
Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

Numerical Investigation on Direct MLPG for
2D and 3D Potential Problems

Annamaria Mazzia1, Giorgio Pini1 and Flavio Sartoretto2

Abstract: Pure meshless techniques are promising methods for solving Par-
tial Differential Equations (PDE). They alleviate difficulties both in designing dis-
cretization meshes, and in refining/coarsening, a task which is demanded e.g. in
adaptive strategies. Meshless Local Petrov Galerkin (MLPG) methods are pure
meshless techniques that receive increasing attention. Very recently, new methods,
called Direct MLPG (DMLPG), have been proposed. They rely upon approxi-
mating PDE via the Generalized Moving Least Square method. DMLPG methods
alleviate some difficulties of MLPG, e.g. numerical integration of tricky, non–
polynomial factors, in weak forms. DMLPG techniques require lower computa-
tional costs respect to their MLPG counterparts. In this paper we numerically ana-
lyze the solution of test 2D problems via DMLPG. We report about our expansion
of meshless techniques to 3D problems. Finally, we perform comparisons between
DMLPG and two MLPG techniques, when solving 3D problems.

Keywords: Meshless Methods; Poisson Problem; Generalized Moving Least Squares;
Radial Basis Functions; Tensor Product Functions.

1 Introduction

Overcoming Finite Element (FE) Methods is one of the keywords for improv-
ing both accuracy and efficiency in the numerical solution of Partial Differential
Equations (PDE). Non–standard numerical methods for the solution of differen-
tial equations are often based on heuristic ideas, and verified by numerical exper-
iments (Babuska, Banerjee, and Osborn, 2005). We focus our attention on true
Meshless methods, which do not exploit any mesh neither for discretizing the prob-
lem domain, nor for numerical integrations. As a matter of fact, some methods were

1 Dipartimento ICEA Università di Padova Via Trieste 63, 35121 Padova, Italy
{annamaria.mazzia,giorgio.pini}@unipd.it

2 DAIS, Università Ca’ Foscari Venezia Via Torino 155, 10173 Venezia, Italy
flavio.sartoretto@unive.it

184 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

proposed which are labelled “meshless” because they do not exploit any mesh for
discretizing the variational form of a PDE, but they enroll a mesh in order to per-
form numerical quadratures, see e.g. (Fries and Matthies, 2004; Belytschko, Kron-
gauz, Organ, Fleming, and Krysl, 1996). True meshless methods are apt to reduce
the high computational cost spent in order both to design discretization meshes for
complex geometries, and to implement adaptive techniques.

Meshless Petrov Galerkin (MLPG) methods (see e.g. (Atluri and Zhu, 2002)) are
true meshless methods which receive increasing attention. In the literature one
finds many implementations relying upon Radial Basis Functions (RBF) (Buh-
mann, 2003), see e.g. (Atluri, 2004), and the references herein. A smaller num-
ber of papers exploiting Tensor Product Functions (TPF) is also available (Ni, Ho,
Yang, and Ni, 2004; Duflot and Nguyen-Dang, 2002; Sun, Wang, and Miao, 2008;
Liu, 2009; Sterk and Trobec, 2008; Mazzia and Sartoretto, 2010).

The advantages of meshless methods are peculiarly dominant when 3D problems
are considered, see (Mazzia, Pini, and Sartoretto, 2008) and the References herein.

Very recently, new MLPG methods were proposed, called Direct MLPG
(DMLPG) (Mirzaei and Schaback, 2011), which exploit the Generalized Moving
Least Squares method (GMLS) (Mirzaei, Schaback, and Dehghan, 2011). While
Moving Least Squares (MLS), proposed in (Lancaster and Salkauskas, 1981) aim
at approximating a multivariate function, GMLS approximates linear functionals.
The solution of a linear PDE, formulated either in strong or weak form, can be
computed by approximating via GMLS the functionals involved. While MLPG ap-
proximates the PDE solution by projection on a finite dimensional space, DMLPG
approximates the operators involved in the formulation of the problem. In other
words, MLPG generalizes Finite Element Methods, while DMLPG generalizes Fi-
nite Difference techniques.

The performance of DMLPG methods have been started to be studied (Mirzaei and
Schaback, 2011, 2012). Their great potential needs validation from an experimen-
tal point of view. In this paper we numerically analyze the efficiency and accuracy
of DMLPG when solving test 2D potential problems. We extended meshless pro-
cedures to 3D problems. Such operation is not straightforward. Handling of sparse
data structures is required, and appropriate techniques for solving the final linear
system must be identified. When attacking test 3D problems, we compare DMLPG
with two MLPG schemes. Convergence analysis of DMLPG and MLPG methods
is not so mature as for FE, hence we analyze advantages and disadvantages of some
scenarios by numerical experiments.

This paper is organized as follows. Section 2 describes GMLS approximation tech-
nique, which is the starting point for DMLPG. Section 3 sketches the potential

Numerical Investigation on Direct MLPG 185

problem to be solved and the solution technique. Section 4 describes the finite
dimensional spaces which identify meshless approximation techniques. Section
5 analyzes the efficiency of DMLPG on 2D problems. Section 6 compares the
performance of DMLPG with two MLPG techniques, when solving 3D problems.
Conclusions are drawn in Section 7.

2 Approximation schemes

The Moving Least Squares (MLS) method (Lancaster and Salkauskas, 1981) was
proposed for approximating a function, u(x), inside a region Ω ⊂ Rd after a num-
ber, N, of its values, u(xi), xi ∈ Ω is given. In the context of MLPG methods, in
order to approximate a given d-dimensional problem, MLS is exploited for gen-
erating a set of d-dimensional trial functions on the ground of a suitable “weight”
function (Mazzia, Pini, and Sartoretto, 2008; Mazzia and Sartoretto, 2010). The
ensuing trial functions are called the “shape” functions of MLS.

The Generalized Moving Least Squares (GMLS) method (Mirzaei, Schaback, and
Dehghan, 2011), is a technique developed after MLS formulation in (Levin, 1998),
for approximating continuous linear functionals in the dual of C k(Ω), for any k≥ 0.
GMLS aims to approximate a linear functional, λ (u), based upon a given set of N
linear functionals λi(u). One obtains an approximation

λ̂ (u) =
N

∑
i=1

φi(λ)λi(u). (1)

Each coefficient φi(λ), called a GMLS shape function, must be linear in λ . As an
example, λ (u) can be a partial derivative of u, while λi(u) = u(xi) can be a given
set of u values on given nodes xi ∈ Ω; λ̂ (u) in this case can be interpreted as a
generalization of Finite Difference methods, based upon all u(xi) values, in place
of a given stencil.

Let Pd
q be the linear space of d–variate polynomials with degree up to q, whose

dimension is

m =
(

q+d
d

)
.

For a given continuous linear functional λ (u), GMLS based upon Pd
q computes an

approximation λ̂ (u) = λ (p∗), where p∗ minimizes in Pd
q the least–squares error

functional

J =
N

∑
i=1

w(λi,λ)(λi(u)−λi(p))2,

186 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

where w(λi,λ) are given non–negative weights.

Assume p(x) = (p1(x), . . . , pm(x))T is a polynomial basis of Pd
q . As an example,

when d = 2 and q = 1, one can set p(x) = (1,x,y)T , when d = 2 and q = 2, p(x) =
(1,x,y,x2,xy,y2)T , etc. Any polynomial p ∈ Pd

q can be written as p(x) = p(x)T a =
∑ j p j(x)a j, where a = (a1, . . . ,am)T is a coefficient vector. The functional J can be
rewritten into

J =
N

∑
i=1

w(λi,λ)(λi(u)−λi(p(x)T a))2,

Since the λi are linear, one has

λi(p(x)T a) = λi(∑
j

p j(x)a j) = ∑
j

λi(p j(x))a j = p
λi
(x)T a,

being p
λi
(x) = (λi(p1(x)), . . . ,λi(pm(x)))T .

Define the N×m matrix E = (p
λ1
| . . . |p

λN
)T , the N vector ũ = (λ1(u), . . . ,λN(u))T ,

and the diagonal matrix W = diag(w1(λ), . . . ,wN(λ)), being wi(λ) = w(λi,λ).
Now we can write

J = (Ea− ũ)TW (Ea− ũ).

Minimizing over a gives the relation

ETWEa = ETWũ.

Hence the minimizing coefficient vector is

a∗ = (ETWE)−1ETWũ.

and the polynomial minimizing J is

p∗ = p(x)T a∗ = p(x)T (ETWE)−1ETWũ.

By defining φ(λ) = (φ1(λ), . . . ,φN(λ))T , one has

λ (p(x)T a∗) = φ
T (λ)ũ.

Due to linearity of λ ,

λ (p∗) = λ (p(x)T a∗) = λ (p(x)T)a∗ = λ (p(x)T)(ETWE)−1ETWũ,

Numerical Investigation on Direct MLPG 187

hence recalling that W = W T , since W is diagonal, we define the vector of GMLS
shape functions

φ(λ) = WE(ETWE)−1
λ (p(x)).

One has

λ̂ (u) = φ
T (λ)ũ =

N

∑
i=1

φi(λ)λi(u).

This result shows that λ (p∗) = λ̂ (u) can be recast into form (1). For more details on
the relations sketched above, see e.g. (Levin, 1998; Mirzaei and Schaback, 2011).

3 Meshless techniques

Let us consider the linear Poisson equation on the domain Ω

−∇
2u(x) = f (x), (2)

where f is a given source function, x being any point in Ω. Dirichlet and Neumann
boundary conditions are imposed on the domain boundary ∂Ω

u = ū on Γu,
∂u
∂n
≡ q = q̄ on Γq (3)

where ū and q̄ are the prescribed potential and normal flux, respectively, on the
Dirichlet boundary, Γu, and on the Neumann boundary, Γq, being ∂Ω = Γ = Γu∪
Γq, Γu∩Γq = /0. The outward normal direction to Γ is denoted by n.

Assume that the residual of eq. (2) is multiplied by a suitable test function τ . The
divergence theorem is applied, hence obtaining the weak formulation for (2)∫

Ω

∇u ·∇τdΩ−
∫

Γ

(∇u ·n)τdΓ =
∫

Ω

f τ dΩ, ∀τ ∈S , (4)

once a suitable functional space S is identified. There are many Meshless Petrov–
Galerkin (MLPG) methods (Atluri, 2004; Fries and Matthies, 2004), each one can
be identified by an appropriate choice of trial and test functions.

In order to approximate the solution of our weak formulation, a set of discretization
nodes must be given. Let N be the total number of nodes.

A set of trial functions, ξi, is enrolled, each one being “centered” on node xi. The
support of ξi, Sξi is a ball centered at xi, whose radius is ri. Actually, for each i
we set ξi = 0 outside Ω, which is equivalent to considering Sξi ∩Ω, in place of

188 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

Sξi . In order to compute an approximation ũ = ∑i ũiξi of the solution, a finite set
of test functions τi, i = 1, . . . ,N is elected. The support of τi, Sτi = Ωi, is a ball (or
a cuboid) centered at xi, whose radius (or half sidelength) is ρi. We assume τi = 0
outside Ω, hence considering Sτi ∩Ω. We assume τi = 0 on ∂Ωi, a typical setting in
many MLPG schemes (Mirzaei and Schaback, 2011; Mazzia and Sartoretto, 2010).
In principle the test functions can be centered on nodes which do not coincide with
the xi, but for simplicity we exploit the same set of nodes, both for the trial and the
test functions.

A set of Local Weak Forms (LWF) is obtained by writing eq. (4) for each test
function∫

Ωi

∇u ·∇τidΩ−
∫

Γ
(u)
i

(∇u ·n)τidΓ =
∫

Ωi

f τi dΩ+
∫

Γ
(q)
i

(∇u ·n)τidΓ, (5)

where Γ
(u)
i = ∂Ωi∩∂Γu is the intersection of our local integration domain bound-

ary with Dirichlet boundary. Analogously, Γ
(q)
i = ∂Ωi ∩ ∂Γq is the intersection

of our local integration domain boundary with Neumann boundary. Integrals on
Γi = ∂Ωi\(Γ(u)

i ∪Γ
(q)
i), the portion of ∂Ωi lying inside Γ, give null contribution,

being τi = 0 on ∂Ωi. Boundary conditions are treated by exploiting suitable tech-
niques (Atluri, 2004; Mazzia, Pini, and Sartoretto, 2008).

In the sequel, following (Mazzia and Sartoretto, 2010), we consider MLPG meth-
ods where the trial functions are the MLS shape functions generated by suitable
Radial Basis Functions (RBF), while the test functions are either RBF, or Tensor
Product Functions (TPF).

Concerning DMLPG, it is obtained by applying GMLS to the weak problem (5).
We identify the following linear functionals, to be approximated via GMLS, by
using the point functionals λi(u) = u(xi).
For convenience we divide the discretization nodes into three subsets, i.e. the nodes
x j, falling inside Ω, the set of nodes xk ∈ Γu, the set of nodes xl ∈ Γq. For each
internal node x j, the left-hand side of the weak form (5)

µ j(u)≡
∫

Ω j

∇u ·∇τ jdΩ−
∫

Γ
(u)
j

(∇u ·n)τ jdΓ,

is the functional to be approximated, while the known term is

β j ≡
∫

Ω j

f τ j dΩ+
∫

Γ
(q)
j

(∇u ·n)τ jdΓ,

Following GMLS steps, the ensuing approximation is

µ̂ j(u) = ∑
i

φi(µ j)u(xi).

Numerical Investigation on Direct MLPG 189

The j-th DMLPG approximated equation is

µ̂ j(u) = β j.

Now being (p
λi
)k = λi(pk) = pk(xi), k = 1, . . . ,m, the matrix E in GMLS coin-

cides with MLS one (Mirzaei, Schaback, and Dehghan, 2011). The GMLS shape
functions are

φ(µ j) = WE(ETWE)−1
µ j(p) = Qµ j(p),

being Q = WE(ETWE)−1. Now the weight functions are the same compact sup-
ported RBF used in MLS, hence

w(λi,µ j) = w j(xi) = w(
∥∥xi− x j

∥∥),
is non-zero only when

∥∥xi− x j

∥∥< ri, for a given ri value. So the smaller ri values
are, the smaller size Ni < N the matrix Q has.

Note that µ j(p) involves evaluating the weak form where the integrating functions
are products whose factors are test functions (or their partial derivatives), and poly-
nomials, whereas in MLPG the factors corresponding to the latter ones are more
complex MLS shape functions, and their partial derivatives.

Dirichlet boundary conditions can be directly imposed as λk(u) = u(xk) = ū(xk),
xk ∈ Γk. Such approach is a simplification over using MLPG techniques, where
the unknowns are the so called “fictitious” values, which do not coincide with
u(xi) (Atluri, 2004), leading to many techniques developed in order to fulfill Dirich-
let BC (see e.g. (Mazzia, Pini, and Sartoretto, 2008; Wu and Plesha, 2002)). More-
over, if one needs to approximate u(xi), a “reconstruction” step must be
performed (Mazzia, Pini, and Sartoretto, 2008).

Neumann BC are imposed by approximating the normal derivative operator ηl(u) =
∂u(xl)/∂n and setting the approximate relations η̂l(u) = q̄(xl) for each xl ∈ Γq.

We emphasize that the MLPG methods described above require computing for each
discretization node the MLS shape functions and their partial derivatives on its as-
sociated numerical quadrature points. In place of MLS shape functions, DMLPG
involves polynomials. This is a key difference: MLS shape functions are com-
putationally more demanding. Moreover, DMLPG requires evaluating one single
time for each node the matrix Q, while each evaluation of a MLS shape function in
MLPG needs evaluating a Q-like matrix. Such differences are the main responsible
of the higher CPU time one well guesses it is spent by MLPG over DMLPG, for a
given approximation tolerance.

190 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

4 Finite dimensional spaces

On the ground of our previous 2D and 3D results (Mazzia, Pini, and Sartoretto,
2008; Mazzia and Sartoretto, 2010), we exploit DMLPG trial functions based upon
GMLS. In order to identify a trial space, both for MLPG and DMLPG we exploit
a set of suitable weights, hence obtaining the so called shape functions (Atluri and
Zhu, 2002; Belytschko, Krongauz, Organ, Fleming, and Krysl, 1996; Lancaster and
Salkauskas, 1981; Mazzia, Pini, and Sartoretto, 2008).

In order to fully specify our meshless procedure, we need to identify suitable test
functions. On the ground of our previous results on 2D problems (Mazzia and
Sartoretto, 2010), as the test function space generators, we exploited TPF generated
by suitable 1D functions (see the sequel).

4.1 Generating functions

Assume w(t) is a given, differentiable, compact supported, generator function;
when t > 1, w(t) = 0 holds.

A RBF associated to node xi is identified by suitably setting a support radius ri and
considering

w
(
‖x− xi‖2

ri

)
.

Our weights and test spaces were obtained by using three types of “generating”
functions.

We considered cubic and quartic spline functions like in (Belytschko, Krongauz,
Organ, Fleming, and Krysl, 1996). The cubic spline is

w(t) =

2
3
−4t2 +4t3 0≤ t ≤ 1/2,

4
3
−4t +4t2− 4

3
t3 1/2≤ t ≤ 1,

0 t ≥ 1.

(6)

The quartic spline is

w(t) =

{
1−6t2 +8t3−3t4 0≤ t ≤ 1,

0 t ≥ 1.
(7)

Gaussian generator after (Lu, Belytschko, and Gu, 1994) is

w(t) =

exp(−(σt)2)− exp(−σ2)

1− exp(−σ2)
0≤ t ≤ 1

0 t ≥ 1,

(8)

Numerical Investigation on Direct MLPG 191

where σ is a parameter controlling the function shape.

Concerning TPF, we provide definitions for 3D problems. 2D problems are treated
by disregarding the z values. To each node, xi, we associate the TPF

τi(x,y,z) = f (|x− xi|/η
(x)
i) · f (|y− yi|/η

(y)
i) · f (|z− zi|/η

(z)
i), (9)

by suitably choosing the η
(∗)
i factors. For simplicity, we assume η

(x)
i = η

(y)
i =

η
(z)
i = η̄i, hence the support of τi(x) is a cube centered at xi. We call η̄i the “radius”

of the cube. We exploited polynomial generators after (Liu, 2009)

f (t) =

{
1− t2, 0≤ t ≤ 1,

0, t ≥ 1.
(10)

4.2 Hardware and software

We implemented our algorithms into FORTRAN 77 codes, compiled via XLF v9.1.
They were run on an IBM Power 5, 2 dual–core 1.9 GHz CPUs. The machine has a
16 GB RAM, two–level cache, 64 KB first level, 2 MB second level. Its operating
system is AIX version 5.3.

5 2D problems

5.1 Uniform and irregular discretizations

Many parameters must be tuned in order to identify effective DMLPG methods.
Recall that, despite DMLPG was introduced in order to deal with irregular “clouds”
of points, tuning is not like to be safely performed on completely random sets
of discretization points. In order to analyze the main features of our meshless
procedures, we start focusing on uniform discretizations, U j, on [0,1]2, i.e. sets
of nodes which are corners of uniform grids. Node distances are h j = 1/2 j+1,
j = 1, . . . ,5. The number of discretization nodes is N = 25, 81, 289, 1089, 4225,
respectively.

We also performed extensive numerical experiments on irregular discretizations.
They showed that completely random refinements produce high error oscillations.
In order to provide “reasonably irregular” discretizations, we had to produce nested
clouds, i.e. each finer cloud encompasses all nodes in the coarser one. Follow-
ing (Mirzaei, Schaback, and Dehghan, 2011), we exploited Halton points (Halton,
1960). We built an irregular discretization, H j, j = 1, . . . ,5, by taking the uniformly
distributed boundary nodes in U j, and generating a number of internal Halton points
so that the total number of nodes equals that one of U j. Halton points are computed

192 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

j N hH j,[0,1]2 qH j

1 25 2.4420×10−1 3.6325×10−2

2 81 1.4555×10−1 1.6800×10−2

3 289 6.7585×10−2 4.0964×10−3

4 1089 3.2606×10−2 1.5982×10−3

5 4225 1.6876×10−2 1.7474×10−4

Table 1: Fill distance and separation distance of the irregular discretizations H j.

using the code documented in (Fasshauer, 2007), ensuring that when j < k, H j ⊂Hk
holds true.

When dealing with an irregular distribution of points, H, discretizing the domain
Ω, the following two measures are worth considering (Fasshauer, 2007). The fill
distance is

hH,Ω = sup
x∈Ω

min
1≤i≤N

‖x− xi‖.

The separation distance is

qH =
1
2

min
j 6=i
‖x j− xi‖.

Table 1 shows fill and separation distances of our irregular discretizations H j. Note
that the fill distance approximately halves when considering a given discretization
and the immediately finer one. Moreover each H j is quasi–uniform e.g. respect to
the constant c = 100, i.e.

qH j < hH j,[0,1]2 < 100qH j .

The fill distance is also connected to shifted–scaled polynomial basis. Assume h
is either the edge length, when an uniform discretization is exploited, or the fill
distance, when an irregular discretization is considered. When computing GMLS
on point (xi,yi), one can use (x− xi)/h,(y− yi)/h in place of (x,y) for building the
polynomial basis. Such a shifted–scaled basis is expected to be more numerically
stable than the standard one (Mirzaei, Schaback, and Dehghan, 2011).

5.2 Test problems

In the sequel we report our numerical results concerning the solution of two test
problems.

Numerical Investigation on Direct MLPG 193

• Let us consider Poisson problem on [0,1]2 with Dirichlet boundary condi-
tions, whose solution is (Wagner and Liu, 2001)

u(x,y) =
(

cosh(πy)− sinh(πy)
tanh(π)

)
sin(πx).

This problem is labeled PD in the sequel.

• Now consider Poisson problem PM, where mixed BC are set. More pre-
cisely, Dirichlet conditions on the left and right boundaries of the domain
were set; Neumann conditions on the top and bottom boundaries were set;
the associated forcing function was analytically identified, so that the exact
solution of Poisson problem is

u(x,y) = sinx+ siny+ sin(3x)+ sin(3y).

5.3 DMLPG parameter tuning

In order to evaluate the accuracy of our DMLPG method, we compute the relative
error

ε =

√
∑

N
i=1(ũi−ui)2

∑
N
i=1(ui)2

, (11)

where ũi is our approximate solution on xi, while ui = u(xi) is the exact solution.
One can see that using e.g. the maximum norm, one is lead to the same conclusions
drawn in the sequel.

Identifying effective meshless methods, requires tuning the trial support radius, ri,
on each node xi, and the test support radius, ρi. In order to fix ideas, for com-
putational convenience, and according to our numerical experience, see (Mazzia,
Pini, and Sartoretto, 2008; Mazzia and Sartoretto, 2010), we assume that ri > ρi,
i = 1, . . . ,N, hold true.

When an uniform discretization U j is exploited, we set

ρi = ρ = α hi, ri = r = β hi,

the α and β parameters must be tuned. When an irregular discretization H j is
given, for each node xi we compute the distances, ∆x(k)

i , k = 1, . . . ,6 of the six
closest nodes to xi. The “average” distance

h̃i =
1
6

6

∑
k=1

∆x(k)
i ,

194 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

is then computed. We tune the parameters α and β so that

ρi = α h̃i, ri = β h̃i,

are effective support radii for the i-th test and trial functions, respectively. Assume
xi is a node internal to Ω = [0,1]2, its distance from the boundary of Ω being bi. In
order to avoid that the integration domain in (5) go outside Ω, we set ρi := bi, when
bi < ρi.

Let us solve Poisson problem PD by DMLPG. On the ground of our numerical
experience with MLPG (Mazzia, Pini, and Sartoretto, 2008; Mazzia and Sartoretto,
2010), we set α = 1. Figure 1 shows the errors raised by DMLPG vs β . Either
the Gaussian, or the cubic spline, quartic spline, is exploited as the GMLS weight
function. Either a quadratic basis (q = 2, top frame) or a cubic one (q = 3, bottom
frame) is exploited in GMLS. The maximum number of non–zero elements per row
in the final linear system matrix is also shown. By inspecting Figure 1 one can see
that when using a GMLS quadratic basis (q = 2), and Gaussian weights, the error
does not appreciably change with β , while using a cubic basis (q = 3) slight error
variations occur, when 2 < β < 3.5. On the ground of these results, in the sequel
we assume β = 2.5, if not otherwise stated. By numerical experiments we found
that setting β = 2.5 the error does not appreciably change when α ∈ [10−3,1.5].
This result suggests a “collocation–like” behavior of DMLPG.

In order to perform surface integrals in (5), we exploited 2D Gauss–Legendre for-
mulas, enrolling m×m quadrature nodes, 2 ≤ m ≤ 64. By numerical experiments
we found that the solution accuracy does not appreciably depend on the accuracy
of quadrature formulas, unlike in MLPG methods (Mazzia and Pini, 2010). The re-
sults shown in the sequel were obtained by exploiting computationally cheap 3×3
Gauss–Legendre quadrature.

5.4 Numerical results

Inspecting Figure 2 one can see that setting β = 2.5, α = 1, σ = 4, provides effec-
tive convergence with both quadratic and cubic polynomial basis.

Assume h is the fill distance of a discretization. Recall that in both our uniform
discretizations, and Halton–based ones (see Table 1) a refining step halves the fill
distance. Hence the convergence rate can be numerically approximated by

γ = log2(
ε j

ε j+1
).

Table 2 reports errors and convergence rates obtained when solving problem PD

by exploiting uniform node discretizations. Quadratic GMLS basis is enrolled

Numerical Investigation on Direct MLPG 195

Figure 1: Errors raised solving problem PD, when β parameter changes; α = 1 was
set. The finest uniform grid, U5, was exploited. Either Gaussian or spline weights
are enrolled. A quadratic GMLS basis (q = 2) is exploited in the top frame; A cubic
one (q = 3) is exploited in the bottom frame. The maximum number of non–zero
values per row in the final coefficient matrix is also shown.

196 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

Figure 2: Problem PD, errors raised when exploiting uniform discretizations. We
set β = 2.5, q = 2 (left frame), q = 3 (right frame).

N gaussian quartic spline cubic spline
ε rate ε rate ε rate

25 4.2380e-03 5.2641e-02 4.1836e-02
81 1.3182e-03 1.7 9.0659e-03 2.5 7.6598e-03 2.4
289 3.7276e-04 1.8 1.2521e-03 2.9 1.1866e-03 2.7
1089 9.9492e-05 1.9 1.4561e-04 3.1 1.7001e-04 2.8
4225 2.5725e-05 2.0 1.7095e-05 3.1 2.3886e-05 2.8

Table 2: Errors and convergence rates recorded when solving problem PD by ex-
ploiting uniform distributions of nodes, quadratic GMLS polynomial basis func-
tion. Either Gaussian, or cubic and quartic spline weights were enrolled for gener-
ating trial functions. The value β = 2.5 was set.

N gaussian quartic spline cubic spline
ε rate ε rate ε rate

25 4.4121e-03 2.3604e-02 2.2797e-02
81 1.3834e-03 1.7 1.2673e-03 4.2 1.9729e-03 3.5
289 3.8457e-04 1.8 2.6149e-04 2.3 1.8224e-04 3.4
1089 1.0124e-04 1.9 9.0376e-05 1.5 2.2378e-05 3.0
4225 2.5962e-05 2.0 2.4830e-05 1.9 4.1240e-06 2.4

Table 3: Analogous to Table 2, when a cubic polynomial GMLS basis is exploited.

Numerical Investigation on Direct MLPG 197

Figure 3: Solving problem PD using Halton nodes. q = 2, β = 2.5 (left frame);
q = 3, β = 2.6,2.7,2.8 (right frame).

(q = 2). The weights for generating the trial functions are either Gaussian, or quar-
tic splines, or cubic splines. For each given discretization, errors are quite com-
parable, and they decrease when the discretization is refined. Being q = 2, k = 1,
the optimal convergence rate should be (Mirzaei, Schaback, and Dehghan, 2011)
γ ' 2 = q+1−k. When Gaussian weights are exploited, the estimated convergence
rates approach the optimal value. When spline weights are exploited, estimated
over–optimal values γ > 3 are shown. On the other hand, let us inspect Table 3,
which is analogous to the previous one, reporting results when cubic polynomial
basis is enrolled (q = 3). Now optimal convergence rate should be γ ' 3 = q+1−k,
being now q = 3, k = 1. Gaussian and quartic spline weights provide suboptimal
rates, while cubic spline weights seems to give over–optimal convergence.

Figure 3 reports errors when Halton nodes are exploited for solving problem PD.
One can see that in order to avoid that the error increases for small h values, slightly
larger β values must be set, when q = 3. The value β = 2.8 works for all our three
weights.

Let us now consider problem PM where mixed BC are set. Figure 4 reports the
errors computed when exploiting the uniform discretizations U j, j = 1, . . . ,5. Using
the quadratic basis, the error behavior resembles that one reported on problem PD.
When a cubic polynomial basis is enrolled, we had to slightly enlarge β , setting β =
3.5 produced an acceptable error behavior. Figure 5 records the errors computed
when exploiting Halton nodes. Respect to exploiting an uniform discretization, the
error behavior depends slightly more from the weights. Again when q = 3 β value
must be slightly enlarged, β = 2.8 being a suitable setting.

Table 4 shows errors and convergence rates recorded when solving problem PM,
using quadratic polynomial basis, and an uniform node distribution. One can see

198 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

Figure 4: Errors raised when solving problem PM, using uniform discretizations.
Left frame: β = 2.5, q = 2. Right frame: β = 3.5, q = 3.

Figure 5: Errors raised when solving problem PM, using Halton nodes. Left frame:
β = 2.5, q = 2. Right frame: β = 2.8, q = 3.

N gaussian quartic spline cubic spline
ε rate ε rate ε rate

25 4.4280e-02 3.2234e-02 3.6830e-02
81 1.1270e-02 2.0 8.2056e-03 2.0 9.4441e-03 2.0

289 2.7300e-03 2.0 2.2435e-03 1.9 2.4957e-03 1.9
1089 6.6857e-04 2.0 1.6499e-03 0.4 6.5004e-04 1.9
4225 1.6535e-04 2.0 1.5529e-04 3.4 1.6636e-04 2.0

Table 4: Problem PM. Errors and convergence rates. Uniform distribution of
nodes, quadratic polynomial basis functions, β = 2.5.

Numerical Investigation on Direct MLPG 199

N gaussian quartic spline cubic spline
ε rate ε rate ε rate

25 2.5620e-02 4.0671e-02 4.3711e-02
81 5.2458e-03 2.3 1.8984e-02 1.1 1.8208e-02 1.3
289 1.2110e-03 2.1 5.3767e-03 1.8 5.0197e-03 1.9
1089 2.9526e-04 2.0 1.3901e-03 2.0 1.2845e-03 2.0
4225 7.3291e-05 2.0 3.5002e-04 2.0 3.2331e-04 2.0

Table 5: Problem PM. Errors and convergence rates. Uniform distribution of
nodes, cubic polynomial basis functions, β = 3.5.

Figure 6: Errors raised solving problem PM, using either shifted (dashed lines) or
non shifted (solid lines) polynomial basis functions.

that rates with gaussian and cubic spline weights are acceptable. When quartic
splines are enrolled, oscillating rates are recorded.

Table 5 refers to cubic polynomial basis. Note that in order to achieve convergence,
β = 3.5 was set.

Figure 6 show convergence profiles when PM problem is solved by using either
shifted or non–shifted basis. Two settings are considered: uniform discretization,
q = 2, β = 2.5, cubic spline weight, and Halton discretization q = 3, β = 2.8,
gaussian weights. One can see that when the finest discretization is enrolled, a
shifted basis must be exploited in order to avoid a large increment in the error.
These error behaviors suggest that shifted bases are likely to be enrolled when fine
discretizations are exploited.

200 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

6 3D problems

We extended DMLPG technique to 3D problems, a non trivial task which needs
identifying suitable data structures in order to deal with larger sets of nodes. More-
over, solving the ensuing large linear systems demands for efficient iterative solvers
(see the sequel).

Now we aim to compare DMLPG with MLPG techniques. Quadratic (q = 2) poly-
nomial bases are enrolled for MLS and GMLS. On the ground of our previous
results on 2D and 3D problems (Mazzia, Pini, and Sartoretto, 2008; Mazzia and
Sartoretto, 2010), we consider two effective MLPG techniques. One technique,
labelled “RR” in the sequel, uses Gaussian RBF weights to provide MLS shape
functions as the trial functions. The test functions are again Gaussian RBF weights,
hence local integration domains are spheres. Our alternative MLPG technique ex-
ploits the same MLS shape functions as the trial functions, but the TPF arising
from generators of type (10) as the test functions. This latter technique will be
called “RT”, a shorthand for RBF-TPF, as it uses trial RBF, and test TPF.

We numerically compare RR and RT when solving 3D problems, with our DMLPG
technique, for shortness also labelled “D” in the sequel. Gaussian generators are
exploited in order to provide GMLS weights. The test functions are the same TPF
as in RT. Cuboidal local integration domains are thus considered.

Numerical cubatures on spheres were performed using Stroud’s 512 node, degree
15 cubature rule (subroutine SPH15, after (Stroud, 1971, pag. 352)). In our previous
works, we found that such rule provide accurate integral values at affordable com-
putational costs (Mazzia, Pini, and Sartoretto, 2008). Numerical integrations on
cuboids were accomplished using Gauss-Legendre product formula with 53 nodes.

In order to analyze the main features of our Meshless procedures, we focus on
uniform discretizations on [0,1]3, i.e. sets of nodes which are corners of uniform
grids. Their edge lengths are h j = 1/2 j+1, j = 1,2,3,4. The number of discretiza-
tion nodes is 125, 729, 4913, 35937.

Like done above dealing with 2D problems, for any node inside each one of our
uniform discretizations, we must identify suitable α and β values. Now α = 1 is
set on each discretization, while β values are reported below.

6.1 Test solutions

In the sequel we report our numerical results concerning the solution of problem (2)
on the [0,1]3 domain. Both the forcing function, f , and the BC, were computed
after each solution in a given set of test ones. The latter solutions are drawn after
our previous work on 3D potential problems (Mazzia, Pini, and Sartoretto, 2008).
One polynomial sample was added, in order to enlarge our set.

Numerical Investigation on Direct MLPG 201

After (Zhang, Tanaka, and Endo, 2004), we consider the harmonic polynomial

u(x,y,z) = x3 + y3 + z3−3yx2−3xz2−3zy2. (12)

In the sequel, this test solution is labeled “uP3”.

Moreover, we added the slightly different, incomplete polynomial (labeled “uP3i”)

u(x,y,z) = x3 + y3 + z3 + xyz. (13)

After (Wang, Zhong, and Zhang, 2006), two trigonometric functions are consid-
ered.

• The function “uT1” which evenly changes along the three coordinate direc-
tions

u(x,y,z) = sinx+ siny+ sinz+ sin(3x)+ sin(3y)+ sin(3z). (14)

• The function “uT2” which changes more rapidly in the z- and y-directions.

u(x,y,z) = sinx+ siny+ sinz+ sin(5y)+ sin(10z). (15)

Moreover, we consider the composed cosine–polynomial solution “uCP” after (Mazzia,
Pini, Putti, and Sartoretto, 2003)

u = cos
(

3π

(
x3 + y3 + z3

3
− x2 + y2 + z2

2

))
. (16)

6.2 Solving linear systems

When considering 2D problems, MLPG linear systems are usually solved via di-
rect methods, like (Li, Demmel, Gilbert, and Grigori, 2012; MUMPS, 2012; PAR-
DISO, 2012). These methods are efficient and accurate for 2D problems, but too
storage demanding when 3D problems are attacked by using fine discretizations.
Preconditioned iterative methods are the best choice for large 3D problems. We
efficiently solved our non symmetric, sparse, 3D linear systems via preconditioned
Bi-CGSTAB (van der Vorst, 1992). Preconditioning was performed via incomplete
Crout factorization (Kershaw, 1978; Pini and Zilli, 1989). Parallel implementa-
tions of this solver for non symmetric systems were exploited inside meshless tech-
niques (Bergamaschi, Martinez, and Pini, 2009; Ferronato, Janna, and Pini, 2012).
The iterations were stopped when the i-th relative residual is smaller than 10−15.
Such tolerance ensures achieved double precision (64-bit) numerical accuracy at-
tained. Each linear system was solved to maximum accuracy, in order to avoid
extra numerical errors in the solution procedure.

202 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

e(max) convergence rates
Test nx RR RT D RR RT D

4 7.37E-04 1.13E-03 1.21E-13 - - -
uP3 8 1.04E-04 1.78E-04 2.25E-12 2.8 2.7 -

16 1.39E-05 2.26E-05 1.67E-11 2.9 3.0 -
32 2.26E-06 3.78E-06 5.29E-10 2.6 2.6 -

4 8.73E-04 1.05E-03 9.30E-14 - - -
uP3i 8 1.18E-04 1.63E-04 1.69E-12 2.9 2.7 -

16 1.50E-05 2.15E-05 2.01E-11 3.0 2.9 -
32 2.10E-06 3.40E-06 6.24E-10 2.8 2.7 -

4 3.98E-03 5.07E-03 1.58E-03 - - -
uT1 8 5.36E-04 7.34E-04 4.18E-04 2.9 2.8 1.9

16 6.87E-05 3.50E-05 1.06E-04 3.0 4.4 2.0
32 1.69E-05 1.20E-05 2.66E-05 2.0 1.5 2.0

4 1.49E-01 1.81E-01 3.24E-03 - - -
uT2 8 1.51E-02 1.70E-02 3.89E-03 3.3 3.4 -

16 1.67E-03 2.00E-03 1.17E-03 3.2 3.1 1.7
32 3.09E-04 2.69E-04 3.05E-04 2.4 2.9 1.9

4 2.14E-03 3.85E-03 2.68E-03 - - -
uCP 8 3.80E-04 5.14E-04 5.08E-04 2.5 2.9 2.4

16 9.70E-05 6.88E-05 1.26E-04 2.0 2.9 2.0
32 2.95E-05 2.11E-05 3.16E-05 1.7 1.7 2.0

Table 6: Dirichlet BC. Errors and convergence rates recorded when approximat-
ing the proposed test solutions. Dashes identify non computable and meaningless
(negative) rates.

6.3 Numerical comparison

In the sequel, in order to focus on local errors on an N–node discretization, we
exploit the maximum norm error

e(max) =
N

max
i=1
|ui− ũi|. (17)

We observed that in our 3D problems the values of this norm are larger than the
relative error (11).

Table 6 reports errors and convergence rates for RR, RT, and D methods, when pure
Dirichlet BC are set. Values β = 4, σ = 4 were set for RR and RT, while β = 1.9,
σ = 3 for D technique. The second column reports the number of nodes on the

Numerical Investigation on Direct MLPG 203

CPU seconds CPU ratios Iterations
Test nx RR RT D RR/D RT/D RR RT D

4 9.9 2.8 3.4 2.9 0.8 3 3 4
uP3 8 129.3 33.5 3.6 36.2 9.4 5 5 6

16 1291.2 329.6 11.0 118.1 30.2 8 7 10
32 11583.5 2881.4 461.7 25.1 6.2 13 12 18
4 9.7 2.9 3.2 3.0 0.9 3 3 2

uP3i 8 134.6 33.6 3.6 37.7 9.4 5 5 5
16 1310.7 323.6 11.1 118.4 29.2 8 7 9
32 11657.4 2786.5 462.3 25.2 6.0 14 12 19
4 9.8 2.9 2.3 4.3 1.3 3 3 2

uT1 8 129.4 33.9 3.3 39.8 10.4 5 5 5
16 1292.1 320.5 8.1 160.3 39.8 8 7 10
32 11755.1 2859.2 469.6 25.0 6.1 14 12 19
4 9.9 2.9 3.4 2.9 0.9 3 3 2

uT2 8 129.1 34.5 3.6 36.4 9.7 5 5 6
16 1289.4 323.2 10.9 118.7 29.8 8 7 10
32 11333.5 2898.7 460.6 24.6 6.3 14 12 18
4 9.8 2.9 2.5 3.9 1.2 3 3 2

uCP 8 129.6 33.8 2.8 46.0 12.0 5 5 5
16 1302.6 328.5 10.9 119.7 30.2 8 7 9
32 11578.7 2890.7 412.0 28.1 7.0 14 12 16

Table 7: Dirichlet BC. CPU seconds, their ratios, and iterations spent for solving
the final linear systems.

204 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

x-axis, which equals those on the y- and z- ones. Note that when approximating
cubic polynomial solutions (i.e. uP3, uP3i) DMLPG displays much smaller errors
(in the range 10−14 to 10−10) than the other methods, errors which slightly increase
when the discretization is refined. This counterintuitive behavior is to be ascribed to
high precision in the approximate solution, which slightly decreases when a larger
number of nodes, and hence of floating point operations, is introduced. This be-
havior produces meaningless convergence ratios, due to floating point errors. Note
that a quadratic polynomial basis is exploited, hence DMLPG is not guaranteed to
exactly recover third order polynomials. By inspecting Table 6, one can see that
the errors raised by DMLPG when approximating our non–polynomial solutions
are well comparable with those recorded by RR and RT techniques. On the other
hand, DMLPG convergence rates oscillates less respect to RR and RT, when the
number of nodes changes. While RR and RT rates are far from constant, DMLPG
ones quite well approach the theoretically optimal γ = 2 value.

Table 7 reports CPU seconds spent for solving our test problems, together with the
number of iterations spent to solve the final linear system. Note that inspecting
column 6, which reports the ratio between CPU seconds spent by RR divided by
D running seconds, DMLPG time can be up to approximately 160 times smaller.
Column 7 reports RT/D CPU ratio, which is at most 39.8, since RT is faster than
RR. On the other hand, let us see the number of iterations spent. Both RR, RT and
D spent quite the same number of iterations in each test case.

Note that when the number of nodes on each axis is doubled, RR and RT CPU times
are roughly multiplied by 9. On the other hand, DMLPG time increases slower,
except an abrupt increase when going from 16 to 32 nodes per axis. Such increase
is likely to be ascribed to higher DMLPG storage requirements, which triggers
storage access problems when the number of discretization nodes increases much.

Concerning 3D problems with Mixed BC, assume we set Neumann boundary con-
ditions on the portion 0.5 ≤ x,y ≤ 0.75 of the z = 0 face on the [0,1]3 domain.
Dirichlet conditions are set elsewhere. For each given test solution, we compute
the corresponding BC for Poisson problem on the unit cube.

Table 8 shows errors and convergence ratios for tests uT2 and uCP. The value α =
1, as above, was set in both tests. Parameter tuning for RR, RT, and D techniques
resulted to be a bit harder for Mixed BC than for pure Dirichlet BC. For RR and
RT, the scaling parameter in Gauss generator was σ = 3, while β = 4 was set.

When q = 2 CPU times are quite the same as in Table 6, hence they are not reported
in the sequel. It is not worth running RR and RT with q = 3, since CPU times are
too large. On the contrary, switching from q = 2 to q = 3, DMLPG CPU times do
not increase appreciably. DMLPG results are reported for both quadratic (q = 2)

Numerical Investigation on Direct MLPG 205

e(max) convergence rates
q = 2 q = 3 q = 2 q = 3

Test nx RR RT D D RR RT D D
4 1.47E-01 2.17E-01 8.76E-01 9.13E-01 - - - -

uT2 8 1.81E-02 7.83E-02 4.69E-01 5.80E-01 3.0 1.5 0.9 0.7
16 1.52E-02 1.42E-02 1.11E-01 4.33E-02 0.3 2.5 2.1 3.7
32 1.37E-02 2.90E-03 2.94E-02 2.06E-03 0.1 2.3 1.9 4.4

4 2.12E-03 7.23E-03 1.86E-01 9.30E-02 - - - -
uCP 8 3.08E-04 1.06E-03 2.40E-02 2.60E-01 2.8 2.8 3.0 -

16 9.75E-05 2.14E-04 3.78E-03 1.36E-03 1.7 2.3 2.7 7.6
32 2.95E-05 4.37E-05 6.80E-04 8.10E-05 1.7 2.3 2.5 4.1

Table 8: Mixed BC. Analogous to Table 6.

and cubic (q = 3) bases. The value σ = 5 was set, while β = 2.75 was set when
q = 2. Recall that a higher degree basis requires a bit larger β , i.e. larger supports
for trial functions, in order to attain a non–singular Q matrix in GMLS. When q = 3
we set β = 3.5.

By inspecting Table 6 one can see that DMLPG with q = 3 is preferable over q = 2:
good accuracy and higher convergence ratios, even better than the assumed optimal
γ = 3 value, are attained. Recalling that DMLPG CPU times do not appreciably
increase when q = 3, we infer that this technique is expected to be more effective
than RR and RT.

7 Conclusions

The accuracy and efficiency of a DMLPG technique when solving 2D problems
were numerically analyzed. Afterwards, 3D problems were considered. DMLPG
performance was compared with those ones of two MLPG procedures.

The following points are worth emphasizing.

• Concerning the solution of 2D problems by DMLPG.

– Parameter tuning must be carefully assessed. Setting the radiuses of
trial functions is not a difficult task to perform. The number of non-
zero elements per row in the final linear system matrix rapidly increases
with the radius, hence in order to keep the computational cost low, small
radiuses are wellcome. Using a cubic basis can ask to slightly enlarge
the radiuses respect to exploiting a quadratic basis.

206 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

– The accuracy of numerical quadrature formulas required to compute the
weak forms, is not so critical as in MLPG methods. DMLPG involves
“simplified” integrating functions (they do not involve shape functions
as MLPG methods do) hence simpler and faster quadrature rules can be
exploited.

– Solving either pure Dirichlet or Mixed Poisson problems provides ef-
fective DMLPG approximations. Their convergence rates can depend
upon the weights enrolled in order to provide the trial functions.

– Shifted polynomial bases are likely to be enrolled when fine discretiza-
tions are exploited, in order to avoid large errors.

• Comparing DMLPG with RR and RT procedures, in solving 3D problems.

– The CPU time spent by DMLPG can be up to one hundred time lower
than RR running time, when achieving comparable or even higher DMLPG
accuracy respect to RR and RT.

– Due to storage requirements, DMLPG running time can increase more
rapidly when the number of discretization nodes becomes large.

– Respect to exploiting a quadratic basis, when considering a mixed prob-
lem, a cubic basis improves the accuracy and convergence rates of
DMLPG, without appreciably increasing the CPU time spent. On the
other hand RR and RT with a cubic basis are too time consuming to be
worth exploiting.

Future work is planned in order to solve unsteady diffusion problems.

Acknowledgement: This work was partially funded by Fondi ex 60%, “Metodi
ed Algoritmi Numerici per la Simulazione di Mezzi Porosi”. The third Author
received support from Università Ca’ Foscari Venezia.

References

Atluri, S. N. (2004): The Meshless method (MLPG) for domain & BIE discretiza-
tions. Tech Science, 2004, Forsyth GA.

Atluri, S. N.; Zhu, T. (2002): The meshless local Petrov-Galerkin (MLPG)
method: A simple & less–costly alternative to the finite element methods. Com-
puter Modeling in Engineering and Sciences, vol. 3, no. 1, pp. 11–51.

Babuska, I.; Banerjee, U.; Osborn, J. E. (2005): Survey of meshless and gen-
eralized finite element methods: A unified approach. Technical report, Office of

Numerical Investigation on Direct MLPG 207

Naval Research, One Liberty Center, 875 North Randolph Street Suite 1425, Ar-
lington, VA, 22203-1995, 2005.

Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. (1996): Mesh-
less methods: an overview and recent developments. Comp. Methods App. Mech.
Eng., vol. 139, pp. 3–47.

Bergamaschi, L.; Martinez, A.; Pini, G. (2009): An efficient parallel mlpg
method for poroelastic models. Computer Modeling in Engineering and Science,
vol. 49, no. 3, pp. 191–216.

Buhmann, M. D. (2003): Radial Basis Functions: Theory and Implementation,
volume 12 of Cambridge Monographs on Applied and Computational Mathemat-
ics. Cambridge University Press, Cambridge.

Duflot, M.; Nguyen-Dang, H. (2002): A truly meshless method based on a
moving least squares quadrature. Commun. Numer. Methods Eng., vol. 18, pp.
441–449.

Fasshauer, G. E. (2007): Meshfree approximation methods with MATLAB,
volume 6 of Interdisciplinary Mathematical Sciences. World Scientific Publishing
Co., pub-WORLD-SCI:adr. With 1 CD-ROM (Windows, Macintosh and UNIX).

Ferronato, M.; Janna, C.; Pini, G. (2012): Shifted FSAI preconditioner for the
efficient parallel solution of non-linear groundwater flow models. International
Journal for Numerical Methods in Engineering, vol. 89, pp. 1707–1719.

Fries, T.-P.; Matthies, H.-G. (2004): Classification and overview of mesh-
free methods. Technical Report 2003-3, Technical University Braunschweig,
Brunswick, Germany, 2004.

Halton, J. H. (1960): On the efficiency of certain quasi-random sequences of
points in evaluating multi-dimensional integrals. Numer. Math., vol. 2, pp. 84–90.

Kershaw, D. S. (1978): The incomplete Cholesky-conjugate gradient method for
the iterative solution of systems of linear equations. J. Comp. Phys., vol. 26, pp.
43–65.

Lancaster, P.; Salkauskas, K. (1981): Surfaces generated by moving least
squares methods. Math. Comp., vol. 37, no. 155, pp. 141–158.

Levin, D. (1998): The approximation power of moving least–squares. Math.
Comp., vol. 67, no. 234, pp. 1517–1531.

Li, S.; Demmel, J.; Gilbert, J.; Grigori, L. (2012): SuperLU. http:
//crd-legacy.lbl.gov/~xiaoye/SuperLU/, 2012. Last accessed: September
7, 2012.

208 Copyright © 2012 Tech Science Press CMES, vol.88, no.3, pp.183-209, 2012

Liu, G. R. (2009): Meshfree Methods: Moving Beyond the Finite Element
Method. CRC Press, second edition.

Lu, Y. Y.; Belytschko, T.; Gu, L. (1994): A new implementation of the element
free Galerkin method. Comp. Methods App. Mech. Eng., vol. 113, pp. 397–414.

Mazzia, A.; Pini, G. (2010): Product Gauss quadrature rules vs cubature rules
in the meshless local Petrov-Galerkin method. Journal of Complexity, vol. 26, pp.
82–101.

Mazzia, A.; Pini, G.; Putti, M.; Sartoretto, F. (2003): Comparison of 3D flow
fields arising in mixed and standard unstructured finite elements. In et al., P. S.(Ed):
Computational Science – ICCS 2003, volume 2657 of Lecture Notes in Computer
Sciences, pp. 560–567, Berlin. Springer-Verlag.

Mazzia, A.; Pini, G.; Sartoretto, F. (2008): Accurate MLPG solution for 3D
potential problems. Computer Modeling in Engineering & Sciences, vol. 36, no.
1, pp. 43–63.

Mazzia, A.; Sartoretto, F. (2010): Meshless solution of potential problems by
combining radial basis functions and tensor product ones. Computer Modeling in
Engineering & Sciences, vol. 68, no. 1, pp. 95–112.

Mirzaei, D.; Schaback, R. (2011): Direct meshless local Petrov–Galerkin
(DMLPG) method: a generalized MLS approximation. Preprint, 2011.

Mirzaei, D.; Schaback, R. (2012): Solving heat conduction problems by the
direct meshless local Petrov–Galerkin (DMLPG) method. preprint, 2012.

Mirzaei, D.; Schaback, R.; Dehghan, M. (2011): On generalized moving least
squares and diffuse derivatives. IMA Journal of Numerical Analysis, vol. 32, no.
3, pp. 983–1000.

MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://
graal.ens-lyon.fr/MUMPS, 2012. Last accessed: September 7, 2012.

Ni, G.; Ho, S. L.; Yang, S.; Ni, P. (2004): Meshless local Petrov-Galerkin method
and its application to electromagnetic field computations. International Journal of
Applied Electromagnetics and Mechanics, vol. 19, no. 1, pp. 111–117.

PARDISO solver project. http://www.pardiso-project.org/, 2012. Last
accessed: September 7, 2012.

Pini, G.; Zilli, G. (1989): Preconditioned iterative algorithms for large sparse
unsymmetric problems. Numerical Methods for Partial Differential Equations,
vol. 5, pp. 107–120.

Numerical Investigation on Direct MLPG 209

Sterk, M.; Trobec, R. (2008): Meshless solution of a diffusion equation with
parameter optimization and error analysis. Engineering Analysis with Boundary
Elements, vol. 32, pp. 567–577.

Stroud, A. H. (1971): Approximate Calculation of Multiple Integrals. Prentice-
Hall, Englewood Cliffs, NJ.

Sun, H.; Wang, Y.; Miao, Y. (2008): Meshless numerical method based on tensor
product. Front. Archit. Civ. Eng. China, vol. 2, no. 2, pp. 166–171.

van der Vorst, H. A. (1992): Bi-CGSTAB: A fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci.
Stat. Comput., vol. 13, pp. 631–644.

Wagner, G. J.; Liu, W. K. (2001): Hierarchical enrichment for bridging scales
and mesh-free boundary conditions. Int. J. Numer. Methods Eng., vol. 50, no. 3,
pp. 507–524.

Wang, J.; Zhong, W.; Zhang, J. (2006): A general meshsize fourth-order com-
pact difference discretization scheme for 3D Poisson equation. Applied Mathemat-
ics and Computation, vol. 183, no. 2, pp. 804–812.

Wu, C.-K. C.; Plesha, M. E. (2002): Essential boundary condition enforcement
in meshless methods: boundary flux collocation method. Int. J. Numer. Meth.
Engng., vol. 53, pp. 499–514.

Zhang, J.; Tanaka, M.; Endo, M. (2004): Meshless analysis of potential prob-
lems in three dimensions with the hybrid boundary node method. International
Journal for Numerical Methods in Engineering., vol. 59, pp. 1147–1166.

