn
from this investigation are

1. The numerical technique presented in this investigation is well suited for
computer aided analysis of prismatic beams of arbitrary simply or multiply
connected cross section having at least one axis of symmetry, supported by
the most general boundary conditions and subjected to the action of arbitrar-
ily distributed or concentrated vertical loading.

2. The inelastic analysis and the soil nonlinearity are of paramount importance
for the cyclic response of the beam-foundation system.

3. Accurate results are obtained using a relatively small number of nodal points
across the longitudinal axis.
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Figure 15: Load – displacement curve at the loading point of the beam of example
3, in case of elastoplastic-strain hardening beam material.

4. A small number of cells (fibers) is required in order to achieve satisfactory
convergence.

5. The developed procedure retains most of the advantages of a BEM solution
even though domain discretization is required.
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