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Quasi-Conforming Triangular Reissner-Mindlin Shell
Elements by Using Timoshenko’s Beam Function

Changsheng Wang1 and Ping Hu1,2

Abstract: Based on the Reissner-Mindlin plate theory, two 3-node triangular flat
shell elements QCS31 and QCS32 are proposed by using Timoshenko’s beam func-
tion within the framework of quasi-conforming technique. The exact displacement
function of the Timoshenko’s beam is used as the displacement on the element
boundary in the bending part and the interpolated inner field function is also de-
rived by the function. In the shear part the re-constitution technique is adopted.
The drilling degrees of freedom are added in the membrane part to improve mem-
brane behavior. The proposed elements can be used for the analysis of both mod-
erately thick and thin plates/shells, and the convergence for the very thin case can
be ensured theoretically. The integration of the elements is performed analytically
and features an explicit form of the stiffness matrix, which is more precise and ef-
ficient from a mathematical point of view. The numerical tests and comparisons
with other existing solutions in the literatures suggest that the present elements are
competitive.

Keywords: quasi-conforming, Timoshenko’s beam, flat shell.

1 Introduction

The wide application of shell structures in engineering has been aspiring numerous
researchers to develop simple and efficient shell elements. Among different kinds
of shell elements such as a flat shell element, a curved shell element and a de-
generated solid element, the flat shell element is the most popular model for finite
element analysis of shell structures as it is simple, easy to implement and compu-
tationally efficient. Generally, triangular flat shell elements consist of triangular
membrane elements and triangular bending plate elements and possess capabilities
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of bending and stretching deformation. Triangular elements are flexible as the con-
venience in modeling arbitrary shaped shell structures and the convergence to the
exact geometry is obtained when the mesh is refined.

A large number of triangular flat shell elements have been developed over several
decades. Among these, the membrane behavior of some elements is represented by
CST or LST plane element. However, a drawback of both CST and LST elements is
the lack of an in-plane rotational degree of freedom. As a result the stiffness matrix
becomes singular when all elements intersecting at a node are coplanar and the
local coordinate system coincides with the global coordinate system. To overcome
this problem, Zienkiewicz [Zienkiewicz (1977)] and later Bathe and Ho [Bathe and
Ho (1981)] proposed to use a fictitious stiffness. Allman [Allman (1991, 1994)]
presented a triangular flat facet finite element for the analysis of general thin shells
with six DOF’s per vertex node that includes the drilling DOF. Allman’s earlier
development of a membrane element [Allman (1984)] with a drilling DOF was
followed by a rich collection of contributions for both triangular and quadrilateral
elements, such as Bergan and Fellipa [Bergan and Felippa (1985)], and its newest
versions [Alvin, Fuente, Haugen, and Felippa (1992); Felippa and Militello (1992);
Felippa and Alexander (1992)], Cook [Cook (1986, 1987)] and Allman [Allman
(1988)]. A good review regarding this issue can be found in the paper by Felippa
[Felippa (2003)] which compares the derivation methods for constructing triangular
elements with corner drilling degrees of freedom.

Triangular flat shell elements consist of triangular membrane elements and tri-
angular plate bending elements. Bazeley et al. [Bazeley, Cheung, Irons, and
Zienkiewicz (1966)] developed conforming and nonconforming plate bending ele-
ments by using shape functions based on the area coordinates, which are named as
BCIZ. The DKT(Discrete Kirchhoff Triangular) proposed by Batoz et al. [Batoz,
Bathe, and Ho (1980)] based on the discrete Kirchhoff constraint may possibly be
the most influential triangular bending element so far. Numerous plates/shells ele-
ments based on the discrete Kirchhoff constraint were developed later, such as the
LOOF-DKL by Meek and Tan [Meek and Tan (1985)], the DKTP by Dhatt et al.
[Dhatt, Marcotte, and Matte (1986)] and the DKMT by Katili [Katili (1993)]. Ba-
toz et al. [Batoz, Zheng, and Hammadi (2001)] reviewed the discrete Kirchhoff flat
shell elements for the linear analysis of plates and shells. However, C1 continuity
is required to secure interelement compatibility in the derivation of the elements
based on the discrete Kirchhoff constraint. The plate elements based on Reissner-
Mindlin plate theory are welcome because only C0 continuity is required, and both
thin and moderately thick plate can be simulated in one element model [Batoz and
Lardeur (1989); Batoz and Katili (1992)]. The Reissner-Mindlin plate theory takes
account of shear deformation by decoupling the rotation of plate cross-section from
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the slope of the deformed mid-surface. However, when the thickness is decreasing,
shear locking is observed. Commonly adopted techniques to handle shear locking
are reduced/selective integration techniques [Zienkiewicz, Taylor, and Too (1971);
Hughes, Cohen, and Haroun (1978)]. However, they may exhibit extra zero en-
ergy modes, and also produce oscillatory results for some problems. Several other
approaches have been developed by researchers to overcome shear locking, such
as the hybrid/mixed formulation [Lee and Plan (1978); Spilker and Munir (1980)],
the assumed natural strain method (ANS) [MacNeal (1982); Bathe and Dvorkin
(1986)], the enhanced assumed strain method (EAS) [Simo and Rifai (1990)] and
nonconforming element method [Kim and Choi (1992); Brezzi and Marini (2003)].

Recently Chen and Cheung [Cheung and Chen (1995); Chen and Cheung (1997)]
proposed a refined non-conforming element method (RNEM) to improve the per-
formance of the non-conforming elements. In their work, the interelement displace-
ment continuity was enforced in an average sense, which resulted in not only better
convergence of the solution but also improvement of its accuracy. Based on the
Reissner-Mindlin plate theory, they derived a series of quadrilateral plates/shells
elements [Chen and Cheung (2000, 2005)] and triangular plates/shells elements
[Chen and Cheung (2001); Ge and Chen (2003); Chen (2004)] by introducing the
displacement function of the Timoshenko’s beam function into the formulation.
In [Ge and Chen (2003)], flat shell elements were formed by the assemblage of
discrete Mindlin plate elements RDKTM [Chen and Cheung (2001)] and either
the constant strain membrane element CST or the Allman’s membrane element
with drilling degrees [Allman (1984)]. Zhang et al. [Zhang, Zhou, Li, Feng,
and Li (2011)] constructed a 3-node flat triangular shell element by combining the
ANDED-based membrane component [Felippa (2003)] includes rotational degrees
of freedom and the Mindlin plate element RDKTM [Chen and Cheung (2001)].

The Quasi-Conforming (QC) technique was proposed by Tang et al. [Tang, Chen,
and Liu (1980)] to meet the challenge of inter-elements conforming problems. The
strain-displacement equation is weakened as well as the equilibrium equation in
QC method. The QC technique is a general finite element method in which multi-
ple sets of approximating functions are used instead of the conventional single set
of functions. The key to the QC elements is the choice of string net functions on the
element boundary and the inner-field function [Tang, Chen, and Liu (1983)]. With
appropriate initial assumed strain/displacement and string net functions, elements
may be free from shear locking and membrane locking, spurious kinematic modes
and numerical ill condition. For a summary of the development of the QC tech-
nique, the readers are referred to [Lomboy, Suthasupradit, Kim, and Oñate (2009)].
A number of efficient quadrilateral plates/shells elements are proposed within the
framework of assumed strain QC technique, such as [Shi and Voyiadjis (1991);
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Kim, Lomboy, and Voyiadjis (2003)]. Hu et al. [Hu, Xia, and Tang (2011)] devel-
oped the assumed displacement QC technique as a basic technique and constructed
a 4-node Reissner-Mindlin shell element by using the interpolation functions pro-
posed by Shi and Voyiadjis [Shi and Voyiadjis (1991)]. The assumed displacements
QC technique can give a simple and rational choice of initial strains which will be
derived from the truncated Taylor expansion of displacements and the complicated
process of rank analysis [Liu, Shi, and Tang (1983)] in assumed strain QC tech-
nique can be avoided. Wang et al. [Wang, Hu, and Xia (2012)] constructed a new
quadrilateral QC flat shell element by deducing a series of new interpolation func-
tions. The differences between the assumed strain QC technique and the assumed
displacement QC technique are detailed in [Hu, Xia, and Tang (2011); Wang, Hu,
and Xia (2012)].

Few QC triangular plates/shells elements based on the Reissner-Mindlin plate the-
ory are developed. Most proposed QC triangular plates/shells elements are based
on the Kirchhoff assumption, such as [Tang, Chen, and Liu (1981); Lv and Xu
(1989)]. Some of the quadrilateral QC elements could degenerate to the triangular
elements, however, the accuracy reduce rapidly for that the interpolation functions
for the quadrilateral element is not appropriate for the triangular element. A 4-node
quadrilateral flat shell element by using Timoshenko’s beam function is developed
in [Wang, Hu, and Xia (2012)]. In this paper, we use Timoshenko’s beam func-
tion to deduce triangular flat shell elements. The contribution of the paper is that a
series of new interpolation functions are deduced for the triangular QC technique,
including the string net functions and inner-field functions. Moreover, the inner-
field function of the bending part is interpolated to the nodes. The re-constitution
technique for the shear strain terms is adopted for shear part. Both shell elements
have an explicit stiffness matrix, which is computationally efficient. Numerical ex-
amples are present to validate the shell elements. The test results show very good
performance when compared with references.

2 Element stiffness matrix

For deriving the element stiffness matrix of Reissner-Mindlin shell element, the
strain energy in an element can be written in the following decomposed bending,
shear and membrane modes as

π =
∫∫

Ω

(
1
2

εεε
T
b Dbεεεb +

1
2

εεε
T
s Dsεεεs +

1
2

εεε
T
mDmεεεm)dxdy (1)

in which εεεb, εεεs and εεεm are the bending strain vector, transverse shear strain vector
and membrane strain vector respectively
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Figure 1: The element composition: (a) the flat shell element with surplus mid-
nodes; (b) the bending part; (c) the shear part; (d) the membrane part.

εεεb =
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∂θy
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 εεεs =

 ∂w
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+θy

∂w
∂y
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∂x
∂v
∂y

∂u
∂y

+
∂v
∂x

 (2)

Db,Ds and Dm are the elasticity matrices

Db =
Et3

12(1− v2)

 1 v 0
v 1 0
0 0 1−v

2


Ds =

5Et
12(1+ v)

(
1 0
0 1

)
Dm =

Et
1− v2

 1 v 0
v 1 0
0 0 1−v

2

 (3)

The bending part, the shear part and the membrane part can be combined to form a
3-node flat shell element, as shown in Figure 1.

In the QC technique, the element strain fields are approximated using polynomials
and integrated using string net functions. To keep the shell element stiffness matrix
rank sufficient and free from spurious kinematic modes, the strain vectors can be
approximated as in the [Wang, Hu, and Xia (2012)] as follows:

εεεb =

 0 0 0 0 0 1 0 2x y 0
0 1 0 x 2y 0 0 0 0 0
1 0 2x y 0 0 1 0 x 2y




a1
...

a5
b1
...

b5


= Qbαααb (4)
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εεεs =
(

1 0
0 1

)(
c1
c2

)
= Qsαααs (5)

εεεm =

 1 0 2x y 0 0 0 0 0 0
0 0 0 0 0 0 1 0 x 2y
0 1 0 x 2y 1 0 2x y 0




d1
...

d5
e1
...

d5


= Qmαααm (6)

in which αααb, αααs and αααm are the undetermined element strain parameter vectors.
Letting QT

b , QT
s and QT

m be the test function ,then∫∫
Ω

QT
b Qbdxdyαααb =

∫∫
Ω

QT
b εεεbdxdy (7)

∫∫
Ω

QT
s Qsdxdyαααs =

∫∫
Ω

QT
s εεεsdxdy (8)∫∫

Ω

QT
mQmdxdyαααm =

∫∫
Ω

QT
mεεεmdxdy (9)

where Ω represents the element domain. The element strain parameter vectors αααb,
αααs and αααm can be determined in terms of the element nodal displacement vector q

αααb = A−1
b Cbq αααs = A−1

s Csq αααm = A−1
m Cmq (10)

in which

Ab =
∫∫

Ω

QT
b Qbdxdy As =

∫∫
Ω

QT
s Qsdxdy Am =

∫∫
Ω

QT
mQmdxdy (11)

Cbq =
∫∫

Ω

QT
b εεεbdxdy Csq =

∫∫
Ω

QT
s εεεsdxdy Cmq =

∫∫
Ω

QT
mεεεmdxdy (12)

q =
(

u1 v1 w1 θx1 θy1 θz1 . . . u3 v3 w3 θx3 θy3 θz3
)T (13)

Substituting equation (10) into equations (4)(5)(6) respectively, we obtain the el-
ement strain vectors expressed in terms of the element nodal displacement vector
q

εεεb = Qbαααb = QbA−1
b Cbq = Bbq

εεεs = Qsαααs = QsA−1
s Csq = Bsq

εεεm = Qmαααm = QmA−1
m Cmq = Bmq

(14)
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Consequently, the element stiffness matrix can be obtain by substituting equation
(14) into equation (1)

K = Kb +Ks +Km (15)

where Kb, Ks and Km are the element bending, shear and membrane stiffness ma-
trices respectively, and they are defined as

Kb =
∫∫

Ω

BT
b DbBbdxdy = CT

b A−T
b

∫∫
Ω

QT
b DbQbdxdyA−1

b Cb

Ks =
∫∫

Ω

BT
s DsBsdxdy = CT

s A−T
s

∫∫
Ω

QT
s DsQsdxdyA−1

s Cs

Km =
∫∫

Ω

BT
mDmBmdxdy = CT

mA−T
m

∫∫
Ω

QT
mDmQmdxdyA−1

m Cm

(16)

The integrals of the polynomials in equations (11) and (16) can be carried out quite
easily, and the essential work is the evaluation of the matrices Cb, Cs and Cm de-
fined in equation (12).

3 The evaluation of element strain fields

The Timoshenko’s beam function can be used to derive efficient Reissner-Mindlin
plates/shells elements, such as [Chen and Cheung (2000, 2005, 2001); Ge and Chen
(2003); Chen (2004); Zhang, Zhou, Li, Feng, and Li (2011)]. which can be ex-
pressed as follows,

w = (L1 + µeL1L2(L1−L2))w1 +(L1L2 + µeL1L2(L1−L2))L/2θ1
+(L2 + µeL1L2(L2−L1))w2 +(−L1L2 + µeL1L2(L1−L2))L/2θ2

(17)

θ =−(6L1L2/L)µew1 +L1(1−3µeL2)θ1 +(6L1L2/L)µew2 +L2(1−3µeL1)θ2

(18)

in which L1 = 1− s/L, L2 = s/L, µe = 1/(1 + 12λe), λe = t2/5(1− v)L2. L is the
length of the beam, t is the height of the beam, v is Poisson’s ratio.

3.1 Cb for bending part

In order to calculate the matrix Cb in equation (12), the integrals involving ∂θx/∂x
are concerned as example. By using the Green’s theorem we obtain∫∫

Ω

∂θx

∂x
dxdy =

∮
s
θxnxds∫∫

Ω

∂θx

∂x
xdxdy =

∮
s
θxnxxds−

∫∫
Ω

θxdxdy∫∫
Ω

∂θx

∂x
ydxdy =

∮
s
θxnxyds

(19)
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For the boundary integration, the following transformation equations are needed

(
θx

θy

)
=
(

nx −ny

ny nx

)(
θs

θn

)
(20)

where nx = cos(n,x), ny = cos(n,y). Then the tangential rotation angles are chosen
as the Timoshenko’s beam function and the normal rotation angles are chosen as a
linear function. For instance, along the 1-2 boundary

θs =−(6L1L2/S1)µ1w1 +L1(1−3µ1L2)θs1 +(6L1L2/S1)µ1w2 +L2(1−3µ1L1)θs2

(21)

θn = L1θn1 +L2θn2 (22)

µ1 =
1

1+12λ1
λ1 =

t2

5S2
1(1− v)

(23)

where L1 = 1− s/S1, L2 = s/S1, s is the co-ordinate along the boundary, and S1 is
the 1-2 boundary length, θsi and θni are the tangential and normal slopes at the node
i(i = 1,2) on the boundary. It is obvious that the displacement θs shown in equa-
tion (21) on the boundary will become the displacement of a thin-plate boundary
because λ1→ 0 when t/S1→ 0.

As the procedure of the RDKTM element, the explicit expression of inner-field dis-
placement in the bending part can be obtain by eliminating the surplus parameters
at the mid-side nodes as shown in Figure 1(a).

(
θx

θy

)
= Ñqb (24)

where

qb =
(

w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3
)T (25)

Ñ is defined as Ñ =
(

Ñ1 Ñ2 Ñ3
)

and

Ñ j =
(

Pj Px j Py j

R j Rx j Ry j

)
(26)
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for shape function Ñ1

P1 = − 3
2
(
N4nx1µ1

S1
− N6nx3µ3

S3
)

Px1 = N1 +N4(
1
2
− 3

4
n2

x1µ1)+N6(
1
4

nx1nx3(2−3µ3)+
1
2

ny1ny3)

Py1 = N4(−
3
4

nx1ny1µ1)+N6(
1
4

nx3ny1(2−3µ3)−
1
2

ny3nx1)

R1 = − 3
2
(
N4ny1µ1

S1
−

N6ny3µ3

S3
)

Rx1 = N4(−
3
4

nx1ny1µ1)+N6(
1
4

nx1ny3(2−3µ3)−
1
2

nx3ny1)

Ry1 = N1 +N4(
1
2
− 3

4
n2

y1µ1)+N6(
1
4

ny1ny3(2−3µ3)+
1
2

nx1nx3)

(27)

where Ni is the shape function of the 6-node triangular element in area co-ordinates
(ξi)

Ni = (2ξi−1)ξi (i = 1,2,3)
Nk = 4ξiξ j (k = 4,5,6; i j = 12,23,31)

(28)

Other two shape functions Ñi(i = 2,3) can be obtained by cyclic expressions. Then
the inner-field integration in equation (19) can be calculated.

3.2 Cs for shear part

In order to calculate the matrix Cs, the following integrations are considered:∫∫
Ω

(
∂w
∂x

+θy)dxdy
∫∫

Ω

(
∂w
∂y
−θx)dxdy (29)

The transverse shear strain of the element can be written as

εεεs =
(

γx

γy

)
=

 ∂w
∂x

+θy

∂w
∂y
−θx

 (30)

(
γx

γy

)
=
(

ξ1 0 ξ2 0 ξ3 0
0 ξ1 0 ξ2 0 ξ3

)


γx1
γy1
γx2
γy2
γx3
γy3

 (31)
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In order to eliminate the shear locking, the Timoshenko’s beam function is used to
express the rotation and deflection on the boundaries. Such as the 1-2 boundary

θ̃s =−(6L1L2/S1)µ1w1 +L1(1−3µ1L2)θs1 +(6L1L2/S1)µ1w2

+ L2(1− 3µ1L1)θs2 (32)

w̃ = (L1 + µ1L1L2(L1−L2))w1 +(L1L2 + µ1L1L2(L1−L2))S1/2θs1

+(L2 + µ1L1L2(L2−L1))w2 +(−L1L2 + µ1L1L2(L1−L2))S1/2θs2
(33)

Thus we obtain

∂ w̃
∂ s

=
1
S1

(−1+ µ1(1−6L1L2))w1 +
1
2
(L1−L2 + µ1(1−6L1L2))θs1

+
1
S1

(1−µ1(1−6L1L2))w2 +
1
2
(−L1 +L2 + µ1(1−6L1L2))θs2

(34)

The displacement θ̃s−∂ w̃/∂ s shown in equations (32) and (34) will stay constant
on the boundary due to

θ̃s−
∂ w̃
∂ s

=
1
S1

(1−µ1)w1 +
1
2
(1−µ1)θs1−

1
S1

(1−µ1)w2 +
1
2
(1−µ1)θs2 (35)

Thus the shear strains at node i(i = 1,2,3) can be expressed by the constant shear
strains γs j. For node 1, there exists(

γs4
γs6

)
=
(

nx1 ny1
nx3 ny3

)(
γx1
γy1

)
(36)

and(
γx1
γy1

)
=

1
nx1ny3−ny1nx3

(
ny3 −ny1
−nx3 nx1

)(
γs4
γs6

)
(37)

Similarly, other nodal shear strains γx j and γy j ( j = 2,3) can be obtained by cyclic
expressions. Finally, the transverse shear strain can be written as

(
γx

γy

)
= Ñs

 γs4
γs5
γs6

 (38)

in which

Ñs =
(

ny3ξ1/A1−ny2ξ2/A2 ny1ξ2/A2−ny3ξ3/A3 ny2ξ3/A3−ny1ξ1/A1
nx2ξ2/A2−nx3ξ1/A1 nx3ξ3/A3−nx1ξ2/A2 nx1ξ1/A1−nx2ξ3/A3

)
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(39)

A1 =nx1ny3−ny1nx3

A2 =nx2ny1−ny2nx1

A3 =nx3ny2−ny3nx2

(40)

and γsi (i = 4,5,6) are the natural shear strains at mid-side nodes 4,5,6 of the
element. This means that the shear strains can be expressed as follows γs4

γs5
γs6

=

 θs4−w,s4
θs5−w,s5
θs6−w,s6

 (41)

Substituting L1 = L2 = 0.5 into equations (32) and (34), the θs4 and w,s4 at the
mid-node 4 on the 1-2 boundary can be obtained as follows

θs4 =− 3
2S1

µ1w1 +
1
4
(2−3µ1)θs1 +

3
2S1

µ1w2 +
1
4
(2−3µ1)θs2 (42)

w,s4 =− 1
2S1

(2+ µ1)w1−
1
4

µ1θs1 +
1

2S1
(2+ µ1)w2−

1
4

µ1θs2 (43)

where θs j at the node j( j = 1,2) on the 1-2 boundary can be expressed as

θs j =
(

nx1 ny1
)( θx j

θy j

)
( j = 1,2) (44)

Then θs4−w,s4 can be expressed by

θs4−w,s4 = Bs1qs (45)

Bs1 =
(

1−µ1

S1

1
2

nx1(1−µ1)
1
2

ny1(1−µ1)

−1−µ1

S1

1
2

nx2(1−µ1)
1
2

ny2(1−µ1) 0 0 0
) (46)

in which, qs is defined as

qs =
(

w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3
)T (47)

Similarly, other mid-node parameters θsi−w,si (i = 5,6) can be obtained in terms
of the nodal parameter vector qs

θs5−w,s5 = Bs2qs θs6−w,s6 = Bs3qs (48)
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Bs2 =
(

0 0 0
1−µ2

S2

1
2

nx2(1−µ2)
1
2

ny2(1−µ2)

µ2−1
S2

1
2

nx3(1−µ2)
1
2

ny3(1−µ2)
)

Bs3 =
(

µ3−1
S3

1
2

nx1(1−µ3)
1
2

ny1(1−µ3) 0 0 0

1−µ3

S3

1
2

nx3(1−µ3)
1
2

ny3(1−µ3)
)

(49)

Therefore, the transverse shear strains of the element can be obtained as follows

εεεs =

 ∂w
∂x

+θy

∂w
∂y
−θx

= Ñs

 θs4−w,s4
θs5−w,s5
θs6−w,s6

= ÑsBsqs (50)

where

Bs =
(

Bs1 Bs2 Bs3
)T (51)

Finally the integration in equation (29) can be calculated, and the matrix Cs can be
obtained.

3.3 Cm for membrane part

Now we calculate the matrix Cm in equation (12), and the following integrations
are concerned∫∫

Ω

∂u
∂x

dxdy =
∮

s
unxds∫∫

Ω

∂u
∂x

xdxdy =
∮

s
unxxds−

∫∫
Ω

udxdy∫∫
Ω

∂u
∂x

ydxdy =
∮

s
unxyds

(52)

Two sets of interpolation functions are used here to calculate the stiffness matrix
of the membrane part, and the constructed shell elements are named as QCS31 and
QCS32.

QCS31 Along the element boundary 1-2, the string net functions are chosen as

u =L1u1 +L2u2

v =L1v1 +L2v2
(53)
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and the interpolation functions for inner-field displacements are chosen as

u =ξ1u1 +ξ2u2 +ξ3u3

v =ξ1v1 +ξ2v2 +ξ3v3
(54)

The drilling stiffness is considered in order to improve the membrane behavior. The
strain energy for an element with true drilling rotation can be written as

πt = β
Et

2(1− v2)

∫∫
Ω

εεε
2
t dxdy (55)

where t is the thickness of the shell, β is chosen to be equal to 0.0001 by numerical
trials, and εεε t is the drilling strain defined as

εεε t = θz−
1
2
(
∂v
∂x
− ∂u

∂y
) (56)

We assume εεε t as a constant strain field, then Qt = 1, At =
∫∫

Ω
dxdy, and

Ctq =
∫∫

Ω

θz−
1
2
(
∂v
∂x
− ∂u

∂y
)dxdy =

∫∫
Ω

θzdxdy− 1
2

∮
s
(vnx−uny)ds (57)

The string net functions and the inner-field displacements are chosen as equations
(53) and (54).

QCS32 Along the element boundary 1-2, the string net functions are chosen as
the Allman type functions [Allman (1984)]

u =L1u1 +L2u2 +
1
4
(y2− y1)(θz2−θz1)L1L2

v =L1v1 +L2v2−
1
4
(x2− x1)(θz2−θz1)L1L2

(58)

The interpolation functions for inner-field displacement are chosen as

u =ξ1u1 +ξ2u2 +ξ3u3 +
1
2
(y2− y1)(θz2−θz1)ξ1ξ2

+
1
2
(y3− y2)(θz3−θz2)ξ2ξ3 +

1
2
(y1− y3)(θz1−θz3)ξ3ξ1

v =ξ1v1 +ξ2v2 +ξ3v3 +
1
2
(x1− x2)(θz2−θz1)ξ1ξ2

+
1
2
(x2− x3)(θz3−θz2)ξ2ξ3 +

1
2
(x3− x1)(θz1−θz3)ξ3ξ1

(59)
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4 Numerical examples

In the section, several benchmark problems are presented to validate and demon-
strate the performance of the flat shell elements. The results are compared with
other plates/shells elements. The list of plate elements used for comparison is out-
lined in Table 1 and some flat shell elements are used for comparison list below.

DKT18(P): The triangular flat shell element formed by the plate element DKT and
triangular membrane elements proposed by Allman [Allman (1984)];

DKT18(T): The triangular flat shell element formed by the plate element DKT and
the constant strain membrane element CST with true drilling rotations;

RDKTM18(P): Refined triangular flat shell element formed by the plate element
RDKTM and triangular membrane elements [Ge and Chen (2003)];

RDKTM18(T): Refined triangular flat shell element formed by the plate element
RDKTM and the constant strain membrane element CST with true drilling rotations
[Ge and Chen (2003)].

Table 1: List of plate elements used for comparison

Name Description

T3-R The reduced/selective integration triangular element[Pugh and
Zienkiewicz (1978)]

T3 The triangular displacement element with full integration
DST-BL Discrete Mindlin triangular plate element proposed by Batoz and Lardeur

[Batoz and Lardeur (1989)]
DST-BK Discrete Mindlin triangular plate element proposed by Batoz and Katili

[Batoz and Katili (1992)]
DKMT Discrete Mindlin triangular plate element proposed by Katili [Katili

(1993)]
DKT The discrete Kirchhoff triangular plate element [Batoz, Bathe, and Ho

(1980)]
RDKTM Refined triangular plate element [Chen and Cheung (2001)]

4.1 Bending patch test

The patch test is a well-known benchmark to validate plate and shell elements. The
geometry and mesh for the bending patch test are depicted in Figure 2, as well as
nodal coordinates. The Young’s modulus of the plate is 2.1× 107 and Poisson’s
ratio v = 0.3 are used for the isotropic elastic material. Analytic field for thin plate
bending is given by

w(x,y) = 0.001x2−0.0003y2 (60)
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The rotation can be calculated under the Kirchhoff assumptions as follows

θx =
∂w
∂y

=−0.0006y θy =−∂w
∂x

=−0.002x (61)

The exact transverse displacements and rotations are prescribed as essential bound-
ary conditions in node 1-4. If the calculated displacements at the inner nodes 5-8
match the analytical displacements, the element pass the bending patch test. The
calculated results under different thickness/width ratio given in Table 2 show that
the present elements can pass the bending patch test.

Figure 2: Mesh and nodal coordinates of the patch test.

Table 2: Thin plate patch test results under different thickness/width ratio. "P"
represents pass.

Thickness/width ratio 0.4 0.2 0.1 0.01 0.001 0.0001

Thickness 4 2 1 0.1 0.01 0.001
QCS31 P P P P P P
QCS32 P P P P P P

4.2 Razzaque’s skew plate

Figure 3(a) shows the geometry and material parameters for the Razzaque’s skew
plate subjected to a uniform load [Razzaque (1973)]. The problem serves to test
the mesh distortion sensitivity of the element. The analytic solution and compared
results of deflections at point C are shown in Table 3 and Figure 3(b). The results
show that the present elements are competitive when compared with other elements.
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60o

L

L C

simply supported

free

(a) (b)

Figure 3: The Razzaque’s skew plate

Table 3: Deflections at point C for the Razzaque’s skew plate

4×4 6×6 8×8 12×12

T3-R 0.0002 0.0005 0.0009 0.0020
T3 0.0001 0.0001 0.0002 0.0005
DKT 0.7527 0.7742 0.7822 0.7881
RDKTM 0.7527 0.7742 0.7822 0.7881
QCS31 0.7539 0.7745 0.7816 0.7868
Exact 0.7945

4.3 Clamped square plate

Clamped square plate subjected to a uniformly distributed load is modeled to eval-
uate the ability of elimination of shear locking. Clamped boundary is applied on all
four boundaries. The plate is divided into irregular meshes of 160 elements with
various thickness/span ratios, as shown in Figure 4. The material and geometrical
parameters used are Young’s modulus E = 1092, Poisson’s ratio v = 0.3, length of
the plate L = 10, and the range of thickness/span ratios t/L = 0.6− 10−30. The
results in Table 4 indicate that the present elements have very good properties of
being free from shear locking.

4.4 Circular plate

A simply supported or clamped circular plate subjected to uniform loading is an-
alyzed to demonstrate more features of the present elements. One quarter of the
circular plate is modeled with three different elements meshes of 6, 24 and 96, as
shown in Figure 5. The radius of the plate is R = 5 and different cases of the thick-
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Figure 4: Clamped square plate discretized into irregular mesh (160 elements)

Table 4: Central deflection of the uniformly loaded whole clamped plate

t/L 0.6 0.4 0.25 0.2 0.05 10−2 10−5 10−7 10−10 10−15 10−30

T3-R 872.3 456.7 251.6 202.7 95.4 22.4 0.000 0.000 0.000 0.000 0.000
T3 871.7 455.4 248.5 198.1 64.8 5.1 0.000 0.000 0.000 0.000 0.000
DKT 130.6 130.6 130.6 130.6 130.6 130.6 130.6 130.6 130.6 130.6 130.6
RDKTM 886.4 471.5 267.8 220.2 136.9 130.9 130.6 130.6 130.6 130.6 130.6
QCS31 887.5 471.4 267.4 219.7 135.9 129.6 129.4 129.4 129.4 129.4 129.4
Exact 126.5 126.5 126.5 126.5 126.5

ness are investigated here. Poisson ratio v = 0.3 and Young’s modulus E = 10.92.
The compared results are listed in Table 5-8. Figure 6 shows the central deflections
and moments of the clamped circular plate of thickness t = 0.1. The compared
results show the present elements are competitive when compared with other ele-
ments.

4.5 Pinched cylinder

The pinched cylinder with diaphragm boundary conditions are subjected to a pair
of opposite forces applied in the mid-span is an example commonly applied for
the analysis of shell finite element formulations. This test is severe for both inex-
tensional bending and complex membrane states. Due to the symmetry only one
octant of the cylinder is modeled. The exact deflection at the location of the point
C is 1.8248× 10−5 [MacNeal and Harder (1985)]. The results of the present for-
mulations and those of the references are shown in Figure 7 and Table 9. It can be
seen that the present elements are very effective in this example.
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Figure 5: Different meshes of symmetrical quadrants of a circular plate

Table 5: Central deflection for a simply supported circular plate with a uniform
load

R/t=2 R/t=5 R/t=50

6 24 96 6 24 96 6 24 96

T3-R 2.534 3.073 3.219 27.487 36.778 40.251 2488.0 6500.6 15881.1
T3 2.298 2.984 3.195 15.804 30.195 38.032 282.7 1221.4 4507.0
DKT 2.421 2.520 2.524 37.833 39.378 39.714 37832.7 39378.2 39714.1
RDKTM 3.091 3.224 3.254 39.463 41.089 41.473 37848.5 39394.3 39730.2
QCS31 3.086 3.224 3.254 39.387 41.042 41.467 37771.3 39326.9 39716.2
Exact 3.262 41.599 39831

Table 6: Central moment for a simply supported circular plate with a uniform load

R/t=2 R/t=5 R/t=50

6 24 96 6 24 96 6 24 96

T3-R 3.798 4.760 5.073 3.275 4.363 5.026 0.351 0.693 2.851
T3 3.376 4.616 5.040 1.896 3.663 4.820 0.036 0.151 0.748
DKT 5.259 5.203 5.205 5.259 5.203 5.182 5.259 5.203 5.182
RDKTM 5.393 5.270 5.204 5.306 5.239 5.201 5.259 5.204 5.183
QCS31 5.431 5.312 5.210 5.332 5.275 5.220 5.279 5.221 5.183
Exact 5.16 5.16 5.16

4.6 Hemispherical shell

A hemispherical shell with a top hole of 18◦ proposed by MacNeal and Harder[MacNeal
and Harder (1985)] is shown in Figure 8(a). The problem is very useful to access
the finite element ability to represent inextensional bending deformation modes
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Figure 6: Central deflections and moments of a circular plate(clamped, uniform
load and R/t = 50)

R

P
L /2 L /2

P

Diaphragm

C

Figure 7: Pinched cylinder

Table 9: Deflections (10−5) at point C for the pinched cylinder

4×4 8×8 12×12 24×24

DKT18(T) 0.898 1.572 1.726 1.818
DKT18(P) 0.954 1.582 1.721 1.793
RDKTM(T) 0.889 1.577 1.736 1.818
RDKTM(P) 0.955 1.589 1.740 1.809
QCS31 0.900 1.578 1.736 1.819
QCS32 1.058 1.622 1.757 1.825
Exact 1.8248
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and rigid body rotation about the normal to the shell surface. Taking advantage of
symmetry, only a quadrant of the shell is modeled. The analytic value for the dis-
placement at point A is 0.094. Excellent results obtained when compare with the
results from the references, which list in Table 10 and Figure 8(b). It can be seen
that no membrane locking takes place in the problems for the present elements and
the elements with constraints of the true drilling rotation freedom produce the best
results.

18o

x
1.0F =

1.0F =

y

z

Sym.

Sym.

F ree

F reeA

(a) (b)

Figure 8: Hemispherical shell with 18◦ hole

Table 10: Displacements at point A for hemispherical shell with 18◦ hole

4×4 8×8 12×12 24×24

DKT18(T) 0.09328 0.09300 0.09257 0.09260
DKT18(P) 0.01910 0.03541 0.06635 0.09064
RDKTM(T) 0.09328 0.09301 0.09258 0.09260
RDKTM(P) 0.01911 0.03542 0.06636 0.09247
QCS31 0.09319 0.09313 0.09270 0.09261
QCS32 0.01969 0.03825 0.06871 0.09094
Exact 0.094

5 Conclusions

The QC technique has achieved great success in linear and nonlinear field of finite
element analysis [Lomboy, Suthasupradit, Kim, and Oñate (2009)]. However, to
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the best of our knowledge, few Reissner-Mindlin triangular QC elements have been
developed. A Reissner-Mindlin quadrilateral shell element has been proposed by
using Timoshenko’s beam function [Wang, Hu, and Xia (2012)]. In this paper,
we use Timoshenko’s beam function to derive 3-node triangular Reissner-Mindlin
flat shell elements within the framework of QC technique. From the preceding
discussions and numerical examples, the following conclusions can be drawn:

(1) A series of new interpolation functions are deduced for the QC technique. The
exact solution of Timoshenko’s beam function is used successfully to derive the
element, and the interpolated inner field function is obtained. The re-constitution
technique for the shear strain terms is adopted for shear part. Both elements can
be used for the analysis of both moderately thick and thin plates/shells, and the
convergence for the very thin case can be ensured theoretically. The interpolation
functions can also be used to construct geometric and material non-linearity ele-
ments.

(2) The advantages of QC technique are preserved: explicit stiffness matrix, conve-
nient post-processing, free from membrane locking and shear locking. The numer-
ical results show that the present elements provides good results to most problems
when compared with referenced 3-node plates and shells elements.
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