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Robust Numerical Scheme for Singularly Perturbed
Parabolic Initial-Boundary-Value Problems on

Equidistributed Mesh

Srinivasan Natesan1 and S. Gowrisankar2

Abstract: In this article, we propose a parameter-uniform computational tech-
nique to solve singularly perturbed parabolic initial-boundary-value problems ex-
hibiting parabolic layers. The domain is discretized with a uniform mesh on the
time direction and a nonuniform mesh obtained via equidistribution of a monitor
function for the spatial variable. The numerical scheme consists of the implicit-
Euler scheme for the time derivative and the classical central difference scheme for
the spatial derivative. Truncation error, and stability analysis are carried out. Error
estimates are derived, and numerical examples are presented.
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1 Introduction

Consider the singularly perturbed parabolic initial-boundary value problem (IBVP)
in the domain Ω = (0,1)× (0,T ]:

ut(x, t)+Lεu(x, t) = f (x, t), (x, t) ∈Ω

u(x,0) = s(x), on Sx = {(x,0) : 0≤ x≤ 1},

u(0, t) = a0(t), on S0 = {(0, t) : 0≤ t ≤ T},

u(1, t) = a1(t), on S1 = {(0, t) : 0≤ t ≤ T},

(1)

where

Lεu(x, t)≡−εuxx(x, t)+b(x)u(x, t),
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0 < ε � 1 is a small parameter, and b, f are sufficiently smooth functions with
b(x)≥ β > 0 on 0≤ x≤ 1. Under suitable continuity and compatibility conditions
on the data, the IBVP (1) has a unique solution u(x, t). Boundary layers occur in the
solution when ε→ 0. These boundary layers are neighbors of the boundaries of the
domain, where the solution varies rapidly, while away from the layers the solution
changes slowly, and smoothly. Away from any corner of the domain a boundary
layer of either regular or parabolic type may occur. A boundary layer is said to
be of parabolic type, if the characteristics of the reduced equation corresponding
to ε = 0 are parallel to the boundary, and of regular type, if these characteristics
are not parallel to the boundary. A boundary layer near to a corner is said to be
of corner type. These types of problems include the linearized Burgers’ equation
which arises in oil reservoir simulation Ewing (1983).

Numerical treatment of the IBVP (1) is difficult because of the presence of bound-
ary layers in its solution. In particular, classical finite difference methods fail to
yield satisfactory numerical results on uniform meshes, and to obtain stability one
has to reduce the spatial step-size in relation with ε . The same is true for finite el-
ement methods in the case of uniform mesh and polynomial basis functions. Basi-
cally, by these methods one cannot obtain ε-uniform error estimates. When regular
layers are present it is possible to obtain an ε-uniform method by constructing an
appropriately fitted finite difference operator (i.e., finite difference scheme with fit-
ting factor) on uniform meshes. Indeed, Shishkin (1989) proved that this approach
is not possible if a parabolic boundary layer is present, more details can be ob-
tained from the book of Miller, O’Riordan and Shishkin (1996). One can also refer
the books of Farrell, Hegarty, Miller, O’Riordan and Shishkin (2000), and Roos,
Stynes and Tobiska (2006) for further results related to the theory and numerics of
singularly perturbed parabolic problems.

The main goal of this paper is to provide an ε-uniform numerical method for the
IBVP (1) with adaptive mesh. We obtain the adaptive mesh through the idea of
equidistribution of singular component of u(x, t) at some fixed time T0, 0 < T0 ≤ T ,
because the problem (1) exhibits boundary layers along boundary which do not
have any effect on time. One can also refer Beckett and Mackenzie (2001) and
Beckett and Mackenzie (2000) for the stationary problem where adaptive mesh ap-
plied. In this method, the time derivative is replaced by the backward difference
scheme, and the spatial derivative is replaced by the central difference scheme. The
proposed scheme is parameter-uniform convergent of order O(∆t +N−2). Trunca-
tion errors are derived, stability analysis is carried out; and ε-uniform error esti-
mates are obtained.

There are various numerical methods exist in the literature for singularly perturbed
parabolic PDEs. To cite a few: Stynes and O’Riordan (1989) presented a uniformly
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convergent finite element method for these types of problems using exponential ba-
sis functions. In Guo and Stynes (1993), finite element method of exponentially
fitted lumped schemes were given. Farrell, Hemker and Shishkin (1996) proposed
numerical methods for IBVPs of the form (1). The authors proposed two higher-
order time accurate schemes for the parabolic IBVP (1) in Dep and Natesan (2009).
In Mukherjee and Natesan (2008), the author developed an efficient hybrid numer-
ical scheme for singularly perturbed parabolic IBVPs with interior layer. Deb and
Natesan (2008) used extrapolation technique for singularly perturbed coupled sys-
tem and Liu (2006) proposed shooting method for singularly perturbed two point
boundary value problem. These technique can be successfully applied to singularly
perturbed PDEs some extent.

We organize the rest of the paper as follows: In Section 2, we provide a-priori
bounds on the derivatives of the analytical solution via decomposition. Section
3 we introduces the implicit upwind finite difference scheme and also adaptive
spacial mesh via. equidistribution principle. Moreover we present the detailed
numerical algorithm in Section 3.3. Afterwards, we carry out the error analysis
for the upwind scheme in Section 4 and prove the main theoretical result, i.e., the
ε-uniform optimal error bounds of the implicit upwind scheme on the adaptive
mesh. Section 5 describes application of present method for semilinear singularly
perturbed parabolic PDEs. In Section 6, we present the numerical results for two
linear and a semilinear test problems to validate the theoretical results. Finally in
Section 7, we summarize the main conclusions.

Through out this paper C denotes a generic positive constant independent of ε , the
meshes (xi, t j), and the step sizes hi, ∆t. The norm || · || denotes the supremum
norm.

2 Analytical Behavior of the Solution

In this section, we present some bounds for the analytical solution u(x, t) of (1)
and its derivatives. The proof of the theorems and more details can be found in the
article by Miller, O’Riordan, Shishkin and Sishkina (1998).

Theorem 2.1 Assume that the coefficients of the parabolic PDE, and the initial and
boundary conditions given in (1) are sufficiently smooth, and satisfy the necessary
compatibility conditions stated in Theorem 3 of Miller, O’Riordan, Shishkin and
Sishkina (1998). Then, the IBVP (1) has a unique solution u(x, t) ∈ C 4

λ
(Ω), where

C 4
λ
(Ω) ={

u :
∂ i+ ju
∂xi∂ t j ∈ C 0

λ
(Ω), for all non-negative integers i, j with 0≤ i+2 j ≤ 4

}
,
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here C 0
λ
(Ω) is the set of Hölder continuous functions. Furthermore, the derivatives

of the solution u satisfy, for all non-negative integers i, j, such that 0≤ i+2 j ≤ 4,∥∥∥∥ ∂ i+ ju
∂xi∂ t j

∥∥∥∥≤Cε
−i/2. (2)

Proof. The proof can be found in Miller, O’Riordan, Shishkin and Sishkina (1998).

We shall decompose the solution u as u = v + w, where v, w are respectively the
smooth and singular components. The smooth part is further decomposed into
v = v0 + εv1, where{

(v0)t(x, t)+b(x)v0(x, t) = f (x, t), Ω,

v0(x,0) = s(x), on Sx,

and
(v1)t(x, t)+Lεv1(x, t) =

∂ 2v0

∂x2 , Ω,

v1(x,0) = 0, on Sx,

v1(0, t) = 0, v1(1, t) = 0, on S0,S1.

Thus, v satisfies the following IBVP:
vt(x, t)+Lεv(x, t) = f , in Ω,
v(x,0) = s(x), on Sx,
v(0, t) = v0(0, t), v(1, t) = v0(1, t), on S0,S1.

The singular component w is the solution of the IBVP
wt(x, t)+Lεw(x, t) = 0, in Ω,
w(x,0) = 0, on Sx,
w(0, t) = a0(t)− v0(0, t), w(1, t) = a1(t)− v0(1, t), on S0,S1.

Further, we decompose the singular component w into left and right components as
w = w` +wr, where w` and wr respectively, satisfy the following problems:

(w`)t(x, t)+Lεw`(x, t) = 0, in Ω,
w`(x,0) = 0, on Sx,
w`(0, t) = a0(t)− v0(0, t), w`(1, t) = 0, on S0,S1,
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and
(wr)t(x, t)+Lεwr(x, t) = 0, in Ω,
wr(x,0) = 0, on Sx,
wr(0, t) = 0, wr(1, t) = a1(t)− v0(1, t), on S0,S1.

The smooth and singular components v, and w satisfy the following bounds.

Theorem 2.2 Miller, O’Riordan, Shishkin and Sishkina (1998) Let u(x, t) be the
solution of the IBVP (1). And assume that the coefficients of the parabolic PDE,
and the initial and boundary conditions given in (1) are sufficiently smooth, and
satisfy the necessary compatibility conditions. Then, for all non-negative integers
i, j, such that 0≤ i+2 j ≤ 4, we have∥∥∥∥ ∂ i+ jv

∂xi∂ t j

∥∥∥∥≤C(1+ ε
1−i/2), ∀(x, t) ∈Ω,∣∣∣∣∂ i+ jw`

∂xi∂ t j

∣∣∣∣≤Cε
−i/2e−x/

√
ε , and

∣∣∣∣∂ i+ jwr

∂xi∂ t j

∣∣∣∣≤Cε
−i/2e−(1−x)/

√
ε .

Proof. The proof can be found in Miller, O’Riordan, Shishkin and Sishkina (1998).

3 The Numerical Solution

In this section, we discretize the parabolic IBVP (1), the time derivative is replaced
by the backward difference scheme, and the spatial derivative is replaced by the
central difference scheme. Later, we introduce the equidistribution mesh, and de-
rive the finite difference scheme (4). Finally, we provide the numerical algorithm
to obtain the equidistributed mesh.

3.1 Finite Difference Scheme

On the time domain [0,T], we introduce the equidistant meshes with uniform time
step ∆t such that

SM
t = {tn = n∆t, n = 0, . . . ,M, ∆t = T/M},

where M denotes the number of mesh elements in the t-direction.

We consider the finite difference approximation of (1) on a non-uniform spatial
discretization

Ω
N
x = {0 = x0 < x1 < · · ·< xN = 1},
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and denote the spatial step sizes by

hi = xi− xi−1, i = 1, . . . ,N.

Without loss of generality, we will assume that N is even. Before describing the
scheme, for a given mesh function v(xi, tn) = vn

i , define the forward and backward
differences δ+

x , δ−x in space by

δ
+
x vn

i =
vn

i+1− vn
i

hi+1
, δ

−
x vn

i =
vn

i − vn
i−1

hi
,

respectively, the second-order finite difference operator δ 2
x as

δ
2
x vn

i =
2(δ+

x vn
i −δ−x vn

i )
hi +hi+1

,

and define the backward difference operator δt in time by

δtvn
i =

vn
i − vn−1

i
∆t

,

We discretise equation (1) by means of the backward Euler scheme for the time
derivative, and the central difference for the space derivative. Hence the discretiza-
tion of (1) takes the form

δtUn+1
i +LεUn+1

i = f (xi, tn+1), for i = 1, . . . ,N−1,

Un+1
0 = a0(tn+1), Un+1

N = a1(tn+1),

U0
i = s(xi), for i = 1, . . . ,N−1,

(3)

where Lε is the discretization of the differential operator Lε using the central dif-
ference for the spatial derivative,

LεUn+1
i =−εδ

2
x Un+1

i +biUn+1
i .

After rearranging the terms in (3), we obtain the following form of the difference
scheme:

r−i Un+1
i−1 + rc

i U
n+1
i + r+

i Un+1
i+1 = gn

i , for i = 1, . . . ,N−1,

Un+1
0 = a0(tn+1), Un+1

N = a1(tn+1),

U0
i = s(xi), for i = 1, . . . ,N−1,

(4)
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where

r−i =
−2ε∆t

hi(hi +hi+1)
, r+

i =
−2ε∆t

hi+1(hi +hi+1)
, rc

i = 1+∆tbi− r−i − r+
i ,

bi = b(xi), gn
i = Un

i +∆t f (xi, tn+1).

To determine the value of the monitor function (8), we have to know the approx-
imate value of the singular component w(x, t). To calculate the numerical value
W n

i of w(xi, tn), we use the numerical approximate value V n
i of v(xi, tn) from the

following recurrence relation:{
(1+∆tb(xi))V n+1

i = V n
i +∆t f (xi, tn+1), for i = 1, . . . ,N,

V 0
i = s(xi).

(5)

3.2 Adaptive spatial mesh via. equidistribution

Since the solution u(x, t) of the IBVP(1) exhibits boundary layers, one has to use
layer-adapted nonuniform spatial mesh, which are fine inside the boundary layer
region, and coarse in the outer region. To obtain such a mesh, we use the idea
of equidistribution of a positive monitor function given in (8). Here we consider
equidistribution of u(x, t) at some fixed time T0, 0 < T0 ≤ T , because the problem
(1) exhibits regular layer along the boundaries, which will not have any impact
on the temporal component. Moreover we assume that u(x,T0) exhibit the layer
phenomena. A mesh is said to be equidistributing u(x,T0), if∫ xi

xi−1

M(u(s,T0),s)ds =
∫ xi+1

xi

M(u(s,T0),s)ds, i = 1, . . . ,N−1, (6)

where M(u(x,T0),x) is a strictly positive, L1–integrable function. Equation (6) can
also be written in the following form:∫ xi

xi−1

M(u(s,T0),s)ds =
1
N

∫ 1

0
M(u(s,T0),s)ds, i = 1, . . . ,N. (7)

Here, we consider the following monitor function

M(u(x,T0),x) = α + |wxx(x,T0)|1/m, m≥ 2, (8)

where α is a positive constant that is independent of N and w(x, t) is the singular
component of u(x, t). One dimensional version of the monitor function (8) given
by Beckett and Mackenzie (2000) impressed us to take

α =
∫ 1

0
|wxx(s,T0)|1/mds. (9)
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The selection of this α will help to distribute the number mesh point inside and
outside the boundary layer region equally. The effect of increasing m is to smooth
the monitor function, which in turn leads to a smoother distribution of the mesh
points. From Beckett and Mackenzie (2000), one can clearly see the influence of
the parameter m. In all of our numerical experiments, we will take m = 2.

In order to compute the approximation of the monitor function at the ith interior
node of the spatial mesh, Mi, we assume for some integer S(0 < S ≤ M) that
w(xi,T0) = W S

i , where S∆t = T0,

Mi = αdis + |δ 2
x W S

i |1/m, for i = 1, . . . ,N−1, (10)

where W S
i = US

i −V S
i and αdis is the discrete form of (9), which can be written as

αdis = h1 |δ 2
x W S

1 |1/m +
N−1

∑
i=2

hi

{
|δ 2

x W S
i−1|1/m + |δ 2

x W S
i |1/m

2

}
+hN |δ 2

x W S
N−1|1/m.

For a truly adaptive algorithm, the monitor function has to be approximated from
the numerical solution. For example, a simple discretization of (6) results in the set
of equations

Mi−1/2(xi− xi−1) = Mi+1/2(xi+1− xi), for i = 1, . . . ,N−1,

where Mi±1/2 is an approximation to M(u(xi±1/2,T0),xi±1/2).
The detailed numerical algorithm to obtain the equidistribution mesh is given in
Section 3.3.

3.3 Numerical algorithm

To get the equidistribution gird and the corresponding numerical solution, we use
the following algorithm:

1. Take k = 0. Take the uniform spatial mesh {x(0)
i } as the initial value for the

iteration. Choose a constant C > 1 that controls when the algorithm has to be
terminated.

2. Compute the discrete solution {Un,(k)
i } and {V n,(k)

i } satisfying (4) and (5),
respectively with the help of the spatial mesh {x(k)

i }.

3. Find the singular component of the discrete solution by W n,(k)
i = Un,(k)

i −
V n,(k)

i .
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4. For a given mesh {x(k)
i } and the singular component of the discrete solution

{W n,(k)
i }, set

H(k)
i =

(
M(k)

i−1 +M(k)
i

2

)
(x(k)

i − x(k)
i−1), for i = 1, . . . ,N,

where M(k)
i is calculated from (10), and set M(k)

0 = M(k)
1 and M(k)

N = M(k)
N−1.

5. Set L0 = 0 and Li = ∑
i
j=1 H(k)

j for i = 1, . . . ,N. Define

C(k) :=
N
LN

max
i=0,1,...,N

H(k)
i .

6. If C(k) ≤C, then go to Step 9.

7. Set Yi = iLN/N for i = 0,1, . . . ,N. Interpolate the points (Li,xi). Generate the
new mesh {x(k+1)

i } by evaluating this interpolant at the Yi for i = 0,1, . . . ,N.

8. Set k = k +1, return to Step 2.

9. Take {x(k)
i } as the final mesh and compute Un,(k)

i then stop.

4 Error Analysis

Here, we derive the truncation error for the numerical scheme, and carry out the
stability analysis. Finally, we obtain the ε-uniform error estimate.

The following lemma provides the stability result for a general numerical scheme
for the IBVP (1). The proof of this lemma can be found in the book of Roos, Stynes
and Tobiska (2006). Here, we are only stating the result.

Lemma 4.1 Consider the IBVP (1) and the difference scheme (3), the difference
scheme (excluding the initial and boundary conditions) can be written as

δtUn+1 +LεUn+1 := AUn+1−DUn = Fn, for n = 0, · · · ,M−1, (11)

where Un = (Un
1 , · · · ,Un

N−1)
T , Fn is a vector independent of the computed solution,

and A and D are matrices and also that A is an M-matrix, and D≥ 0.

Let y and z be two mesh functions, such that yn =(yn
0, · · · ,yn

N)T , and zn =(zn
0, · · · ,zn

N)T

for each n. Assume that
∣∣δtyn+1 +Lεyn+1

∣∣≤ δtzn+1 +Lεzn+1, for n = 0, · · · ,M−1,

and |y| ≤ z on the boundary Sx∪S0∪S1. Then, |y| ≤ z on Ω
N
x ×SM

t .
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Proof. The difference scheme (4) can be written in the form of (11) with A = (ai j)
and D = (di j) as

ai,i−1 =
r−i
∆t

, ai,i =
rc

i
∆t

, ai,i+1 =
r+

i
∆t

,

di,i =
1
∆t

.

A short calculation shows that the matrix A is an M-matrix and the matrix D ≥ 0.
Therefore, the difference scheme satisfies the hypotheses of Lemma 3.2, Roos,
Stynes and Tobiska (2006) and immediately the required result follows.

Corollary 4.2 The difference scheme given in (4) satisfies the discrete maximum
principle.

From the Corollary 4.2 one can observe that the scheme (4) has a unique solution
at each time level. Combining the maximum principle with a barrier function of
the form C(1+ x), one obtains a priori bound

max
i,n
|Un

i | ≤C|| f || for all i,n. (12)

Theorem 4.3 Let u and U be respectively the continuous and the numerical solu-
tions of the IBVPs (1), and (4). Then, we have the following bound

max
i,n
|u(xi, tn)−Un

i | ≤C[∆t +N−2] for all i,n. (13)

Proof. Let ηn
i = un

i −Un
i be the error in the computed solution at each mesh point

(xi, tn). Write the scheme (3) as

δtUn
i +LεUn

i = f n
i i = 1, . . . ,N−1, n = 1, . . . ,M,

Then at each point (xi, tn) ∈Ω
N
x ×SM

t , the truncation error of the scheme is

δtη
n
i +Lεη

n
i = χ

n
1,i

+ χ
n
2,i

,

where

χ
n
1,i

:= LεUn
i − (Lεu)n

i and χ
n
2,i

:= δtun
i − (ut)n

i ,

are the truncation errors for the space and time discretization, respectively.
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Decompose η as η = φ +ψ . Here the function φ n
i is, for each fixed n = 0, . . . ,M,

the solution of the discrete two-point boundary value problem

{
Lεφ n

i = χn
1;i

for i = 1, . . . ,N−1,

φ n
0 = φ n

N = 0,
(14)

while ψn
i , the solution of a discrete parabolic problem, is defined by

δtψ
n
i +Lεψn

i = χn
2,i
−δtφ

n
i for i = 1, . . . ,N−1,

ψn
0 = ψn

N = 0 for n = 1, . . . ,M,

ψ0
i =−φ 0

i for i = 0, . . . ,N.

(15)

Equation (14) is precisely the identity one gets when analyzing the error φ in a two-
point boundary value problem that has been discretized using Lε , with χn

1;i
playing

the role of truncation error and can be bounded using technique from Beckett and
Mackenzie (2001) and equation (2) with j = 0. The problem (1) exhibits regular
boundary layers and the same is true for the equation (14) consequently the error
bound derived in Beckett and Mackenzie (2001) can be invoked for all temporal
level:

|φ n
i | ≤CN−2, for all i,n, (16)

with the assumption that N−1�
√

ε and the fact that our problem exhibits regular
boundary layers.

Next, consider the other error component ψ . Lemma 4.1 implies that the problem
(15) satisfies a discrete maximum principle just as (3) does, so

‖ψ‖ = C
(

max
i
|φ 0

i |+‖χ2
−δtφ‖

)
,

= C
[
N−2 +∆t +‖δtφ‖

]
, (17)

where we used (16) with n = 0 and also

|χn
2,i
| ≤C∆t for i = 1, . . . ,N−1 and n = 1, . . . ,M,

which is easily verified using a Taylor expansion and (2). It remains to deal only
with δtφ in (17). Using the assumption that b = b(x) is independent of t, a short
calculation shows that for each fixed n, the definition (14) implies that δtφ satisfies

Lε(δtφ)n
i = δt χ

n
1,i

for i = 1, . . . ,N−1, (18)

(δtφ)n
0 = (δtφ)n

N = 0.
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To analyze the discrete two-point boundary value problem (18), observe that

δt χ
n
1,i

=
1
∆t

(
χ

n
1,i
−χ

n−1
1,i

)
,

=
1
∆t

(
(Lεun

i − (Lεu)n
i )− (Lεun−1

i − (Lεu)n−1
i )

)
,

=
1
∆t

(
(Lεun

i −Lεun−1
i )− ((Lεu)n

i − (Lεu)n−1
i )

)
.

Let L̂εu = −εuxx and L̂εun
i = −εδ 2

x un
i . That is, L̂εu is the discretization of Lεu.

Then one can write the above formula as

δt χ
n
1,i

=
1
∆t

∫ tn

tn−1

[L̂εut(xi, t)− L̂εut(xi, t)],

Hence, using the Peano kernel theorem as in Kellogg and Tsan (1978), one obtains
same estimate on δt χ

n
1,i

as the corresponding truncation error bounds arising in

Beckett and Mackenzie (2001) for a standard two-point reaction-diffusion bound-
ary value problem, since the bounds of (2) are unaffected by the presence of an
extra t−derivative.

This observation imply that (18) can be analyzed in the same way as (14), except
that one uses the bound (2) with j = 1. We therefore obtain

|δtφ
n
i | ≤CN−2 for all i,n. (19)

Combining (16), (17) and (19), we get (13).

5 Semilinear singular perturbation parabolic problem

In this section, we consider the following quasilinear singular perturbation parabolic
PDE of the form

ut − εuxx = b(x, t,u), (x, t) ∈ G = Ω× (0,T ]≡ (0,1)× (0,T ],

u(x,0) = u0(x), x ∈Ω,

u(0, t) = u(1, t) = 0, t ∈ (0,T ],

(20)

where ε is small positive parameter. Under sufficient smoothness and compatibil-
ity conditions imposed on the functions b(x, t,u) and u0(x) the parabolic problem
(20) in general admits a unique solution u(x, t) which exhibits boundary layers. For
more information on existence and uniqueness one can refer Ladyženskaja, Solon-
nikov and Ural’ceva (1988).
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To solve (20), we use the linearization process and obtain the Newton sequence
{um} for the initial guess u0 satisfying the initial and boundary conditions of the
problem. Thus we define um+1 for each fixed m, to be the solution of the following
linear parabolic IBVP,

um+1
t − εum+1

xx −bm(x, t)um+1 = f m(x, t), (x, t) ∈ G

um+1(x,0) = u0(x), 0 < x < 1,

um+1(0, t) = 0, um+1(1, t) = 0, 0≤ t ≤ T,

(21)

where m≥ 0 and bm(x, t) and f m(x, t) are given by{
bm(x, t) = bu(x, t,um),

f m(x, t) = b(x, t,um)−bm(x, t)um.
(22)

Hence for fixed m, we solve (21) using computation method discussed earlier.
Moreover we assume that the problem admits regular boundary layers. Numeri-
cal results of (20) presented on the following section.

6 Numerical Results

In this section, we shall present the numerical results obtained by the fully discrete
scheme (4) for two linear and a semilinear test problems on the rectangular mesh
GN,M

ε = Ω
N
x × SM

t , where Ω
N
x is the equidistribution mesh obtained from the nu-

merical algorithm. In all the numerical experiments we will fix m = 2 and T0 = 1,
which is necessary to define the monitor function (8). Moreover in all the tables we
begin with N = 32 and the time step ∆t = 0.1 and we multiply N by two and divide
∆t by four. The reason for dividing ∆t by four is to highlight the spatial order of
convergence properly.

Example 6.1 Consider the following parabolic initial-boundary-value problem:

ut(x, t)− εuxx(x, t)+u(x, t) = f (x, t), (x, t) ∈ (0,1)× (0,1]. (23)

The right-hand side source term, initial and boundary conditions are calculated
from the exact solution

u(x, t) =
(

t +
x2

2ε

)
erfc

(
x

2
√

εt

)
−
√

t
πε

xe−x2/4εt ,

where erfc is the complementary error function. As the exact solution of the prob-
lem (6.1) is known, for each ε , we calculate the maximum point-wise error by

eN,∆t
ε = max

(xi,tn)∈GN,M
ε

|u(xi, tn)−UN,∆t(xi, tn)|,
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where u(xi, tn) and UN,∆t(xi, tn) respectively, denote the exact and the numerical
solution obtained on the mesh with N mesh intervals in the spatial direction and M
mesh intervals in the t−direction such that ∆t = T/M is the uniform time step. In
addition, we determine the corresponding order of convergence by

pN,∆t
ε = log2

(
eN,∆t

ε

e2N,∆t/4
ε

)
.

The calculated maximum point-wise errors eN,∆t
ε and the corresponding order of

convergence pN,∆t
ε for Example 6.1 are given in Table 1 and Table 2 respectively.

From these results one can observe the ε–uniform first-order convergence of the
numerical solution.

Further, we have calculated the normalized flux

Fεu(x, t) =
√

ε
∂u(x, t)

∂x
,

and its numerical approximation

FN
ε UN,∆t(xi, tn) =

√
εδ

+
x Un

i .

The errors in the normalized flux have been calculated as

rN,∆t
ε = max

1≤n≤M
‖Fεu(x0, tn)−FN

ε UN,∆t(x0, tn)‖,

and the rate of convergence is determined from

qN,∆t
ε = log2

(
rN,∆t

ε

r2N,∆t/4
ε

)
.

The calculated maximum point-wise errors in the normalized flux rN,∆t
ε and the

corresponding order of convergence qN,∆t
ε for Example 6.1 are given in Table 3

and Table 4. Again, one can see the ε–uniform convergence in Table 3, and the
first-order convergence rate from Table 4. In Figures 1 (a) and (b), the maximum
pointwise errors in the solution and the normalized flux are plotted respectively,
which reflect the fact of first-order convergence independent of ε .

Example 6.2 Consider the following parabolic initial-boundary value problem:
ut − εuxx +

√
x+1u = 1, (x, t) ∈ (0,1)× (0,1],

u(x,0) = 0, 0 < x < 1,

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ 1.

(24)
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Table 1: Maximum point-wise error of the solution eN,∆t
ε for Example 6.1.

Number of Intervals N
ε 32 64 128 256 512 1024

100 8.3624e-03 2.6269e-03 7.1243e-04 1.8369e-04 4.6626e-05 1.1745e-05
10−2 9.5404e-03 2.7104e-03 7.2159e-04 1.8606e-04 4.7251e-05 1.1905e-05
10−4 9.5334e-03 2.7205e-03 7.3760e-04 1.8837e-04 4.7627e-05 1.1983e-05
10−6 9.6177e-03 2.7165e-03 7.2577e-04 1.8717e-04 4.7525e-05 1.2266e-05
10−8 9.6062e-03 2.7314e-03 7.2639e-04 1.8723e-04 4.7546e-05 1.1978e-05
10−10 9.5997e-03 2.7503e-03 7.2762e-04 1.8755e-04 4.7532e-05 1.1980e-05

Table 2: Rate of convergence of the solution pN,∆t
ε for Example 6.1 .

Number of Intervals N
ε 32 64 128 256 512

100 1.6705 1.8826 1.9554 1.9781 1.9891
10−2 1.8155 1.9093 1.9554 1.9773 1.9887
10−4 1.8091 1.8829 1.9693 1.9837 1.9907
10−6 1.8239 1.9042 1.9551 1.9776 1.9541
10−8 1.8143 1.9108 1.9560 1.9774 1.9889
10−10 1.8034 1.9183 1.9559 1.9803 1.9883

The numerical solution is plotted in Figures 2 (a) and (b) for ε = 1e−1 and ε = 1e−
4, respectively. These figures show the existence of the boundary layer near x = 1.
As the exact solution of the problem (6.2) is not known, to obtain the accuracy of
the numerical solution and also to demonstrate the ε−uniform convergence of the
proposed scheme, we use the double mesh principle which is given in the following.

Let Ũ2N,∆t/4(xi, tn) be the numerical solution obtained on the fine mesh G̃2N,4M
ε =

Ω
2N
x × S4M

t with 2N mesh intervals in the spatial direction and 4M mesh intervals
in the t−direction. Then for each ε , we calculate the maximum point-wise error by

EN,∆t
ε = max

(xi,tn)∈GN,M
ε

∣∣∣UN,∆t(xi, tn)−Ũ2N,∆t/4(xi, tn)
∣∣∣ ,

and the corresponding order of convergence by

PN,∆t
ε = log2

(
EN,∆t

ε

E2N,∆t/4
ε

)
.
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Table 3: Maximum point-wise error of the normalized flux rN,∆t
ε for Example 6.1.

Number of Intervals N
ε 32 64 128 256 512 1024

100 5.3355e-02 2.7699e-02 1.3932e-02 6.9761e-03 3.4893e-03 1.7448e-03
10−2 8.7792e-02 4.3418e-02 2.1557e-02 1.0736e-02 5.3570e-03 2.6756e-03
10−4 9.6645e-02 4.6782e-02 2.3437e-02 1.2285e-02 5.9339e-03 2.9212e-03
10−6 1.0178e-01 4.8033e-02 2.3727e-02 1.1715e-02 5.8266e-03 2.9129e-03
10−8 9.9448e-02 5.0228e-02 2.4087e-02 1.1768e-02 5.8576e-03 2.9163e-03
10−10 1.0395e-01 5.3663e-02 2.4445e-02 1.2024e-02 5.8370e-03 2.9196e-03

Table 4: Rate of convergence of the normalized flux qN,∆t
ε for Example 6.1.

Number of Intervals N
ε 32 64 128 256 512

100 0.9458 0.9914 0.9979 0.9995 0.9999
10−2 1.0158 1.0101 1.0057 1.0030 1.0016
10−4 1.0467 0.9972 0.9319 1.0498 1.0224
10−6 1.0834 1.0175 1.0182 1.0076 1.0002
10−8 0.9855 1.0602 1.0334 1.0065 1.0062
10−10 0.9539 1.1344 1.0236 1.0426 0.9995

The calculated maximum point-wise errors EN,∆t
ε and the corresponding order of

convergence PN,∆t
ε for Example 6.2 are given in Table 5 and Table 6 respectively.

The numerical results given in these tables reveal the first-order convergence inde-
pendent of the diffusion parameter ε .

Further, the errors in the normalized flux have been calculated as

RN,∆t
ε = max

1≤n≤M
‖FN

ε UN,∆t(xN , tn)−FN
ε Ũ2N,∆t/4(xN , tn)‖,

and the rate of convergence is determined from

QN,∆t
ε = log2

(
RN,∆t

ε

R2N,∆t/4
ε

)
.

The calculated maximum point-wise errors in the normalized flux RN,∆t
ε and the

corresponding order of convergence QN,∆t
ε for Example 6.2 are given in Table 7 and

Table 8 respectively. The maximum pointwise errors are plotted in loglog scale in



Robust Numerical Scheme for Singularly Perturbed Parabolic IBVPs 261

10
2

10
3

10
−5

10
−4

10
−3

10
−2

N

M
ax

−
E

rr
or

 

 

O(N−2)

ε=10−2

ε=10−4

ε=10−6

ε=10−8

ε=10−10

(a) Maximum point-wise error of the solution
eN,∆t

ε

10
2

10
3

10
−2

10
−1

N

M
ax

−
E

rr
or

 

 

O(N−1)

ε=10−2

ε=10−4

ε=10−6

ε=10−8

ε=10−10

(b) Maximum point-wise error of the normal-
ized flux rN,∆t

ε

Figure 1: Loglog plot for Example 6.1

Figures 3 (a) and (b), for the solution and the normalized flux, respectively. From
these figures, one can easily observe the first-order ε–uniform convergence.

Table 5: Maximum point-wise error of the solution EN,∆t
ε for Example 6.2.

Number of Intervals N
ε 64 128 256 512 1024

100 1.0917e-02 3.8150e-03 1.0572e-03 2.7173e-04 6.8413e-05
10−2 1.4096e-02 3.7384e-03 9.5054e-04 2.3869e-04 5.9756e-05
10−4 1.3535e-02 3.6162e-03 9.4849e-04 2.3289e-04 5.8590e-05
10−6 1.3226e-02 3.5997e-03 8.9781e-04 2.3232e-04 5.8252e-05
10−8 1.3310e-02 3.5222e-03 9.0320e-04 2.3240e-04 5.8142e-05
10−10 1.4050e-02 3.6114e-03 9.2446e-04 2.2594e-04 5.6480e-05

Example 6.3 Consider the following quasilinear parabolic initial-boundary value
problem:

ut(x, t)− εuxx(x, t)+ exp(u(x, t)) = f (x, t), (x, t) ∈ (0,1)× (0,1]. (25)



262 Copyright © 2012 Tech Science Press CMES, vol.88, no.4, pp.245-267, 2012

0

0.2

0.4

0.6

0.8

10
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

t
x

U

(a) ε = 10−1

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

t
x

U
(b) ε = 10−4

Figure 2: Numerical solution of Example 6.2 for N = 32 and ∆t = 1/32.

Table 6: Rate of convergence of the solution PN,∆t
ε for Example 6.2.

Number of Intervals N
ε 64 128 256 512

100 1.5169 1.8515 1.9600 1.9898
10−2 1.9148 1.9756 1.9936 1.9980
10−4 1.9041 1.9308 2.0260 1.9909
10−6 1.8775 2.0034 1.9503 1.9957
10−8 1.9179 1.9634 1.9584 1.9989
10−10 1.9599 1.9659 2.0327 2.0002

The right-hand side source term, initial and boundary conditions are calculated
from the exact solution

u(x, t) =
(

t +
x2

2ε

)
erfc

(
x

2
√

εt

)
−
√

t
πε

xe−x2/4εt ,

where erfc is the complementary error function.

If we use the Newton linearization process given in (21), we obtain the following
system of linear singular perturbation parabolic PDEs:
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Table 7: Maximum point-wise error of the normalized flux RN,∆t
ε for Example 6.2.

Number of Intervals N
ε 64 128 256 512 1024

100 4.0516e-02 1.5649e-02 7.4488e-03 3.7028e-03 1.8486e-03
10−2 2.8779e-02 1.3846e-02 6.8861e-03 3.4549e-03 1.7334e-03
10−4 2.4718e-02 1.1629e-02 5.3376e-03 2.9149e-03 1.5512e-03
10−6 2.3159e-02 1.2046e-02 6.2308e-03 3.2183e-03 1.6336e-03
10−8 2.2182e-02 1.1756e-02 6.1431e-03 3.2159e-03 1.6105e-03
10−10 2.1247e-02 1.0875e-02 5.9366e-03 3.2089e-03 1.6278e-03

Table 8: Rate of convergence of the normalized flux QN,∆t
ε for Example 6.2.

Number of Intervals N
ε 64 128 256 512

100 1.3724 1.0710 1.0084 1.0022
10−2 1.0556 1.0077 0.9950 0.9950
10−4 1.0879 1.1234 0.8727 0.9101
10−6 0.9430 0.9511 0.9531 0.9782
10−8 0.9160 0.9364 0.9337 0.9977
10−10 0.9663 0.8733 0.8876 0.9791


um+1

t − εum+1
xx +(1+ x(1− x))um+1

x + exp(um)um+1 = f (x, t)− exp(um)(1−um),

um+1(x,0) = u(x,0), 0 < x < 1,

um+1(0, t) = u(0, t), um+1(1, t) = u(1, t), 0≤ t ≤ 1.

(26)

Hence for fixed m, we solve (26) using computation methods discussed earlier.
Once we get the prescribed tolerance bound we terminate the Newton Sequence
and take that as the solution to the problem.

As the exact solution of the problem (6.3) is known, for each ε , we calculate the
maximum point-wise error by

ẽN,∆t
ε = max

(xi,tn)∈GN,M
ε

|u(xi, tn)−UN,∆t(xi, tn)|,
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Figure 3: Loglog plot for Example 6.2

Table 9: Maximum point-wise error of the solution ẽN,∆t
ε for Example 6.3.

Number of Intervals N
ε 32 64 128 256 512 1024

100 8.3530e-03 2.6259e-03 7.1230e-04 1.8369e-04 4.6626e-05 1.1745e-05
10−2 9.5058e-03 2.7076e-03 7.2145e-04 1.8605e-04 4.7250e-05 1.1905e-05
10−4 9.4968e-03 2.7178e-03 7.3745e-04 1.8835e-04 4.7626e-05 1.1983e-05
10−6 9.5866e-03 2.7136e-03 7.2560e-04 1.8717e-04 4.7525e-05 1.2264e-05
10−8 9.5733e-03 2.7296e-03 7.2625e-04 1.8722e-04 4.7546e-05 1.1978e-05
10−10 9.5725e-03 2.7475e-03 7.2749e-04 1.8754e-04 4.7531e-05 1.1979e-05

where u(xi, tn) and UN,∆t(xi, tn) respectively, denote the exact and the numerical
solution obtained on the mesh with N mesh intervals in the spatial direction and M
mesh intervals in the t−direction such that ∆t = T/M is the uniform time step. In
addition, we determine the corresponding order of convergence by

p̃N,∆t
ε = log2

(
ẽN,∆t

ε

ẽ2N,∆t/4
ε

)
.

The calculated maximum point-wise errors ẽN,∆t
ε and the corresponding order of

convergence p̃N,∆t
ε for Example 6.3 are given in Table 9 and Table 10 respectively.

From these results one can observe the ε–uniform first-order convergence of the
numerical solution.
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Table 10: Rate of convergence of the solution p̃N,∆t
ε for Example 6.3 .

Number of Intervals N
ε 32 64 128 256 512

100 1.6695 1.8822 1.9553 1.9780 1.9891
10−2 1.8118 1.9080 1.9552 1.9773 1.9887
10−4 1.8050 1.8818 1.9691 1.9836 1.9907
10−6 1.8208 1.9030 1.9549 1.9776 1.9542
10−8 1.8103 1.9101 1.9558 1.9773 1.9889
10−10 1.8007 1.9172 1.9557 1.9802 1.9883

Table 11: Maximum point-wise error of the normalized flux r̃N,∆t
ε for Example 6.3.

Number of Intervals N
ε 32 64 128 256 512 1024

100 2.2918e-02 1.2507e-02 6.3366e-03 3.1787e-03 1.5906e-03 7.9548e-04
10−2 4.3572e-02 2.2997e-02 1.1821e-02 5.9944e-03 3.0187e-03 1.5148e-03
10−4 5.3688e-02 2.6997e-02 1.7934e-02 7.8518e-03 3.7102e-03 1.8090e-03
10−6 6.0318e-02 2.8525e-02 1.4424e-02 7.1679e-03 3.5816e-03 2.5805e-03
10−8 5.7455e-02 3.1194e-02 1.4862e-02 7.2315e-03 3.6193e-03 1.8034e-03
10−10 6.2618e-02 3.5452e-02 1.5299e-02 7.5450e-03 3.5942e-03 1.8074e-03

The errors in the normalized flux have been calculated as

r̃N,∆t
ε = max

1≤n≤M
‖Fεu(x0, tn)−FN

ε UN,∆t(x0, tn)‖,

and the rate of convergence is determined from

q̃N,∆t
ε = log2

(
r̃N,∆t

ε

r̃2N,∆t/4
ε

)
.

The calculated maximum point-wise errors in the normalized flux r̃N,∆t
ε and the

corresponding order of convergence q̃N,∆t
ε for Example 6.3 are given in Table 11

and Table 12. Again, one can see the ε–uniform convergence in Table 11, and the
first-order convergence rate from Table 12.

7 Conclusions

In this article, we solved the singularly perturbed time-dependent reaction-diffusion
problems (1) numerically by the upwind finite difference scheme on layer adapted
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Table 12: Rate of convergence of the normalized flux q̃N,∆t
ε for Example 6.3.

Number of Intervals N
ε 32 64 128 256 512

100 0.8737 0.9810 0.9953 0.9988 0.9997
10−2 0.9219 0.9602 0.9796 0.9897 0.9948
10−4 0.9918 0.5901 1.1916 1.0815 1.0363
10−6 1.0804 0.9837 1.0089 1.0010 0.4729
10−8 0.8812 1.0696 1.0393 0.9986 1.0050
10−10 0.8207 1.2124 1.0199 1.0698 0.9918

nonuniform grids obtained equdistributing the monitor function given in (8). The
truncation error and stability analysis are obtained. The proposed numerical scheme
is of first-order in temporal and second-order in spacial variables, i.e., O(∆ t +N−2).
Error estimates are derived for the numerical scheme, which are independent of the
diffusion parameter ε . Numerical results reveal the theoretical error estimate.
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