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Numerical Simulation of Plane Crack Using Hermite
Cubic Spline Wavelet

Jiawei Xiang1,2, Yanxue Wang3, Zhansi Jiang3

Jiangqi Long1 and Guang Ma1

Abstract: Two-dimensional wavelet-based numerical approximation using Her-
mite cubic spline wavelet on the interval (HCSWI) is proposed to solve stress inten-
sity factors (SIFs) of plate structures. The good localization property of wavelets
is used to approximate displacement fields by multi-scale bases of HCSWI. Ex-
ample computations are performed for plates with a central crack and double edge
cracks. The numerical results prove that, compared with the conventional finite el-
ement method and the analytical solutions, the new procedure are efficient in both
its accuracy and its reduction of degree of freedoms (DOFs).

Keywords: Plate structures; Stress intensity factors; HCSWI; Wavelet numerical
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1 Introduction

Crack propagation behavior is a major issue in a variety of structures of indus-
tries. Aerospace structures, gas turbine blade, pressure vessels, pipelines, and wind
turbine blades are obvious examples where failure could lead to catastrophic con-
sequences and loss of life. The solution of stress intensity factors (SIFs) involves
a well-known mathematical difficulty. Among calculation algorithms in problems
of fracture mechanics, finite element analysis (FEA) is the most commonly used
method [Tada et al. (2000)]. Recently, many numerical methods were proposed to
efficiently calculate SIFs. Wearing et al. [Wearing and Ahmadi-Brooghani (1999)]
presented a boundary element method to analyze two-dimensional crack problems.
Giner et al. proposed an extended finite element method (X-FEM) to solve crack
problems and further developed an implementation of the X-FEM into the commer-
cial FEA software Abaqus [Giner et al. (2009)]. In the above mentioned methods,
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the efficiency and precision are key issues to overcome the large numerical error
caused by crack singularity. Adaptive FEM is also an important technique to obtain
more accurate values of SIFs. Kpegba et al. proposed a hybrid method to combine
the two independent classical meshes to improve the precision of traditional FEA
[Kpegba and Ottavy (1996)].

Wavelet numerical method was proposed to solve partial differential equations
(PDEs) [Diaz et al. (2009); Vampa et al. (2010); Ma et al. (2003); Chen et
al. (2009); Wang et al. (2010, 2011); He et al. (2007); Xiang et al. (2009a,
2007)]. Hermite cubic spline wavelet on the interval (HCSWI) is the new wavelet
bases constructed by Jia and Liu [Jia and Liu (2006); Jia (2009)]. Xiang et al.
employed HCSWI to analyze Possion equation [Xiang et al. (2009b)]. The advan-
tage of HCSWI wavelet-based numerical method is the decoupling of multi-scaling
approximation equations [Xiang et al. (2009b)].

In the present work, a new wavelet numerical method using HCSWI is proposed
to calculate SIFs of plate structures. Two examples of plates with a central crack
and double edge cracks are investigated. It notes that the extension of the present
method to other classes of structures with cracks is possibly.

2 The wavelet bases of HCSWI

In this section, we give a brief description of HCSWI. One-dimensional multi-
resolution analysis (MRA) of HCSWI is given by Jia and Liu [Jia and Liu (2006)].
The scaling functions φ1,k (scale=1 and k=1, 2, 3, 4) are defined by
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in which φ1 and φ2 be the cubic splines supported on the interval [-1, 1] as

φ1(x) :=


(x+1)2(1−2x) for x ∈ [−1,0]
(1− x)2(1+2x) for x ∈ [0,1]
0 for x /∈ [−1,1]

and

φ2(x) :=


(x+1)2x for x ∈ [−1,0]
(x−1)2x for x ∈ [0,1]
0 for x /∈ [−1,1]

(3)

and the wavelets ψ1 and ψ2 are supported on the interval [-1, 1] as{
ψ1(x) =−2φ1(2x+1)+4φ1(2x)−2φ1(2x−1)−21φ2(2x+1)+21φ2(2x−1)
ψ2(x) = φ1(2x+1)−φ1(2x−1)+9φ1(2x+1)+12φ2(2x)+9φ2(2x−1)

(4)

Hermite cubic splines φ1 and φ2, wavelets ψ1 and ψ2 are shown in Figs.1 and 2,
respectively
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Figure 1: Hermite cubic splines φ1 and φ2

The special property of HCSWI is
〈

φ ′1,k1
,ψ ′j,k2

〉
=
∫ 1

0 φ ′1,k1
ψ ′j,k2

dx = 0 for all j〈
ψ ′j1,k1

,ψ ′j2,k2

〉
=
∫ 1

0 ψ ′j1,k1
ψ ′j2,k2

dx = 0 for j1 6= j2
(5)
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Figure 2: Wavelets ψ1 and ψ2

The wavelet bases in scale space Vj can be written by

φφφ j = [φφφ 1,ψψψ1,ψψψ2, · · · ,ψψψ j−1] (6)

where φφφ 1 = [φ 1,1,φ 1,2,φ 1,3,φ 1,4] denotes scaling functions in V1, and ψψψs(s = 1,2, · · · j−
1) consists of the wavelet bases in wavelet space Ws, i.e., ψψψs = [ψs,1,ψs,2, · · · ,ψs,2s+1 ].
Fig. 3 shows the first derivative of φφφ 1 and ψψψ1.
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Figure 3: The first derivative of φφφ 1 and φφφ 1

To construct two-dimensional wavelet bases, tensor product of one-dimensional
wavelets is a direct way [Chen et al. (2004); Zhang et al. (2010); Mallat (1999)].
Take φφφ 2 = [φφφ 1,ψψψ1] for example, the two-dimensional scaling and wavelet functions
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are

φφφ 2⊗φφφ 2 = [φφφ 1⊗φφφ 1,φφφ 1⊗ψψψ1,ψψψ1⊗φφφ 1,ψψψ1⊗ψψψ1] = [φφφ 1,ψψψ2,φφφ 3,ψψψ4] (7)

where ⊗ is the kronecker symbol. Therefore, we obtain four functions, namely,
the scaling functions φφφ 1 = φφφ 1⊗φφφ 1, waveletsψψψ1 = ψψψ1⊗φφφ 1, ψψψ2 = φφφ 1⊗ψψψ1 and
ψψψ3 = ψψψ1⊗ψψψ1, which are shown in Fig.4(a), (b), (c) and (d), respectively.

�

���� � ����
�
�

����
�
�

�	��


�

� �

�

� �

�

� �

�

� � �

� �

� �

Figure 4: Two-dimensional HCSWI scaling functions φφφ 1 and wavelets ψψψ1, ψψψ2 and
ψψψ3

3 Numerical computation formulas using HCSWI

Plane elasticity includes plane stress and plane strain problems. Here, the plane
stress problem is analyzed and the plane strain problem is similarly if Young’s
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modulus E and Poisson’s ratio µ are replaced by E/(1− µ2) and µ/(1− µ) re-
spectively. The generalized function of potential energy for plane stress problem is
[Zienkiewicz, O.C., Taylor, R.L. (2000)]

ΠΠΠp(δδδ ) =
∫
Ω

1
2

εεε
TDεεεtdxdy−

∫
Ω

δδδ
Tftdxdy−

∫
Sσ

δδδ
Tptds−

n

∑
i=1

δδδ
T
i Fi (8)

where Ω is the solving domain with length lx and ly,t is the plate thickness, f =
{ f x fy}T are the body forces, δδδ = {u v}T are the displacements, p = {px py}T are
the surface forces, Fi = {Fxi Fyi}T are point forces, δδδ i = {ui vi}T are the point dis-
placements, D is the elastic matrix, and εεε = {εx εy γxy}T are the strain components.
D and εεε are given by

D =
E

1−µ2

1 µ 0
µ 1 0
0 0 1−µ

2


and

εεε =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

u (9)

The relationship between stress and strain is

σσσ = {σx σy τxy}T = Dε (10)

The two-dimensional HCSWI bases are employed as interpolating functions to con-
struct multi-scale approximation equations as

u = φφφ
T
j u

and

v = φφφ
T
j v (11)

where{
u = {u1 . . .u2 j+1 | · · · |u2 j+2−2 j+1+1 . . .u2 j+1}T

v = {v1 . . .v2 j+1 | · · · |v2 j+2−2 j+1+1 . . .v2 j+1}T (12)

are the column vectors of wavelet interpolating coefficients ( also the DOFs) to be
determined.
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Substituting Eqs. (9-11) into Eq.(8) and let δΠΠΠp = 0, we have[
K1 K2

K3 K4

][
u
v

]
=
[

Pa

Pb

]
(13)

where

Pa =
∫
Sσ

pxφφφ
T
j ds+

∫
Ω

fxφφφ
T
j dΩ+

n

∑
i=1

φφφ
T
j (ξi,ηi)Fix} (14)

Pb =
∫
Sσ

pyφφφ
T
j ds+

∫
Ω

fyφφφ
T
j dΩ+

n

∑
i=1

φφφ
T
j (ξi,ηi)Fiy (15)

K1 = E/(1−µ
2)(A11

1 ⊗A00
2 +(1−µ)/2A00

1 ⊗A11
2 ) (16)

K2 = E/(1−µ
2)(µA10

1 ⊗A01
2 +(1−µ)/2A01

1 ⊗A10
2 ) (17)

K3 = (K2)T (18)

K4 = E/(1−µ
2)(A00

1 ⊗A11
2 +(1−µ)/2A11

1 ⊗A00
2 ) (19)

in which

A00
1 = lx

∫ 1

0
φφφ

T
j φφφ jdξ (20)

A01
1 =

∫ 1

0
φφφ

T
j
dφφφ j

dξ
dξ (21)

A10
1 = (A01

1 )T (22)

A11
1 = 1/lx

∫ 1

0

dφφφ T
j

dξ

dφφφ j

dξ
dξ (23)

Alm
2 (l,m = 0,1) is similarly to Alm

1 (l,m = 0,1) when lx and dξ are replaced by ly
and dη respectively.

The lifting scheme for multi-scale calculating SIFs is similar to Ref.[Xiang et
al. (2009b)]. Fig.5 shows the lifting scheme to lift the scale from 1 to j.

When the scale 1 is lifted to scale j, A11
1 and A11

2 would be decomposed totally
across different scale. The integral A11

1 is

A11
1 = 1/lx


∫ 1

0
dφφφ T

1
dξ

dφφφ 1
dξ

dξ 0 · · · 0∫ 1
0

dψψψT
1

dξ

dψψψ1
dξ

dξ · · · 0

symmetry
. . .

...∫ 1
0

dψψψT
j−1

dξ

dψψψ j−1
dξ

dξ

 (24)



8 Copyright © 2012 Tech Science Press CMES, vol.88, no.1, pp.1-16, 2012�

�

�

�
� �

�

�
� �

�

�

�

� �

�
�

�
�

� �

���� �

�

�� �

�

���� �

�

�

�

�� �

�� �

�

�
�

�
�

�
�

� �

Figure 5: The lifting scheme of wavelet bases

The integrals A01
1 , A01

2 , A00
1 and A00

2 would be preserved coupling relationship.
However, the former generated sub-matrices need not be re-calculated. This prop-
erty can also increase the calculating efficiency. The integral A01

1 is

A01
1 =


∫ 1

0 φφφ T
1

dφφφ 1
dξ

dξ
∫ 1

0 φφφ T
1

dψψψ1
dξ

dξ · · ·
∫ 1

0 φφφ T
1

dψψψ j−1
dξ

dξ∫ 1
0 ψψψT

1
dψψψ1
dξ

dξ · · ·
∫ 1

0 ψψψT
1

dψψψ j−1
dξ

dξ

symmetry
. . .

...∫ 1
0 φφφ T

j−1
dψψψ j−1

dξ
dξ

 (25)

and the integral A00
1 is

A00
1 = lx


∫ 1

0 φφφ T
1φφφ 1dξ

∫ 1
0 φφφ T

1ψψψ1dξ · · ·
∫ 1

0 φφφ T
1ψψψ j−1dξ∫ 1

0 ψψψT
1φφφ 1dξ · · ·

∫ 1
0 ψψψT

1ψψψ j−1dξ

symmetry
. . .

...∫ 1
0 φφφ T

j−1ψψψ j−1dξ

 (26)

4 Numerical investigations

In this study, the displacement extrapolation technique has been used to calculate
the SIFs as follows [Tada et al. (2000)]

v =
KI

2G

√
r

2π
(k +1) (27)

where r is the distance from crack tip to a point considered along with the crack
edge, k = (3−µ)/(1+ µ) is the elastic parameter, G = E

2(1+µ) is shear modulus.

Therefore, we obtain SIFs for crack with mode I as

KI =
2Gv

(k +1)

√
2π

r
(28)
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Figure 6: The center crack problem and numerically computational model

4.1 Example 1: The center crack problem

The central cracked plate and the computational model are shown in Fig.6(a) and(b)
respectively. The geometry is imposed by a plane stress condition with symmetrical
uniform load p applied under mode I loading condition. Plate length is 2b, width L
and centre crack width is 2a. The analytical SIFs for this problem is given by Ref.
[Tada et al. (2000)] as

KI = p
√

πaF(a/b) (29)

To make a simple comparison, the non-dimensional stress intensity factor is defined
as follows

ZI =
KI

p
√

a
(30)

Error estimate is necessary to make an adaptive wavelet numerical calculation. If
the SIFs of wavelet numerical solution Zi+1

I and Zi
I (i+1 and i denote the neighbor

scales) is chosen as the benchmark, with the defined dimensionless relative error
(error estimate) as the following equation

ε
∗ =

∣∣Zi+1−Zi
∣∣/Zi+1 (31)
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Given the error threshold ε∗0 , error estimate ε∗ can be made according to Eq. (31).
When an error ε∗ in a certain scale is large than the error threshold ε∗0 , i.e., ε∗ > ε∗0 ,
scale will be lifted to the higher one. This process will be repeated until solution
is less than error threshold ε∗0 . Therefore, the adaptive analysis algorithm is listed
below:

(1) Give the error threshold ε∗0
(2) Use scaling functions scale φφφ i and ΦΦΦi+1 to calculate the corresponding Zi and
Zi+1, respectively.

(3) Calculate error estimate ε∗ according to Eq. (29).

(4) Compare ε∗ and ε∗0 , if ε∗i > ε∗0 , then go back to step (2). Otherwise, stop the
calculation and obtain the results.

Suppose the error threshold ε∗0 = 0.01, it found that only three interactions were
performed to obtain a comfortable result at scale j=4, as shown in Table 1. Different
methods are used to make a comparison, such as:

Method 1: Analytical solution, the value of F(a/b) is shown in Ref.[Tada et al. (2000)].

Method 2: Analytical solution, the other value of F(a/b) is calculated by [Tada et
al. (2000)]

F(a/b) = {1−0.025(
a
b
)2 +0.06(

a
b
)4}
√

sec
πa
2b

(32)

Method 3: Adaptive finite element method with about 5000 DOFs as shown in Ref.
[Souiyah et al. (2009)].

Present method: The present results computed using HCSWI bases at level j=4. It
notes that the DOFs of multi-scale approximation equation at each scale j=1, 2, 3,
4 are 32, 128, 512 and 2048, respectively.

The present results computed using HCSWI bases at level j=4 are found to be in
good agreement with those in literature, as shown in Table 1. By comparing with
other methods, the relative errors to the analysis solution is less than 0.261% for
all values, which gives highly accurate results and much better than 2.195% of
adaptive finite element method with about 5000 DOFs. In order to show the perfor-
mance of the present method, we give a comparison of the computational cost of the
present method with finite element method. All the computations are conducted us-
ing Matlab2010a on a laptop computer with a 2 GHz dual-core CPU (T4200) and
2GB memory. According to the TIC and TOC commands of Matlab2010a, the
computing times required to Method 3 is about 4.5 seconds, whereas the present
method is less than 3 seconds (only measured time for the level j=4). Moreover,
the DOFs of adaptive finite element method are almost 2.5 times of those of the
present method. Therefore, the performance of the present wavelet-based numeri-
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cal is verified and the good performance of the lifting scheme is observed when the
wavelets are added step by step to realize multi-scale approximation of SIFs.

The SIFs Z1
I , Z2

I and Z3
I and the corresponding ε∗ of HCSWI wavelet bases at scale

j=1, 2, 3 are listed in Table 2.

Table 2: Stress intensity factors Zi
I (i=1,2,3) for different a/b (L/2b=1)

a/b Z1
I ε∗ Z2

I ε∗ Z3
I ε∗

0.1 1.5821 0.058 1.6793 0.050 1.7685 0.008
0.2 1.6944 0.022 1.7319 0.013 1.7555 0.033
0.3 1.8020 0.017 1.8326 0.022 1.8736 0.002
0.4 2.1053 0.047 2.0117 0.013 1.9854 0.010
0.5 2.2261 0.016 2.1910 0.031 2.1245 0.010
0.6 2.4758 0.024 2.4189 0.037 2.3327 0.009
0.7 2.7845 0.032 2.6980 0.028 2.6246 0.004
0.8 3.3725 0.015 3.3212 0.022 3.2488 0.007
0.9 4.4287 0.015 4.4956 0.011 4.5463 0.003

4.2 Example 2: The double edge crack problem

Figure 7 shows a double edge cracked plate and its computational model. We com-
pare the present method using HCSWI bases at level j=4 with traditional finite
element method (PLANE42 element in software ANSYS) with 200× 200meshes
(80000 DOFs). The benchmark to compare the two methods is the analytical solu-
tion given by [Tada et al. (2000)]

F(a/b) =
1.122−0.561(a

b)−0.205(a
b)2 +0.471(a

b)3−0.190(a
b)4√

1−a/b
(33)

Table 3 shows the relative errors between the two methods and the analytical so-
lutions. The relative errors between results of the proposed method and the ana-
lytical solutions are less than 1.763% for all a/b, which are much smaller than that
(5.926%) obtained using the traditional finite element method (PLANE42 element
in software ANSYS) with 80000 DOFs.

By summarizing the above SIFs analysis and comparisons, the validity of the present
method is testified.

5 Conclusions

Properties of wavelet of good localization are used to approximate displacement
fields near the crack tip. Wavelet-based numerical method to analyze plate struc-
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Figure 7: The double-edge cracked plate and its computational model

Table 3: Stress intensity factors ZI for different a/b under uniform tension (L/2b=1)
for exmaple 2

a/b
Analytical solution PLANE42 Proposed method
[Tada et al. (2000)]
F(a/b) ZI ZI Error/% ZI Error/%

0.1 1.1219 1.9885 1.8860 5.437 1.9785 0.503
0.2 1.1237 1.9917 1.9633 1.446 1.9856 0.306
0.3 1.1312 2.005 2.0552 2.443 2.0212 0.808
0.4 1.1491 2.0367 2.1471 5.143 2.0726 1.763
0.5 1.1841 2.0987 2.2309 5.926 2.105 0.300
0.6 1.2471 2.2104 2.3181 4.646 2.245 1.565
0.7 1.3598 2.4102 2.4528 1.736 2.3875 0.942
0.8 1.5771 2.7954 2.7416 1.961 2.7784 0.608
0.9 2.1179 3.7539 3.5608 5.424 3.6932 1.617

tures using HCSWI bases is established to simulate singularity problems. For the
good characteristics of the wavelet bases of HCSWI, such as multi-resolution anal-
ysis and orthogonal according to the inner product of 〈u′,v′〉, the lifting scheme
of the present method can be realized efficiently. Therefore, the present method
has at least two advantages. The first advantage is that the computation efficiency,
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necessary for achieving a solution with the same accuracy compared with the usual
finite element method, are much reduced. The second advantage stems from the
fact that the so-called multi-resolutions of wavelets make it possible to generate a
multi-scale approximation equation for the singularity problems. For the orthogo-
nal characteristic of the wavelet bases with respect to the given inner product, the
corresponding multi-scale equations will be decoupled across scales partially and
suit for nesting approximation. The numerical results show that wavelet numerical
method is suitable to compute SIFs for plate structures.
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