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Stokes Flow about a Slip Arbitrary-Shaped Particle

A. Sellier

Abstract: A new approach is proposed to accurately compute at a reasonable
cpu time cost the hydrodynamic net force and net torque exerted on a slip and
arbitrarily-shaped solid particle experiencing a prescribed slow rigid-body migra-
tion in a quiescent Newtonian liquid. The advocated method appeals to a boundary
formulation which makes it possible to reduce the task to the treatment of a rele-
vant regularized boundary-integral equation on the particle slipping surface. This
integral equation is numerically inverted by implementing a boundary element col-
location method. In addition to benchmark tests against analytical and numerical
results available in the literature, numerical results for volume-equivalent ellipsoids
and open torus are given and discussed.

Keywords: Slip particle, Stokes flow, Navier slip condition, Boundary-integral
equation, Boundary Element Method.

1 Introduction

Many basic applications nowdays involve flows of a Newtonian fluid (liquid or
rarefied gas in the continuum regime) with uniform viscosity µ and density ρ about
migrating solid particles. For dilute and unbounded suspensions it is possible to
restrict attention to the case of a flow with typical velocity magnitude V about a
single particle with length scale a. Sometimes it turns out that Re = ρVa/µ � 1
(i. e. negligible inertial affects) and the flow about the particle is then taken to be
a steady creeping flow governed by the linear Stokes equations, a suitable far-field
behavior and additional boundary conditions on the particle’s surface S. A large
body of literature (see, for instance, Happel and Brenner (1991); Kim and Karrila
(1991)) has been devoted to the usual case of a no-slip condition on S.

However, in some cases (rarefied gas or liquid near a solid hydrophobic or lyopho-
bic surface) the flow is allowed to flow over the particle surface and one then usu-
ally prescribes on S the so-called Navier (1823) slip condition. This slip condition,
now experimentally well supported (Churaev, Sobolev, and Somov (1994); Baudry,
Charlaix, Tonck, and Mazuyer (2001)) takes for a particle with translational veloc-
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ity U and angular velocity Ω the form given by equation (3) where the occurring
slip length λ ≥ 0 characterizes the surface ability to let the flow slip over it. Within
this framework, Basset (1961) analytically obtained the flow about a slip sphere
with radius a migrating in a quiescent liquid. He found the net hydrodynamic force
F and torque (about the sphere center) L to be given by (11) and (14), respectively.
Unfortunately, for a slip non-spherical particle there is no such analytical solution
and another treatment is required. Several works have thus proposed in the last
decade quite different approaches for axisymmetric or weakly non-axisymmetric
slip particles. One can actually distinguish two cases:

(i) The case of a nearly-spherical slip particle for which the departure of the par-
ticle’s surface from a sphere is quantified by a small positive and dimensionless
parameter ε. In that case one then asymptotically builds the solution versus ε up to
the second-order. In this direction one can cite Palaniappan (1994) and Ramkissoon
(1997) further corrected by Senchenko and Keh (2006) and also, more recently,
Chang and Keh (2009).

(ii) The case of a slip particle with axis of revolution. The first paper in this direc-
tion seemingly is Williams (1987a) which gives the force and the drag exerted on a
closed torus experiencing a translation and/or a rotation parallel with its axis of rev-
olution. The investigation uses the toroidal coordinates (see, for instance, Williams
(1987b)). The results for the torque were later numerically confirmed by Loyalka
(1996) by employing the boundary-integral equation introduced in Loyalka and
Griffin (1994) to solve the boundary-value problem satisfied by the harmonic ve-
locity component of the rotational fluid motion about a slip and axisymmetric parti-
cle rotating parallel with its axis of revolution. Note that Loyalka and Griffin (1994)
also examines both theoretically (using spheroidal coordinates; see also for details
Williams and Loyalka (1991)) and numerically (solving the previously-mentioned
boundary-integral equation) the rotation of a slip spheroid (either prolate or oblate
ones) about its axis of revolution. This case of the rotating spheroid has been also
recently treated by the asymptotic method in Chang and Keh (2009). Results for
a spheroid translating parallel with its axis of revolution have been obtained by
Keh and Huang (2004) putting so-called Sampson spherical singularities inside the
spheroid and also by Deo and Datta (1996) (for a prolate spheroid) and Keh and
Chang (2008) by building a semi-separable general solution for the stream func-
tion. Finally, the extension of Keh and Huang (2004) to the case of the translation
of a slip axisymmetric particle normal to its axis of revolution has been recently
achieved in Chang and Keh (2011) with numerical results given for a spheroid.

In summary, there is still the need to propose a new method to efficiently cope with
the case of a slip and arbitrarily-shaped particle. The aim of the present work is to
introduce such a procedure. More precisely, the paper is organized as follows. The
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governing assumptions and equations are given together with the analytical solution
for a sphere in §2. A new boundary formulation and a relevant boundary-integral
equation on the particle surface are examined in § 3. The numerical implementation
and both benchmark tests and numerical results are presented in §4. Finally, a few
concluding remarks in §5 close the paper.

2 Addressed problem and analytical solution for a slip spherical particle

This section presents the addressed problem for a solid and arbitrarily-shaped slip
particle. For further comparisons purposes, it also gives the available analytical
solution for a slip spherical particle.

2.1 Governing equations and challenging issues

As illustrated in Fig. 1, we consider a solid particle P, with smooth surface S
and center of volume O, immersed in a quiescent and unbounded Newtonian liquid
with uniform density ρ and viscosity µ.
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Figure 1: A solid slip particle P experiencing a prescribed rigid-body migration
with translational velocity U and angular velocity Ω.

For convenience we shall use Cartesian coordinates (O,x1,x2,x3) with the nota-
tions x = OM,xi = x.ei for i = 1,2,3 and r = |x|= {x2

1 + x2
2 + x2

3}1/2. With respect
to a given Laboratory frame, the particle experiences a prescribed rigid-body mi-
gration with translational velocity U (here the the velocity of its attached point O)
and angular velocity Ω. Morevover, the particle has typical length scale a and the
flow about it has pressure field p and velocity field u with typical magnitude V.
Assuming that Re = ρVa/µ � 1 (case for instance of micro-sized particles and/or
slow migration) makes it possible to neglect all inertial effects. Under this assump-
tion the flow (u, p) fulfills in the liquid domain D the steady Stokes equations (see
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Happel and Brenner (1991)) and far-field behaviour

µ∇
2u = ∇p and ∇.u = 0 in D , (1)

(u, p)→ (0,0) as |x| → ∞. (2)

One must of course supplement (1)-(2) with relevant boundary conditions on the
smooth slip particle surface S having unit normal n directed into the liquid. Usually
one requires a no-slip condition but here we deal with a slip particle: the flow (u, p),
with stress tensor σ , is allowed to slip over the surface S. This is modelized for
the present work by adopting the following widely-employed and so-called Navier
(1823) slip condition

u = U+Ω∧OM+λ{ σ .n− (n. σ .n)n}/µ on S (3)

where λ ≥ 0 designates the slip length. In practice, λ depends upon the nature of
the particle surface (think, for instance, about hydrophobic surfaces). Although one
might consider in some applications slip surfaces with a non-uniform slip length,
we assume for the present work that λ is constant over the particle surface. Note
that the usual no-slip boundary condition is retrieved for λ = 0.

For a given particle with prescribed rigid-body motion (U,Ω) and slip length λ one
obtains the flow (u, p) and the surface traction f = σ .n it exerts on the slip particle
surface by solving (1)-(3). As a result, it is subsequently possible to evaluate the
net hydrodynamic force F and torque L (about the attached point O) experienced
by the moving particle and given by

F =
∫

S
σ .ndS, L =

∫
S

x∧ σ .ndS. (4)

By linearity of the problem (1)-(3), these quantities depend upon the rigid-body
motion (U,Ω) in the following manner

F =−µ{A.U+B.Ω}, L =−µ{C.U+D.Ω} (5)

where A,B,C and D are second-rank resistance tensors which depend upon the
particle geometry and slip length λ . Whatever the particle’s surface shape and slip
length it is possible to establish that both tensors A and D are symmetric whereas
tensors C and B are transposed (the proof, let to the reader, appeals to the reciprocal
identity). As a consequence, one can reduce the determination of the above tensors
Cartesian components to the computation of at the most 21 coefficients.

As mentioned in the introduction, getting the flow (u, p), the surface traction f and
the vectors F and L for arbitrary particle shape, slip length λ and rigid-body motion
(U,Ω) is a very challenging issue which has, to the author’s very best knowledge,
not yet received a general treatment.
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2.2 Analytical solution for a slip spherical particle

When the flow is not allowed to slip over the particle surface (λ = 0) one ends
up with the widely-investigated (see, among other references, Happel and Brenner
(1991); Kim and Karrila (1991)) problem of the Stokes flow about a migrating solid
particle with the usual no-slip condition u = U+Ω∧OM on the particle surface. In
that case it is possible to analytically solve Jeffery (1922); Lamb (1932) the problem
for a translating and/or rotating ellipsoidal particle with arbitrary semi-axis (i. e.
not only for spheroids). Amazingly, no such analytical solutions are available for
a slip ellipsoid or even a slip spheroid. Actually, for λ > 0 analytical results have
only been obtained for a slip spherical particle with center O and radius a. Since
useful when benchmarking the boundary approach proposed in the present paper,
those results are briefly given below by successively distinguishing (by linearty)
two cases:

(i) The translating sphere. When the sphere translates, without rotating, at the
velocity U the Stokes flow (u, p) about the particle is obtained by superposing a
Stokeslet and a potentiel dipole located at the sphere center and having unknown
strength s and e, respectively. Hence,

u =
s
r
+

(s.x)x
r3 +3

(e.x)x
r5 − e

r3 for r = |x|> a, (6)

p = 2µ(
s.x
r3 ) for r = |x|> a. (7)

Of course (see, for instance, Kim and Karrila (1991); Pozrikidis (1992)) both (1)
and (2) are satisfied whatever (s,e). Imposing the Navier boundary condition (3)
further easily yields

a3s−ae = a4U+6λe, a3s+3ae =−6λe. (8)

As a consequence,

s =
3a(1+2λ/a)U

4(1+3λ/a)
, e =− a3U

4(1+3λ/a)
. (9)

Accordingly, the surface traction f = σ .n, the net force F and the net torque L
exerted on the translating slip sphere read

f =− 3µa3

2(1+3λ/a)

{
U+6λ

(U.x)x
a3

}
, (10)

F =−6πµa[
1+2λ/a
1+3λ/a

]U, L = 0. (11)
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(ii) The rotating sphere. When the sphere rotates, without translating, at the velocity
Ω one gets the flow by placing this time at the sphere center a rotlet with unknown
strength γ. In other words,

u =
γ ∧x

r3 and p = 0 for r = |x|> a. (12)

The flow (u, p) given by (12) fulfills (1)-(2). Exploiting the Navier boundary con-
dition (3) gives

γ =
a3Ω

1+3λ/a
. (13)

Therefore, the resulting surface force f = σ .n, net force F and net torque L are

f =− 3µ[Ω∧x]
a(1+3λ/a)

, F = 0, L =− 8πµa3Ω

1+3λ/a
. (14)

3 Advocated boundary approach

For a non-spherical slip particle a numerical treatment is needed to accurately solve
the problem (1)-(3). This is achieved by implementing a suitable boundary ap-
proach presented in this key section.

3.1 Key velocity integral representation

For convenience, we adopt henceforth the usual tensor summation convention with,
for instance, x = xiei and n = niei. As shown by (1)-(2), the velocity field u about
the particle is a steady creeping flow field vanishing far from the particle. Conse-
quently (see Pozrikidis (1992)), the vector u admits in the entire liquid domain D
the following key integral representation

u(x).e j =− 1
8π

∫
S

{
[
ei. σ .n

µ
](y)Gi j(y,x)

−[u(y).ei]Ti jk(y,x)nk(y)
}

dS(y) for x in D (15)

with, denoting by δ the Kronecker delta symbol, the definitions

Gi j(x,y) =
δi j

|x−y|
+

[(y−x).ei][(y−x).e j]
|x−y|3

, (16)

Ti jk(y,x) =−
6[(y−x).ei][(y−x).e j][(y−x).ek]

|x−y|5
. (17)
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Note that Gi j and Ti jk are actually the Cartesian components of the free-space
second-rank Oseen-Burgers Green tensor G and associated third-rank stress tensor
T. The identity (15) shows that when computing the velocity u about the particle
it is actually sufficient to know two vectors on the particle surface: the velocity u
and the surface traction f = σ .n. In getting these quantities it is necessary to let the
point x in (15) tend onto the surface S. This is adequately achieved by appealing to
the key identity∫

S
Ti jk(y,x)nk(y)dS(y) = 0 for x in D . (18)

Setting u = u je j and combining (15) with (18) one then arrives at the equivalent
and fruitful velocity integral representation

8πu j(x) =
∫

S
[ui(y)−ui(x)]Ti jk(y,x)nk(y)dS(y)

− 1
µ

∫
S
[ei. σ .n](y)Gi j(y,x)dS(y) for x in D . (19)

3.2 Relevant boundary-integral equation

By virtue of the Navier boundary condition (3), it turns out that it is sufficient in
gaining both the velocity u and the traction f = σ .n on the surface S to introduce
the unknown quantity d and vector d tangent to S such that

d = n. σ .n/µ, d = [ σ .n− (n. σ .n)n]/µ = diei. (20)

Note that by definition d.n = 0. Inspecting the definitions (16)-(17) furthermore
shows that (19) also holds for x on the particle surface S! Injecting the Navier
boundary condition (3) in (19) and letting x tend onto the surface S then immedi-
ately provides the following problem for the unknown surface quantities (d,d)

Li[d,d] = [U+Ω∧OM].ei for x on S(i = 1,2,3), (21)

d.n = 0 for x on S (22)

where the coupled and regularized Fredholm boundary-integral equations of the
second kind (21) have linear operators Li defined by the identity

8πLi[d,d] =−8πλdi(x)−
∫

S
Gki(y,x)dk(y)dS(y)

−
∫

S
Gki(y,x)nk(y)d(y)dS(y)

+λ

∫
S
[dk(y)−dk(x)]Tkil(y,x)nl(y)dS(y). (23)
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Of course, for λ = 0 the definitions (20) and the problem (21)-(22) reduce to the
well-known boundary-integral equation

− 1
8πµ

∫
S

Gki(y,x)[f.ek](y)dS(y)

= [U+Ω∧OM].ei for x on S (24)

which governs (see Pozrikidis (1992)) the surface traction f exerted on the boundary
of a no-slip particle experiencing the rigid-body motion (U,Ω).
In summary, for a slip particle one has to invert boundary-integral equations (21)
in conjunction with the property d.n = 0 (recalled by (22)). Once this is done, the
knowledge of (d,d) permits one to get on the particle surface not only both vectors
f = µ(dn+d) and u (and therefore also the resulting net force F and net torque L
experienced by the migrating particle) but also, whenever needed, the velocity field
u at any arbitrary point in the liquid domain D by either appealing to the integral
representation (15) or (19). In getting the resistance tensors A,B = tC and D one
has to solve six times (21)-(22) successively for (U,Ω) = (ei,0) and (U,Ω) = (0,ei)
(with i = 1,2,3).

4 Numerical implementation and results

This section briefly presents the implemented boundary element technique em-
ployed to numerically invert the problem (21)-(22). It also benchmarks the method
against analytical results for a sphere and numerical results obtained elsewhere for
spheroids. Finally, it reports numerical results for a few non-axisymmetric and
orthotropic particles.

4.1 Numerical strategy

Each boundary-integral equation (21) is numerically discretized and inverted by
employing boundary elements and a collocation point method (see C. A. Brebbia
and Wrobel (1984); Beskos (1998); Bonnet (1999)). More precisely, we appeal on
the particle surface S to a N−node mesh consisting, for a sake of accuracy, of 6-
node curvilinear and triangular boundary elements (as in Sellier and Pasol (2006);
Sellier (2007, 2008)). At each nodal point it is possible to introduce from the
knowledge (exact or computed value) of the unit outward normal n two additional
unit vectors t1 and t2 tangent to the particule surface S and obeying the property
t1.t2 = 0. From its definition (20) the vector d is tangent to the particle surface S and
therefore writes d = dt

1t1 +dt
2t2. Hence, at each nodal point one ends up with three

unknown quantities in solving (21)-(22): the normal component d and the tangen-
tial components dt

1 and dt
2 of the vector f/µ. For a given N−node mesh we thus
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have 3N unknown values (d,dt
1,d

t
2). Those quantities satisfy a 3N-equation linear

system obtained by discretizing the coupled boundary-integral equations (21) and
using the relation dk = dt

1t1.ek + dt
2t2.ek for each encountered Cartesian compo-

nent dk. In summary, once discretized the problem (21)-(22) yields a linear sys-
tem AX = Y with 3N×3N, non-symmetric and fully-populated so-called influence
square matrix A. Accurately computing the entries of the dense matrix A is a key
and challenging task. The employed procedure makes use of local polar coordi-
nates to remove on a boundary element the weakly-singular contributions encoun-
tered when the nodal point at which (21) is numerically enforced belongs to this
element. For further details regarding this issue the reader is directed to Sellier
(2011). Finally, the system AX = Y is solved by Gaussian elimination.

4.2 Numerical comparisons and results for orthotropic slip particles

Although the proposed method holds whatever the particle smooth shape, we hence-
forth present numerical comparisons and results for orthotropic slip particles. By
definition a particle is orthotropic when it has three normal planes of symmetry
intersecting at its center of volume O. Here we select our Cartesian coordinates
(O,x1,x2,x3) such that the orthotropic particle’s planes of symmetry are normal
to the vectors e1,e2 and e3. Under these choices, symmetry considerations easily
show that, for a slip orthotropic particle with length scale a, the exerted net hydro-
dynamic force F and torque L about the center of volume O satisfy (remind (4) and
(5))

F =−6πµa fiU and L = 0 for U∧ ei = Ω = 0, (25)

L =−8πµa3ciΩ and F = 0 for Ω∧ ei = U = 0 (26)

where the occurring (dimensionless) force friction coefficients f1, f2, f3 and torque
friction coefficient c1,c2 and c3 depend upon the particle geometry and normal-
ized slip length λ/a ≥ 0. Comparing (25)-(26) with (5) thus shows that for a slip
orthotropic particle both transposed resistance coupling tensors C and D vanish
whereas the resistance tensors A and D are diagonal with Cartesian components
Ai j and Di j given by the relations

Ai j = 6πaδi j fi, Di j = 8πa3
δi jci. (27)

4.2.1 Numerical comparisons for slip spherical or spheroidal particles

As mentioned in the introduction, the previous friction coefficients have been either
analytically of numerically obtained in the literature for spherical and spheroidal
slip particles. For a sphere with radius a inspecting (11) and (14) gives f1 = f2 =
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Table 1: Computed friction coefficients f1 = f2 = f3 and c1 = c2 = c3 for a slip
sphere with radius a versus the number N of nodal points and for λ/a = 0.5,2.

λ/a N = 74 N = 242 N = 1058 analytical
fi 0.5 0.80287 0.80018 0.80001 0.8
ci 0.5 0.39817 0.39988 0.39999 0.4
fi 2 0.72045 0.71483 0.71433 0.71429
ci 2 0.14188 0.14278 0.14285 0.14286

f3 = csphere and c1 = c2 = c3 = csphere with fsphere = (1+2λ/a)csphere and csphere =
(1+3λ/a)−1.

As seen in Table 1, our numerical computations nicely retrieve those analytical
results as the number N of nodal points spread on the sphere boundary increases.

Additional comparisons for the force and torque friction coefficients fi and ci have
been achieved for slip spheroids. More precisely, we select a spheroidal particle
with center O and surface S having the equation (x1/a)2 +(x2/a)2 +(x3/b)2 = 1.
Comparisons for the force friction coefficients f1 = f2 and f3 against the results
obtained in Keh and Chang (2008) and in Chang and Keh (2011) by quite different
approaches are reported in Table 2 both for prolate (b/a = 2) and oblate (b/a = 0.5)
spheroids and normalized slip length λ/a = 0.5,2. Clearly, the computed values of
f1 and f3 perfectly agree with the ones obtained in previous works.

In a similar fashion, comparisons for the torque friction coefficients c1 = c2 and
c3 are displayed in Table 3. One should note that the results reported in Chang
and Keh (2009) are not exact since obtained by considering the spheroid as a small
perturbation of a spherical shape. Actually, both results obtained by retaining the
first-order and the second-order approximations are given in Chang and Keh (2009)
and we only report in our Table 3 the ones predicted by the second-order approxi-
mation. As seen in Table 3, our results are in very good agreement both with Chang
and Keh (2009) and Loyalka and Griffin (1994) for the torque friction coefficient
c3. By contrast, small differences are found for the coefficient c1. We believe the
results given for c1 in Chang and Keh (2009) to be not accurate enough because the
values found for the coefficient c1 (but not for the coefficient c3) in Chang and Keh
(2009) by the first-order and the second-order approximations are slightly differ-
ent. This reveals a slow convergence of the employed asymptotic procedure for the
evaluation of c1 and clearly suggests that higher-order approximations are needed
in calculating such a coefficient.
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4.2.2 Numerical results for slip ellipsoids and an open torus

This section illustrates the sensitivity of the friction coefficients fi and ci to the
shape of a slip particle by comparing these coefficients for several volume equiva-
lent slip orthotropic particles: a sphere with radius a, an open torus and two non-
spheroidal ellipsoids.

The selected open torus has axis of revolution (O,e3), circular cross-section with
radius R and hole radius R. Since its volume 4π2R3 is the same as the sphere volume
4πa3/3 one gets R = a(3π)−1/3 ∼ 0.4734a. Because the torus is axisymmetric
f1 = f2 and c1 = c2. Convergence of the computed friction coefficients f1, f3,c1 and
c3 versus the number N of nodal points spread on the torus boundary is examined
in Table 4 for λ/a = 0,2.5,5. For comparisons, the results obtained for the no-slip
(λ = 0) torus in Majumdar and O’Neill (1977) and Goren and O’Neill (1980) are
also reported in Table 4 caption.

It turns out that putting 1152 nodal points on the torus boundary permits one
to accurately compute the torus friction coefficient in the entire range λ/a ≤ 5.
In order to illustrate the ability of the procedure to cope with non-axisymmetric
slip particles we also consider slip ellipsoids with surface admitting the equation
(x1/a)2 + β 2(x2/a)2 +(x3/βa)2 = 1, where for symmetry reasons, it is sufficient
to confine attention to β > 1 (one has to switch the values of f2 and f3 and the
values of c2 and c3 when β > 0 is replaced with 1/β ). Here we report results for
β = 3/2,2. Computed values of the friction coefficients are displayed versus the

Table 2: Computed force friction coefficients f1 = f2 and f3 for a spheroidal parti-
cle with λ/a = 0.1,1 using N1,N2 or N3 collocation points on the particle surface.
Here N1 = 74,N2 = 242 and N3 = 1058 for the oblate spheroid (b/a = 0.5) and
N1 = 170,N2 = 530 and N3 = 2210 for the prolate spheroid (b/a = 2). The last
column in the Table indicates the value obtained in the literature by Keh and Chang
(2008) or Chang and Keh (2011).

λ/a b/a N1 N2 N3 literature
f1 0.1 0.5 0.7131 0.7144 0.7143 0.7142
f3 0.1 0.5 0.8479 0.8453 0.8448 0.8448
f1 1 0.5 0.5444 0.5416 0.5403 0.5402
f3 1 0.5 0.7748 0.7704 0.7696 0.7696
f1 0.1 2 1.3003 1.2994 1.2994 1.2994
f3 0.1 2 1.1153 1.1162 1.1163 1.1163
f1 1 2 1.1254 1.1234 1.1233 1.1233
f3 1 2 0.8159 0.8142 0.8141 0.8141
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Table 3: Computed torque friction coefficients c1 = c2 and c3 for a spheroidal
particle using N1,N2 or N3 collocation points on the particle surface. Again, N1 =
74,N2 = 242 and N3 = 1058 for the oblate spheroid (b/a = 0.5) and N1 = 170,N2 =
530 and N3 = 2210 for the prolate spheroid (b/a = 2). The last column in the Table
indicates the value obtained in the literature by Chang and Keh (2009) and for the
last two lines by Loyalka and Griffin (1994).

λ/a b/a N1 N2 N3 literature
c1 0.1 0.5 0.4412 0.4364 0.4357 0.4423
c3 0.1 0.5 0.5254 0.5235 0.5233 0.5231
c1 1 0.5 0.2350 0.2285 0.2276 0.2353
c3 1 0.5 0.1596 0.1595 0.1595 0.1584
c1 0.1 2 2.5278 2.5278 2.5279 2.4436
c3 0.1 2 1.2750 1.2742 1.2741 1.2757
c1 1 2 1.3803 1.3785 1.3784 1.3161
c3 1 2 0.4422 0.4426 0.4426 0.4460
c3 0.05 0.5 0.6029 0.6005 0.6003 0.6004
c3 0.2 2 1.0538 1.0535 1.0535 1.0535

number of nodal points in Table 5 again for λ/a = 0,2.5,5.

Clearly, taking this time 434 or 530 nodes on the ellipsoid surface is quite sufficient
to obtain very accurate results for β = 3/2 or β = 2, respectively. Henceforth, we
put for computations N = 1152 nodes on the torus, N = 1634 nodes on the β = 3/2
ellipsoid and N = 2210 nodes on the β = 2 ellipsoid. The sensitivity of each force
friction fi coefficient to the particle shape is then illustrated in Fig. 2-4.

Not surprisingly, each force friction coefficient is seen to decay as the slip length
increases because the flow slips more on the particle surface. The coefficient fi

strongly depends upon both the particle’s direction of translation (value of i) and
the particle’s shape (sphere, open torus or ellipsoid). For f1 and f2 there is a clear
hierarchy (i. e. no crossing curves in Fig 2 and Fig 3) which however is not the same
for f1 and f2 (curves for the open torus and the β = 3/2 ellipsoid switch ranks).
In contrast, curves for the two ellipsoids intersect for f3 (see Fig. 4) at λ/a∼ 0.5.
When subject to a gravity field g = gei (i. e. aligned with the direction ei) each
particle settles parallel with ei with, for particles having the same uniform density
ρs, velocity ( fsphere/ fi)Usphere where fsphere is the friction coefficient for the sphere
and Usphere = 2a2(ρs−ρ)g/(9µ fsphere). For instance, Fig. 2 and Fig. 3 reveal that
the slip sphere settles faster in the e1 and e2 directions than the volume-equivalent
slip open torus or the considered ellipsoids (all having the same slip length as the
sphere).
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Figure 2: Force friction coefficients f1 versus s = λ/a for a slip sphere (dashed
line), a slip open torus (solid line), a slip ellipsoid with β = 3/2(◦ symbols) and a
slip ellipsoid with β = 2(• symbols).
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Figure 3: Force friction coefficients f2 versus s = λ/a for a slip sphere (dashed
line), a slip open torus (solid line), a slip ellipsoid with β = 3/2(◦ symbols) and a
slip ellipsoid with β = 2(• symbols).
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Figure 4: Force friction coefficients f3 versus s = λ/a for a slip sphere (dashed
line), a slip open torus (solid line), a slip ellipsoid with β = 3/2(◦ symbols) and a
slip ellipsoid with β = 2(• symbols).
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Figure 5: Torque friction coefficients c1 versus s = λ/a for a slip sphere (dashed
line), a slip open torus (solid line), a slip ellipsoid with β = 3/2(◦ symbols) and a
slip ellipsoid with β = 2(• symbols).
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Figure 6: Torque friction coefficients c2 versus s = λ/a for a slip sphere (dashed
line), a slip open torus (solid line), a slip ellipsoid with β = 3/2(◦ symbols) and a
slip ellipsoid with β = 2(• symbols).
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Figure 7: Torque friction coefficients c3 versus s = λ/a for a slip sphere (dashed
line), a slip open torus (solid line), a slip ellipsoid with β = 3/2(◦ symbols) and a
slip ellipsoid with β = 2(• symbols).
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Table 4: Computed torque friction coefficients f1 = f2, f3,c1 = c2 and c3 for a slip
open torus for λ/a = 0,2.5,5 putting N1 = 288,N2 = 1152 or N3 = 4608 collocation
points on the torus surface. For λ = 0 the results given in Majumdar and O’Neill
(1977) and Goren and O’Neill (1980) are f1 = f2 = 1,0983, f3 = 1,2884,c1 = c2 =
1,6014 and c3 = 2,0277.

λ/a N1 N2 N3
f1 0 1.0976 1.0984 1.0983
f3 0 1.2886 1.2885 1.2884
c1 0 1.6037 1.6016 1.6015
c3 0 2.0279 2.0277 2.0278
f1 2.5 0.7805 0.7732 0.7726
f3 2.5 1.0990 1.0965 1.0963
c1 2.5 0.8071 0.8048 0.8046
c3 2.5 0.2928 0.2933 0.2934
f1 5 0.7587 0.7505 0.7498
f3 5 1.0918 1.0892 1.0890
c1 5 0.7722 0.7697 0.7694
c3 5 0.1586 0.1589 0.1589

In a similar fashion, attention is paid to the torque friction coefficients fi in Fig. 5-
7. These coefficients decay as λ increases and the larger decay rate is obtained for
the slip sphere whatever the addressed coefficient ci. Clearly, the particles hierarchy
strongly depends upon the direction of rotation (selected value of i) for s = λ/a≤ 5.
This time two of the retained volume-equivalent slip particles admit the same torque
friction coefficient c2 or c3 for specific values of the normalized slip λ/a.

5 Conclusions

A new boundary approach has been proposed to accurately compute the surface
traction and resulting net hydrodynamic force and torque exerted on a solid and
arbitrarily-shaped slip particle experiencing a prescribed rigid-body motion in a
quiescent Newtonian liquid. The procedure assumes that the flow about the particle
is a creeping flow which satisfies on the particle surface the Navier slip condition
and requires in general to solve six boundary-integral equations (on the particle
boundary) associated with the degrees of freedom of the particle’s rigid-body mo-
tion). Such a task is achieved in the present paper by implementing a boundary
element technique which yields very accurate results as demonstrated by convinc-
ing comparisons against analytical results for a slip sphere and numerical results
obtained for slip spheroidal particles by previous authors using quite different meth-
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Table 5: Computed torque friction coefficients fi and ci for a slip ellipsoid and
λ/a = 0,2.5,5 using N1 = 122,N2 = 434 or N3 = 1634 collocation points for β =
3/2 and N1 = 170,N2 = 530 or N3 = 2210 collocation points β = 2.

λ/a β N1 N2 N3
f1 0 3/2 1.0478 1.0473 1.0473
f2 0 3/2 1.1319 1.1310 1.1310
f3 0 3/2 0.9658 0.9667 0.9667
c1 0 3/2 1.3972 1.3978 1.3980
c2 0 3/2 1.4711 1.4704 1.4704
c3 0 3/2 0.9005 0.8978 0.8976
f1 2.5 3/2 0.7456 0.7420 0.7421
f2 2.5 3/2 0.9349 0.9318 0.9319
f3 2.5 3/2 0.5648 0.5594 0.5591
c1 2.5 3/2 0.5533 0.5509 0.5510
c2 2.5 3/2 0.2999 0.2994 0.2993
c3 2.5 3/2 0.1847 0.1797 0.1795
f1 5 3/2 0.7268 0.7233 0.7226
f2 5 3/2 0.9265 0.9234 0.9235
f3 5 3/2 0.5296 0.5230 0.5226
c1 5 3/2 0.5045 0.5019 0.5020
c2 5 3/2 0.2234 0.2227 0.2225
c3 5 3/2 0.1437 0.1387 0.1385
f1 0 2 1.1388 1.1401 1.1400
f2 0 2 1.2887 1.2874 1.2875
f3 0 2 0.9982 0.9992 0.9993
c1 0 2 2.3587 2.3598 2.3606
c2 0 2 2.2701 2.2702 2.2701
c3 0 2 0.9612 0.9572 0.9568
f1 2.5 2 0.8087 0.8133 0.8123
f2 2.5 2 1.1470 1.1415 1.1416
f3 2.5 2 0.5053 0.5019 0.5016
c1 2.5 2 1.5698 1.5577 1.5588
c2 2.5 2 0.7168 0.7201 0.7194
c3 2.5 2 0.3470 0.3301 0.3294
f1 5 2 0.7877 0.7918 0.7906
f2 5 2 1.1424 1.1367 1.1368
f3 5 2 0.4513 0.4466 0.4461
c1 5 2 1.5298 1.5175 1.5186
c2 5 2 0.6162 0.6194 0.6186
c3 5 2 0.3138 0.2968 0.2961
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ods. New numerical results given for volume equivalent torus and non-spheroidal
ellipsoids highlight the sensibility of a particle friction coefficients to the particle
slip length and geometry.

For some basic applications the slip particle is subject to a prescribed ambient and
arbitrary (for intance, not uniform) Stokes flow. Determining the resulting particle
rigid-body migration is then a key but difficult task. For a slip sphere (λ > 0) it has
been fortunately possible in Keh and Chen (1996) to analytically get the sphere’s
translational and angular velocities by nicely extending the famous relations estab-
lished by Faxen (1922-1923) when there is no slip (λ = 0) over the sphere surface.
However, no analogous results are currently available for non-spherical slip par-
ticles although the migration of a slip particle in a given ambient flow is clearly
expected to depend upon the particle shape. Investigations regarding this challeng-
ing issue require additional efforts and are therefore postponed to another work.
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