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Optimal Shape of Fibers in Transmission Problem

P.P. Prochazka1 and M.J. Valek1

Abstract: In classical theories of homogenization and localization of composites
the effect of shape of inclusions is not taken into account. This is probably done
because of very small fibers in classical composites based on epoxy matrix. Apply-
ing more precise theoretical and numerical tools appears that the classical theories
desire corrections in this direction. Today many types of materials their fiber are
much bigger and with various material properties are used and behave as typical
composites. They enable producers to create the fiber cross-sections and model
them in various shapes, so that it is meaningful to carry out the optimization. In the
paper optimal shape of fibers is sought to admit as small amount of heat energy to
pass through a composite as the constituents allow.
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1 Introduction

In the paper optimal shape of fibers is identified in a symmetric unit cell, which
is positioned in a composite structure. Harmonic problem is to be solved with a
typical application to linear conductivity or transmission problem. The coefficients
of conductivity are given in advance as uniformly distributed in the phases with
different values in the fiber and the matrix. Hence, the design parameters are linked
by the shape of fiber, which is assumed as star-shaped to be in compliance with
a reasonable formulation of the problem. Since a moving boundary problem is
basically discussed, boundary element method appears to be the most appropriate
in this application. Since the problem desires a constraint in order to be unisolvent,
necessary conditions have to be imposed. First, a reasonable condition is the choice
of the volume (in 2D the area) of fiber. On the other hand it appears that in certain
cases of the fiber volume fraction (the given area) still the problem can lead to a
nonrealistic result. This is why additional constraints have to be added. This occurs
as the prescribed measure of the fiber is calculated in an integral form, i.e. positive
and negative signs of areas may cause a nonrealistic geometry. For that, limits on
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the shape characteristics should be added, such as the diameters or tangential slope
of certain directions of the interfacial fiber-matrix boundary. Then the mathematical
formulation and subsequent numerical treatment provide a reasonable, fully usable
in practice, layouts.

Optimization of coupled elasticity and conductivity problem is solved in Challis et
al (2008) for maximized stiffness and conductivity. Hereinafter similar procedure
as that used in Prochazka et al (2009) is applied for formulating and calculating
the proper shape of fibers.

Classical approach in localization and homogenization of elastic composites be-
longs to Suquet (1985), and that of steady state heat transfer can be found in Lévy
(1985). In both latter publications a periodic structure of composites is preferred
from other possible boundary conditions along the unit cell. The meaning “peri-
odic structure” is explained for periodic representative element. Such a procedure
is applied in this paper to unit cell concept. The optimization of the shape of fiber in
a composite structure due to a heat load is discussed in Dvorak (1996), where the
problem of a variance between given overall properties and that calculated from the
given material properties of phases is as small as possible. Fiber shape optimization
in linear elasticity is presented in Prochazka (2012a) based on boundary element
method. A comprehensive review of optimization methods in structures is brought
forward in Akad et al (2012) with large extent of references on the topic. In Proc-
hazka (2012b) a special material is optimized namely a composite with a hole. The
hole has various volume ratios and the shapes of the hole are compared and their
impact evaluated. Paper Zhoua and Lia (2008) is concern with the similar problem
as that studied in this work, but the methodology differs. Finally, Allaire issued
a book on optimization based on homogenization, which covers both the topolog-
ical and moving boundary approaches and serve till today as one of establishing
theories of optimization using homogenization.

In this text the steady state problem is studied. It involves heat and mass density
transfer, filtration of the Newtonian liquid, etc. First, homogenization technique
will be suggested and a variational formulation will characterize the optimization
problem, so that the formulation in terms of boundary elements can easily be de-
rived. The selected cost functional will provide designers with a range of possible
conditions according to their request.

2 Basic considerations and equations

In this paper transmission or steady state heat transfer in composite structure is to be
treated. Unidirectional parallel filaments perpendicular to the cross-section of the
composite are assumed, i.e. two-dimensional problem is presumed. In the cross-
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section two-phase composite is taken into account with one phase denoted as fiber
and the other as matrix, both positioned in a periodic unit cell, which is cut out of a
representative volume element V (denoted as RVE) describing the neighborhood of
a typical point of a macrostructure.

Let the domain representing the composite body is denoted as Ω ⊂ V ∈ R2 and its
boundary ∂Ω is supposed to be Lipschitz continuous. Isotropic phases Ωf ⊂Ω and
Ωm ⊂Ω represent the fiber and the matrix, respectively. The boundary of the fiber
(i.e. the interfacial boundary ΓC) is in any case bounding the fiber in such a way
that it is star shaped, i.e. there is a point (pole, in our case the center of the unit cell)
and to each point inside of the fiber there is an abscissa connecting the pole and the
current point which is completely imbedded in the fiber. Fig. 1 offers a layout
used in what follows. Note that more general shapes are mentioned in Dvorak
(1996), where a special treatment on how to simplify complicated unit cells is also
discussed based on body transformations creating a group of base bodies.

In RVE coordinate system 0x1x2 is introduced while the unit cells are equipped by
local coordinate system 0y1y2, since 2D problem is discussed.

 
 

Figure 1: Geometries of RVE and unit cell

Now the periodic conditions will be précised. The unit cells in the RVE are homo-
thetic, i.e. there is a constant, say `, and to any point P ∈ V is always P′, which is
identified by the law: P′(x) = P(x+`) = `PP′, and the function to be considered as
periodic has exactly the same value at and P′. In our case a square unit cell is taken
into account. Hence the homothetic property is applicable in both x1 and x2 direc-
tions. Denote the macroscopic length of RVE. The periodicity can also be defined
in the following way: take a small number ε = `/L, and consequently, Ω = εV .

The conservation law is assumed in the standard divergence form applied to tem-
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perature uε(x) for arbitrary ε as,

∂

∂xi
(cε(x)

∂

∂xi
uε(x)) = 0, i = 1,2 (1)

where cε ≡ cε(x) = c(x/ε) = c(y) is dependent on the position in Ω. The fiber Ωf,
and matrix Ωm are equipped with generally different conductivities cf (fiber) and
cm (matrix), where cf and cm are uniformly distributed inside of the appropriate
phases. This means that the coefficient of conductivity c(y) is defined as:

c(y) = cf for y ∈Ωf and c(y) = cm otherwise (2)

The partial equations are written as

∇qε(x) = 0, qε(x) = cε(x)∇uε(x) (3)

where ∇ is the nabla operator with respect to x, and qε is the flux vector, gradient
of weighted uε .

For statistically isotropic material with the periodic boundary conditions an analog
of the well known Hill’s condition in elasticity holds valid as:

〈qε∇uε〉= 1
meas Ω

∫
Ω

qε∇uε dΩ(y) = 〈qε〉〈∇uε〉=

= 1
meas Ω

∫
Ω

qε dΩ(y)× 1
meas Ω

∫
Ω

∇uε dΩ(y)
(4)

where meas Ω is the volume in 3D or area in 2D, mostly considered equal to unit.

3 Homogenization

In order to get relations between local and overall properties of the composite an
asymptotic expansion of uε and qε are considered for each ε:

uε(x) = u0(x,y)+ ε u1(x,y)+ ...
qε(x) = q0(x,y)+ ε q1(x,y)+ ...

y = x/ε, (5)

where ui and qi are Ω−periodic in x. In what follows coordinates x and y are first
taken as independent and afterwards y is substituted by x/ε . If the differentiation of
the first order is applied to Eq. (1), the operator ∂

∂xi
is read as ∂

∂xi
+ 1

ε

∂

∂yi
. Substitut-

ing Eq. (5) to Eq. (1) and considering the previous replacement in differentiation
yields:(

∂

∂xi
+

1
ε

∂

∂yi

) [
cε

(
∂

∂xi
+

1
ε

∂

∂yi

)
uε

]
= 0 (6)
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and doing the latter binomials and product leaves:[
∂

∂xi

(
cε ∂

∂xi

)
+ 1

ε

∂

∂yi

(
cε ∂

∂xi

)
+ 1

ε

∂

∂xi

(
cε ∂

∂yi

)
+ 1

ε2
∂

∂yi

(
cε ∂

∂yi

)]
×

× (u0(x,y)+ ε u1(x,y)+ ...) = 0
(7)

which at O(ε−2) produces the condition:

∂

∂yi
(c

∂

∂yi
u0) = 0⇒ u0(x,y) = u0(x) (8)

where cε ≡ cε(x) = c(x/ε) = c(y) is dependent on the position in Ω and u0(x) is
independent of y, i.e. it is a parameter to be stated later on. From Eq. (5) at 0(ε−1)
one gets:

q0
i (x,y) = c(y)

(
∂u0

∂xi
+

∂u1

∂yi

)
, . . . (9)

and Eq. (7) becomes:

∂

∂yi

[
c(y)

(
∂u1

∂yi
+

∂u0

∂xi

)]
= 0 (10)

in the sense of distributions. In order to avoid the term ∂u0

∂xi
for the differential

equation (10) to be written only in yi a substitution is introduced:

u1 =
∂u0

∂xk
wk(y)+ ũ1(x)⇒ ∂

∂yi

[
c(y)

∂wk

∂yi

]
=− ∂

∂yi
[c(y)δik] (11)

Eq. (11) is the starting equation for solving u1 depending on wk known from the
calculation approach. It appears that there is a unique solution u1 of Eq. (10) for
u0 given but an additional term, which can be disregarded, Haslinger and Dvorak
(1995), Lévy (1985) and the same property possesses wk. This is an elliptic equa-
tion being defined in Ω. Closer look at (11) shows that the left hand side is regular
and the right hand side is incorrect from the point of view of classical theory. Since
similarly to elastic problem the Laplace equation (1) is linear, the approach to eval-
uation of the right hand side can be developed to decode the generalized terms.
Multiply both sides by a smooth enough function φ , which is not identically equal
to zero (test function) and integrate over Ω to get:∫
Ω

∂

∂yi

[
c(y)

∂wk

∂yi

]
φ dΩ =−

∫
Ω

∂c(y)
∂yk

φ dΩ (12)
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As mentioned previously the left hand side is “well-defined”, if u1 and wk ∈H1(Ω)
and are Ω-periodic. The right hand side, on the contrary, has to be studied more
attentively. Using the second Green’s theorem it successively holds:

−
∫
Ω

∂c(y)
∂yk

φ dΩ =−
∫

∂Ωf

c(y) φ nf
kd(∂Ωf)−

∫
∂Ωm

c(y) φ nm
k d(∂Ωm)+

+cf
∫
Ωf

∂φ

∂yk
dΩf + cm

∫
Ωm

∂φ

∂yk
dΩm

(13)

where nf = {nf
1,nf

2} is the outward unit normal to Ωf and nm = {nm
1 ,nm

2 } is the
outward unit normal to Ωm.

On the other hand ∂Ωf = ΓC and ∂Ωm = ∂Ω∪ΓC, as seen in Fig. 1. Hence, Eq.
(13) may be recorded as,

−
∫
Ω

∂c(y)
∂yk

φ dΩ =−
∫

ΓC

cf φ nf
k dΓC−

∫
ΓC

cm φ nm
k dΓC−

−
∫

∂Ω

c(y) φ nk d(∂Ω)+
∫
Ωf

c(y) ∂φ

∂yk
dΩf +

∫
Ωm

c(y) ∂φ

∂yk
dΩm

(14)

It is worth noting that since obviously nf=−nm, the weak formulation leading to the
application of finite element method can be restored as: find u1 ∈ H1(Ω), so that
the following equations are fulfilled for each φ ∈ H1(Ω) (both functions obey the
periodic boundary conditions):

−
∫
Ω

c(y) ∂wk
∂yi

∂φ

∂yi
dΩ =

=−
∫

ΓC

[cf− cm] φ nf
k dΓC−

∫
∂Ω

c(y) φ d(∂Ω)+
∫
Ω

c(y) ∂φ

∂yi
dΩf

(15)

Coming back to the classical formulation gives:

∂

∂yi

[
c(y)

∂wk

∂yi

]
=−qk

CδΓC (16)

and the periodic boundary conditions, where qk
C are interfacial flows and δΓC is the

distributed Dirac’s function along the interface between the phases. The formula is
in compliance with Suquet (1985), who submitted it for linear elasticity. From Eq.
(14) it holds:

qk
C(y) = [cf− cm] nf

k(y) (17)

Hereinafter an axisymmetric problem makes sense to be considered without loss of
generality. Moreover, star-shaped fibers are supposed, i.e. there is a point (origin of
the coordinate system) the rays from which cross the interfacial segment only and
only once. For this reason the first quarter is considered in what follows, see Fig.
1, the shaded part.
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4 Boundary element formulation

Since the shape optimization is closely related to a moving boundary problem the
boundary element formulation seems to be extremely advantageous. Simple sub-
structuring will be applied. Starting equation will be Eq. (16) with the right hand
side equal to −qk

CδΓC representing the distributed Dirac function, which is multi-
plied by a function u∗, integrated successively over Ωf and Ωm applying linear
approximations over boundary elements and splitting the boundaries into that lying
on ΓC and the remaining parts finally yields:

c(ξ )u(ξ ) =
∫

∂Ωf

q(y)u∗(y,ξ ) dΓ(y)−
∫

∂Ωf

u(y)q∗(y,ξ ) dΓ(y) =

=
∫

∂Ωf−̇ΓC

q(y)u∗(y,ξ ) dΓ(y)−
∫

∂Ωf−̇ΓC

u(y)q∗(y,ξ ) dΓ(y)+

+
∫

ΓC

q(y)u∗(y,ξ ) dΓ(y)+
∫

ΓC

u(y)q∗(y,ξ ) dΓ(y), ξ ∈ ∂Ωf

(18)

c(ξ )u(ξ ) =
∫

∂Ωm

q(y)u∗(y,ξ ) dΓ(y)−
∫

∂Ωm

u(y)q∗(y,ξ ) dΓ(y) =

=
∫

∂Ωm−̇ΓC

q(y)u∗(y,ξ ) dΓ(y)−
∫

∂Ωm−̇ΓC

u(y)q∗(y,ξ ) dΓ(y)+

+
∫

ΓC

q(y)u∗(y,ξ ) dΓ(y)+
∫

ΓC

u(y)q∗(y,ξ ) dΓ(y), ξ ∈ ∂Ωm

(19)

where u = wk for simplicity, u∗ = log 1
r(ξ ,y) is the fundamental solution, r is the

Euclidean distance between points y and ξ , and q∗ = ∂u∗
∂n , n is again outward unit

normal to the appropriate domain; c equals the internal angle of the boundary at
ξ . Equations (18-19) enable us to use substructuring. Applying a linear spline
interpolation in these equations yields:[

Kf
11 Kf

12
Kf

21 Kf
22

]{
uout

f
uin

f

}
=
{

qout
f

qin
f

}
,

[
Km

11 Km
12

Km
21 Km

22

]{
uin

m
uout

m

}
=
{

qin
m

qout
m

}
, (20)

Ki j = B−1
ik Ak j where Ai ju j = Bi jq j

where u and q are vectors of temperature wk and its fluxes, respectively, their com-
ponents are values at nodal points of the corresponding boundaries, A and B are
square, generally not symmetric matrices of approximations, and quantities with
superscript in are assigned to the nodal points at ΓC and that with the superscript
out are connected with the values outside of ΓC. Since on ΓC it holds uin

f = uin
m and

qin
f +qin

m = qC, one eventually gets:Kf
11 Kf

12 0
Kf

21 Kf
22 +Km

11 Km
12

0 Km
21 Km

22


uout

f
uin

f
uout

m

=


qout

f
qC
qout

m

 (21)
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where the matrix of the system is banded but generally nonsymmetrical. Using the
periodic boundary conditions uout

f =uout
m =0 due to the symmetry, cf. Suquet (1985)

in elasticity, the unknowns q on ∂Ω follow from the previous equation. Moreover,
with respect to Eq. (3),

q = c(
∂u1

∂yi
+

∂u0

∂xi
)⇒ 〈q〉= c∗〈∇u〉,

where, Lévy (1985):

c∗ik =
∫
Ω

c(y)(1+
∂wk

∂yi
) dΩ(y) = cf

∫
Ωf

(1+
∂wk

∂yi
) dΩ(y)+ cm

∫
Ωm

(1+
∂wk

∂yi
) dΩ(y),

i = 1,2 (22)

Now the advantage of the boundary element formulation appears: applying the
Green theorem leads us to interface integrals as:

c∗ik = cf meas Ωf + cm meas Ωm + cf
∫

∂Ωf

wknf
i dΩ(y)+ cm

∫
∂Ωm

wknm
i dΩ(y) =

= cf meas Ωf + cm meas Ωm + cf
∫

∂Ωf−̇ΓC

wknf
i dΩ(y)+ cm

∫
∂Ωm−̇ΓC

wknm
i dΩ(y)+

+cf
∫

ΓC

wknf
i dΩ(y)+ cm

∫
ΓC

wknm
i dΩ(y)

(23)

so that the unpleasant volume integrals in (22) is substituted by boundary integrals,
and even by the integrals which are separated into external boundary and the inter-
face. Note that c∗ik = c∗ because of the axial symmetry considered.

5 Optimization

Similarly to the optimization of beams, Prochazka et al (2009), an energy func-
tional Π is formulated on an admissible set of fiber domains; Lagrangian multiplier
constraints the value of the given area of fiber. A natural question for engineers
dealing with composites could be as: determine such a shape of the fibers that en-
able it to decrease the overall conductivity of the entire composite structure and
attains its minimum. In the same time a minimum flux is required. This is a prob-
lem of optimal shape of structures. Generally, let us have a given domain Ωf and
the temperature field u, which is the solution of an appropriate partial differen-
tial equation or, alternatively, it follows from a corresponding variational principle.
Obviously, the temperature field is strongly dependent on the domain Ωf. From
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these arguments a formulation of the real functional Π ≡ Π(u,Ωf) should be cre-
ated. Then the problem of optimal shape consists of finding such a domain Ωf ⊂Ω

from a class O of admissible domains (to be stated later on), which minimizeswith
respect to the shape of Ω f . This may symbolically be written as

min
u∈Ω,Ω f∈O

Π(u,Ωf) (24)

Since there is no external loading in our solution and the load is due to fluxes on
the interfacial boundary ΓC, one of an appropriate formulations meeting the above
requirements is an assumption of minimum strain energy of a structure subject to
the above mentioned load distribution. Such a problem may be formulated in terms
of minimum Lagrangian. In our case, we assume the constant volume of fibers,
i.e. meas Ωf = vf, where vf is the fiber volume fraction. The extended Lagrangian
involving the volume (area) constraint using the Lagrangian multiplier is written
as:

Π(u,Ωf) = 1
2
∫
Ω

q∇u dΩ(y)−λ (
∫
Ωf

dΩ−meas Ωf) =

= 1
2〈q〉〈∇u〉−λ (

∫
Ωf

dΩ−meas Ωf)→ stationary
(25)

It remains to select the design parameters of this optimization problem and the
admissible set O of the domains. Let the domain of fiber Ωf be star-shaped and
the pole is centered at the unit cell Ω. Hence, the interfacial boundary describing
the shape of the fiber can be defined in polar coordinates as: For any Ωf there is a
function r : [0,π/2]→ (0,1) such that

ΓC ≡ {(ŷ1(φ), ŷ2(φ));φ ∈ [0,π/2]} (26)

where

ŷ1(φ) = r(φ)cosφ , ŷ2(φ) = r(φ)sinφ

and certainly only the first quarter is assumed for calculation. The approximation
ΓC of the interfacial boundary ΓC is created as follows: the beams originating at
the center of the unit cell and ending at selected points of the interfacial boundary
ΓC (nodal points) are described as r = {r1,r2, ...,rn}, which identify also the their
length, and n is the number of the beams. This is a natural choice describing the
current position of the interfacial boundary ΓC and its movements assuming the
polygonal approximation of the interface. Moreover, the approximation ΓC defines



216 Copyright © 2012 Tech Science Press CMES, vol.87, no.3, pp.207-223, 2012

Ω
f. Any approximated interfacial boundary ΓC will be created by a sequence of

abscissas Γi
C their end points N0,N1, ...,Nn are identified as:

Ni = {(y1(φi),y2(φi));φi =
πi
2n
} (27)

so that the division of the angle intervals is uniform. In this case the design parame-
ters p will be identified with the radii ri = r(φi) connecting Ni with the origin of the
coordinate system. Now the appropriate design parameters are recorded in the vec-
tor p≡ {p1, p2, ..., pn}, identifying the change of the boundary of fibers ΓC, which
is divided into n nodal points N1,N2, ...,Ni, ...,Nn. These points are connected with
the natural origin 0 of the local coordinate system, see Fig. 2. Note that in the
sequel the primes identifying the approximations of the fiber domain are omitted,
for simplicity.

 
Figure 2: Description of design parameters

Moreover, from a practical experience is necessary to add additional constraints
to keep the problem in realistic limits. On one hand side the requirements are
impacts of the numerical method used (too close ΓC to ∂Ω is not desired), i.e.
dist{Γ,ΓC}≥ d〉0, where dist is the minimum distance between points at Γ and ΓC),
on the other hand there may not be any crossing of ∂Ω and ΓC, i.e. ∂Ω∩ΓC = /0.
The points at ΓC cannot be too close to the origin of the coordinate system. The
above mentioned conditions could be summed up as:

1)pi ≥ a, i = 1, · · · ,n (the lower bound has meaning that no nodal point of the inter-
facial boundary between the fiber and matrix can be too close to the singular point
centered at the origin of local coordinates); note that in our numerical experiments
we select a = 0.1 mm
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2)pi/sinφi ≤ d, pi/cosφi ≤ d, i = 1, · · · ,n (the upper bound means that the nodal
points of the interface cannot be too close to the external boundary of the unit cell),
in our numerical experiments we select d = 0.1 mm

In view of the above arguments the admissible set O is defined by:

O≡ {Ω
f ⊂Ω; it is star shaped and obeys the above conditions 1) and 2)} (28)

In this way one obtains n triangles T s, s= 1,...,n, which approximate the domain Ωf.
It obviously holds:∫

Ω f
dΩ = meas Ωf =

n

∑
s=1

meas Ts. (29)

If the above bounds on the beams are attained a special procedure needs to be
used, see Suquet (1985). It requires an internal iteration, in order to improve the
boundary using collinear mapping for ensuring the condition about constant fiber
volume fraction.

It is worth noting that other constraint conditions can be applied, see e.g. Suquet
(1985).

5.1 Euler’s equations

The stationary requirement leads to differentiation of the functional by the shape
(design) parameters

λ = Ps

1
2〈∇u〉 ∂c∗

∂ ps
〈∇u〉

∂

∂ ps

∫
Ωf

dΩ
, s = 1, . . . ,n (30)

Equation (30) requires λ having the same value for any s. In other words, if this re-
quirement were attained at any point on the "moving" part of the interfacial bound-
ary the optimal shape of the trial body would be reached. For this reason the body
of the composite structure should increase its area (in 3D its volume) at the nodal
point of the boundary identified by ps if λ is larger than the true value of the target,
while it should decrease its value when λ is smaller than the correct Lagrangian
multiplier. As, most probably, real value of the target is not known a priori, its esti-
mate is done by averaging the current values at the nodal points. So, approximation
of λ will be expressed as:

λapprox =
1
n

n

∑
s=1

λs (31)
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Differentiation by λ completes the system of Euler’s equations by Eq. (26).

It remains to ensure that the fiber volume friction is constant with the value given
a priori. For this aim a collinear mapping is applied after completing the shift of
nodes at the interface. It can be done in such a way that assuming the current
value of meas Ωf

curr, which is calculated from the current positions of the nodes
mentioned, the prescribed meas Ωf is reached by improving the triangles by the
value of

s =

√
meas Ω

f
curr

meas Ω f (32)

The idea of calculating a general area bounded by a polygonal boundary is seen
from Fig. 3. The pole P is one vertex of a current triangle and the nodes on the
boundary are another two. Since the identification of the vertices is obvious from
their coordinates, a well known formula is applicable for calculating the influence
of the current triangle to the area. Positive triangles are located on the boundary
which is farer from the pole and they add their values to the area while the negative
triangles are on the boundary which is closer to the pole.

 
Figure 3: Calculation of the area of domain

Brief description of algorithm:

1. set up the starting configuration fulfilling the condition given by Eq. (26)

2. calculate c∗ for the current configuration

3. set a successive unit shifts to nodal points ps at Γc, calculate c∗(ps), and the
appropriate λ from Eq. (30) using substitution of derivatives by differences
(central difference is used here and the step of difference is 0.0001)
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4. compute λapprox by Eq. (31) to get new positions of nodes at

5. from the new positions get the area of the current Ωf

6. using collinear mapping (32) improve the positions of nodes to ensure the
original fiber volume ratio

7. check up the constraint of the beams ps and if fail occurs apply local iteration

8. the process of iterations end if the absolute value of difference between cur-
rent and previous energies λapprox be less then given admissible error; if not,
go to 2 and stop otherwise

6 Numerical examples

Unit cell is considered with various fibers volume ratios. Since we compare energy
densities at nodal points of the interfacial boundary, the relative energy density may
be regarded as the comparative quantity influencing the movement of the boundary
Γc. As said in the previous section, the higher value of this energy density, the
larger movement of the nodal point of should aim at the optimum.

In the following examples minimum conductivity u is required, and the fiber vf and
matrix vc phase ratios and the values of fiber cf and matrix cm conductivities are
also given.

The problem is solved, as said previously, on the first quarter (0.5×0.5) of the
axially symmetric unit cell. The distribution of interfacial nodal points obeys a rule
that they are positioned at beams with the beginning at the origin. The adjacent
beams are rotated by the same angle. In the sequel 17 nodal points in the interface
(excluding the external boundary) are used in every example.

The boundary element mesh is shown for a typical example vf = 0.5, vm = 0.5in
the initial geometry in Fig. 4., and in Fig. 5 at the optimal stage. The nodal points
change as a spider web.

In the first numerical test cf = 5 and cm = 1. In Figs. 6 to 9 the optimal shapes are
shown for various phase volume fractions. The phase with higher conductivity is
darker then that with lower value. In the following pictures the darker area points
out the phase possessing the higher conductivity.

In Fig. 6 an additional constraint a = 0.05 has been applied, as the too small fiber
causes too small distance to the origin. The optimal shape in Fig. 7 does not
desire any additional condition. In Fig. 8 and Fig. 9 there are constraints given by
d = 0.45.
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Figure 4: Initial geometry

 
Figure 5: Nodes at optimal shape

 
Figure 6: cf = 5, cm = 1, vf = 0.05,
vm = 0.95

 
Figure 7: cf = 5, cm = 1, vf = 0.25,
vm = 0.75

In the next examples fiber possesses lower conductivity of cf= 1 then the matrix,
which has cm= 5. Figs. 10-12 show the optimal shapes for various fiber volume
fractions.

In Fig. 13 a typical course of error vs. iteration together with percentage time
consumption are demonstrated. The error drops very quickly and, say, from 15-th
iteration is almost no deviation from the optimal shape. The picture is depicted for
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Figure 8: cf = 5, cm = 1, vf = 0.05,
vm = 0.95

 
Figure 9: cf = 5, cm = 1, vf = 0.25,
vm = 0.75

 
Figure 10: cf = 1, cm = 5, vf = 0.05,
vm = 0.95

 
Figure 11: cf = 1, cm = 5, vf = 0.2,
vm = 0.8

the case displayed in Fig. 9, i.e., additional calculations have to be conducted in this
case due to the violation of the limits imposed to admissible beams. After attaining
at the limit state of at least one beam the iteration causes delay in time consump-
tion. This is caused by an “internal iteration”, which assures the fulfillment of the
admissibility of the length of any beam in the selected set of design parameters.
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Figure 12: cf = 1, cm = 5, vf = 0.5,
vm = 0.5

 

Figure 13: typical error and time curve

7 Conclusions

New optimization procedure is put forward in this paper based on homogenization
technique. The problem which has been solved deals with homogenization of co-
efficients of the linear harmonic equation. The optimization is formulated in term
of energy. A special constraint is adopted, which is involved in the formulation
of optimal shape by Lagrangian multiplier, enabling us to show that the stationary
point is attained for energy density being equal at each nodal point of the interfacial
boundary. This condition leads us to an elegant and efficient numerical approach.
The computer program now enables the user to get various optimal shapes accord-
ing to his requirements.

Two basic material properties of phases have been adopted. In the first option a
higher conductivity in fiber is adopted and then a higher conductivity in matrix is
considered. From these experiments it appears that in both cases curvilinear shape
is desired, in one case the longest beams heads in the coordinate direction and in
the second in the direction of the main axis of the first quarter. In every case a shape
of a star with four vertices is desired to get the optimum.
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