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Asymmetric Shell Elements Based on a Corrected
Updated-Lagrangian Approach
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Abstract: Surprisingly good displacement results are obtained by using the
Petrov-Galerkin method with assumed and enhanced metric components in the
test functions and enhanced metric components in the trial functions. Cartesian
trial functions are required to ensure completeness and assumed/enhanced metric
components are introduced to ensure high coarse-mesh accuracy. In the trial func-
tions, the original incompatible-mode in-plane Q6 element by Wilson et al. can be
used without violating the patch test. As a beneficial side-effect, Newton-Raphson
convergence behavior for non-linear problems is improved. Transverse-shear and
in-plane patch tests are satisfied while distorted-mesh performance is better than
with symmetric formulations due to the absence of coordinate transformation. Co-
variant coordinates are used to calculate the (mixed) test metric and a combina-
tion of Cartesian coordinates and quadratic terms in the metric are used for the
trial functions. Classical test functions with assumed metric components are re-
quired for compatibility reasons. Verification tests are performed with very good
performance being observed in all of them. Applications to large displacement
elasticity and finite strain plasticity are shown with both low sensitivity to mesh
distortion and high accuracy. A equilibrium-consistent (and consistently linearized)
updated-Lagrangian algorithm is proposed and tested. Concerning the time-step de-
pendency, it was found that the consistent updated-Lagrangian algorithm is nearly
time-step independent and can replace the multiplicative plasticity approach if only
moderate elastic strains are present.
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1 Introduction

Finely discretized geometries in ductile damage and precise crack propagation sim-
ulations (cf. Areias, Garção, Pires, and Infante Barbosa (2011); Rabczuk and
Areias (2006); Rabczuk, Areias, and Belytschko (2007)) require, as a condition for
efficient solution and robustness, sound algorithms and thorough testing and assess-
ment. For shells, this verification process includes a set of obstacle problems begin-
ning with the patch tests (in-plane, bending and transverse shear), classical beam,
plate and shell benchmarks and including large displacement and finite strain tests.
Assessing elements with finite displacement tests and finite strain plasticity tests is
also important as these have been found to uncover certain instabilities (see, e.g.
Crisfield and Peng (1996)) with unconventional formulations. Element technology
for low-order quadrilateral shells is too vast to be summarized in this manuscript
and most elements proposed in the last decades vary only slightly in performance
for the same number of degrees-of-freedom. A milestone in the removal of out-of-
plane locking problem (i.e. the transverse shear locking) was set with the assumed
natural strain technique Dvorkin and Bathe (1984); Park and Stanley (1986) and
in-plane bending locking was removed in 1973 by the celebrated Wilson Q6 ele-
ment Wilson, Taylor, Doherty, and Ghaboussi (1973) and subsequent corrections.
For undistorted meshes, convergence rate of the results is established regardless of
the incomplete higher order terms in the polynomials (see the treatise Belytschko,
Liu, and Moran (2000)) and these higher order terms only contribute to stability
and coarse-mesh accuracy. Of course, mesh distortion adversely affects the con-
vergence rate and it has been a problem without the same definite solution that the
shear locking problem benefited from. An exception has been the remarkable work
of Rajendran and co-workers Rajendran and Liew (2003); Ooi, Rajendran, and Yeo
(2004) who proposed the use of the Petrov-Galerkin projection for elasticity with
high degree of mesh distortion performance. Cartesian coordinates are used for the
trial functions and parent-domain coordinates for the test functions. They applied
this approach to elasticity with quadratic elements balancing high performance in
the two element test and satisfaction of the patch test. However, two important
topics were not studied:

1. The combination with incompatible modes and assumed natural strains, nec-
essary for low order elements.

2. The application to geometrically non-linear problems and finite strain plas-
ticity problems.

In addition to these two topics, several other aspects are discussed and tested in
this work. A serious obstacle in applying the work of Rajendran and co-workers
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to finite strains is that, being the trial shape functions dependent on the spatial
coordinates, the linearization costs would be predictably high and some robustness
concerns appeared at an earlier attempt of using the classical spatial formulation
(as in the seminal work of J. Simo Simo (1992); Simo and Armero (1992)) and
FFFeFFF p plasticity. It became clear that an alternative, less cumbersome, technique
would allow the extension of these works to include both locking remedies and non-
linear terms. We therefore describe the technique in the following four sections.
After this, a sequence of both linear and non-linear well-known benchmark tests is
performed with a high degree of accuracy and mesh distortion insensitivity. Finally,
conclusions are drawn in section 7.

2 Governing equations

2.1 Static equilibrium for an arbitrary reference configuration

Cauchy equations of equilibrium for any reference configuration can be obtained
from the corresponding spatial equilibrium (the derivations for the latter are shown
in Ogden Ogden (1997) and extended here). Using standard notation (cf. Truesdell
and Noll (2004)) we write the spatial version of Cauchy equations as ( j is the facet
index):

∂σi j

∂xp j

+bi = 0 (1)

with σi j (i, j = 1,2,3) being the components of the Cauchy stress in an orthonormed
basis and bi the components of the body force vector. The coordinates xp j are the
spatial, or deformed, coordinates of a given point (p) under consideration. It is
implied that (1) is satisfied for a time parameter t ∈ [0,T ] with T being the total
time of analysis and for a position xxxp ∈ Ωt belonging to the deformed position
domain at the time of analysis (here denoted Ωt). In tensor notation, the equation
(1) can be presented as:

∇ ·σσσT +bbb = 000 (2)

where ∇ = ∂

∂xxxp
is the spatial gradient operator. To complement (2), essential and

natural boundary conditions defined in terms of two functions gi and hi are required
(cf. Hughes (2000)):

ui = gi on Γgi (3)

σi jn j = hi on Γhi (4)

where the boundary Γt = ∂Ωt is partitioned in Γggg and Γhhh: Γt = Γggg ∪Γhhh (the es-
sential and the natural boundaries). In equation (4), n j are the components of outer
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normal to Γt (in the deformed configuration). Using the definition of the first Piola-
Kirchhoff tensor (PPP) and denoting the deformation gradient as FFF , it is possible to
modify the derivatives in (1). Making use of the relation σσσ = 1

J PPPFFFT with J = detFFF
we can write the equilibrium equation in material form as:

∂Pi j

∂Xp j

+ Jbi = 0 (5)

where Xp j are the material, or undeformed, coordinates of a given point under con-
sideration. A direct manipulation of (5) with the use of the second Piola-Kirchhoff
stress, SSS, allows the writing the alternative material form of equilibrium:

Fik
∂Sk j

∂Xp j

+ Jbi = 0 (6)

or, using ∇0 as the material gradient operator (the derivative with respect to XXX p):

FFF∇0 ·SSST + Jbbb = 000 (7)

The time parameter t is, in equation (7), the same as it was in equation (2). How-
ever, the position domain is now Ω0 ≡ Ωt |t=0. At this point, given (6), the conclu-
sion of arbitrariness of Xp j as reference coordinates allows us to use a reference
configuration corresponding to an arbitrary instant tb and the associated position
domain Ωb. Note that there is no requirement concerning this configuration, i.e. tb
is not necessarily in [0,T ]. This results in the following generalization of (7):

FFFb∇b ·SSST
b + Jbbbb = 000 (8)

where

∇b =
∂

∂XXX pb
(9)

FFFb = ∇bxxx (10)

Jb = detFFFb (11)

SSSb = JbFFF−1
b σσσFFF−T

b (12)

The time parameter t is, in equation (8), the same as it was in equation (2) and the
position domain is now Ωb ≡ Ωt |t=tb . The reader can now observe that, if a given
time instance ta is chosen from the interval [0,T ] not necessarily coinciding with t,
we can re-write (8) as:

FFFab∇b ·SSST
ab + Jabbbb = 000 (13)
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with FFFab = ∇bxxxpa, SSST
ab = SSSab etc. This conclusion will be used in the weak form

of equilibrium. The reader can note that it is possible to transform the boundary
conditions (3-4) to the material setting. However, if boundary finite elements are
used, they can be directly written in the deformed configuration.

A fact worth pointing out is the following: ta must be an equilibrium instant, in con-
trast with tb. This explains why simplification attempts of the equilibrium equation
(8) by switching FFFab for III1 result in loss of convergence for high values of defor-
mation.

2.2 Kinematics and stress integration

If (13) is adopted as the equilibrium equation with time parameters ta and tb,
stress integration can be used in a form that avoids the polar decomposition or
(explicit) objective rates. In a previous work Areias and Belytschko (2006) a rate-
independent rotational approach is proposed, but it entails a more complex con-
stitutive algorithm in finite strains. The present derivation can be used to achieve
an efficient and robust time-integration scheme for finite plastic strains. In addi-
tion, if tb = 0, hyperelastic models can be used directly in the material form (as
discussed at length in Holzapfel (2000)). Let us consider three configurations a, b
and c (respectively at times ta ≥ tb ≥ tc) as depicted in Figure 1. A consistent (and
consistently linearized) updated-Lagrangian formulation is derived from (13) and
the stepping suggested in that Figure. The formulation can also be viewed as total
Lagrangian, since the strain-displacement matrices are similar in structure to the
ones for this formulation.

The relative deformation gradient between two configurations Ωa and Ωb is given
by2:

FFFab =
∂xxxpa

∂xxxpb
(14)

or, using the covariant basis (cf. Areias, Ritto-Corrêa, and Martins (2010)), the
following product is obtained:

FFFab = xxxT
a yyyb (15)

where

xxxa =
(

∂xxxpa

∂θθθ

)T

(16)

1 Those modifications result in sparse strain-displacement operators coinciding with the small strain
case, in contrast with what is presented here.

2 Scalar components of FFFab are introduced as [FFFab]i j for the ith row and jth column.
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Sbb = 1
Jbc
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bc
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∆Šbc

Sbb
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θc
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Figure 1: Intermediate configurations used for stress integration. θθθ denote curvi-
linear coordinates, θθθ = {θ 1,θ 2,θ 3}.

contains, as rows, the covariant basis vectors of configuration a. Curvilinear coor-
dinates θθθ are often locally identified with the parent domain coordinates, but need
not be. In addition, yyya = xxx−T

a contains, as columns, the contravariant basis vectors
of the same configuration. The inverse of the deformation gradient is obtained by
swapping indices a and b: FFF−1

ab = FFFba. The Jacobian determinant, using the same
notation, is given by:

Jab = detFFFab (17)

and measures the ratio between the volumes at configurations a and b. The spatial
covariant metric is defined as:

mmmaa = xxxaxxxT
a (18)

The spatial velocity gradient is given from the derivative of xxxa: lllab = ẋxxT
a yyyb and

the strain rate as its symmetric part: ε̇εεab = 1
2 yyyT

b ṁmmaayyyb. Of course, using the spa-
tial metric we can write the right Cauchy-Green tensor (see Ogden (1997) for the
nomenclature) between two configurations a and b directly obtained from its defi-
nition (15) as:

CCCab = yyyT
b mmmaayyyb (19)
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Stress tensors are also naturally given in relation to two configurations a and b.
Specifically, using the Cauchy stress tensor (SSSaa or σσσ in the classical notation) can
be obtained from the second Piola-Kirchhoff stress SSSab between a and b3:

SSSaa =
1

Jab
FFFabSSSabFFFT

ab (20)

The reference configuration for the stress can be changed from b to c by a direct
generalization of (20):

SSSac =
Jac

Jab
FFFcbSSSabFFFT

cb (21)

Obviously, power-conjugate quantities involving this definition of stress must be of
the form:

ẇ =
1
2

SSSab : ĊCCab (22)

∀ta > tb. The weak form of equilibrium is given by (the upper triangle indicates a
“virtual quantity”, as employed by S.S. Antman Antman (2005)):

1
2

∫

Ωb

SSSab :
4
CCCabdΩb

︸ ︷︷ ︸
4
W int

=
4
W ext (23)

when ta > tb and, alternatively,
∫

Ωa

SSSaa :
4
εεε aadΩa =

4
W ext (24)

when ta = tb. These two forms follow directly from (2) and (13) in the previous
section and the application of Green’s theorem. The so-called “stress updates” in
the sense of approximations for the Lie derivative (see Chapters 7 and 8 of Simo
and Hughes (2000)) are typically given as:

SSSab = ∆ŠSSab +
1

Jbc
FFFbcSSSbcFFFT

bc
︸ ︷︷ ︸

SSSbb

(25)

with ∆ŠSSab being the relative constitutive stress4 and SSSbb can be interpreted as the
“transported” stress, whose source is purely kinematic, as Figure 1 suggests. The
3 As discussed before, SSSab can be interpreted as the second Piola-Kirchhoff stress at time ta relative

to the reference configuration at time tb
4 Both elastic and inelastic parts contribute to ∆ŠSSab



482 Copyright © 2012 Tech Science Press CMES, vol.88, no.6, pp.475-506, 2012

strict total Lagrangian formulation is recovered for b = c = 0. When considering
plasticity it is convenient for ∆ŠSSab to depend on a “strain” measure, which in our
case is the relative Green-Lagrange strain:

EEEab =
1
2

[CCCab + III (2αTab−1)] (26)

where α is the linear thermal expansion coefficient and Tab is the temperature dif-
ference between configurations a and b. For completeness, we also show that the
back-stresses (here denoted by BBB) are given by a similar update scheme,

BBBab = ∆B̌BBab +
1

Jbc
FFFbcBBBbcFFFT

bc
︸ ︷︷ ︸

BBBbb

(27)

To create a stress contour map, of course Cauchy stresses are physically meaningful
and correspond to SSSaa, calculated as SSSaa = FFFab

(
∆S̆SSab +SSSbb

)
FFFT

ab/Jab with the ap-
propriate transformations for a global coordinate system. The proposed approach
implies a re-writing of classical FFFeFFF p plasticity codes to work with time increments
(one of such codes is discussed in Areias and Rabczuk (2010)). The linearization
of (23) is straightforward (with fewer operations at the constitutive level than the
traditional Kirchhoff-stress/strain rate approach) and follows:

d
4
W int =

1
2

∫

Ωb

SSSab : d
4
CCCabdΩb +

1
4

∫

Ωb

dCCCab : C :
4
CCCabdΩb (28)

and dW ext being calculated according to the deformation-dependent loads. The de-
termination of CCCab and FFFab does not have to be compatible in the sense that since
an updated problem is solved when switching from b to c as reference configu-
ration, it follows that mixed formulations can be used for CCCab and not for FFFbc in
(25). Restrictions to moderate elastic strains are of course applicable once b and
c do not coincide. The interesting versatility of the present approach is that for
hyperelastic materials we can coalesce b = c = 0 and the Lagrangian description
of hyperelasticity can be used without specific conditions and for arbitrarily large
strains. Otherwise, it is clear that a Lie derivative of the stress is being implicitly
calculated and the proposed algorithm belongs to the non-corotational hypoelastic
class of algorithms (discussed in Bruhns, Meyers, and Xiao (2004)). The following
limitations are known to exist with this approach:

• Energy dissipation for large amplitude closed loading cycles.

• Restriction to elastic isotropy when using elasto-plastic constitutive laws.
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In contrast with the FFFeFFF p approaches, where errors result from the plastic integra-
tion algorithm (cf. Areias, Dias-da Costa, Pires, and Infante Barbosa (2011)), in the
present approach the stress time integration has an associated error without plastic
flow. A direct comparison with classical approximations (Kirchhoff/Saint-Venant
using the Hencky strain) and hyperelastic models (Neo-Hookean according to the
description by Wriggers Wriggers (2008)) is made to assess the range of elastic
deformations for which the present approach can be accepted (cf. Figure 2). When
considering elasticity, high values of step size result in stress drifting. It is notice-
able that, for metal elasto-plasticity, the error is not important since elastic strain
components are typically less than 1%.

3 Position vector in a shell, metric and related derivations

Equation (19) is fundamental for the assumed-metric approach in the test functions.
Shells further constrain that metric, as described by the classical work of Antman
and Marlow Antman and Marlow (1991), resulting in a specific form of the position
vector. For a shell, it is known that a possible xxxpa ∈Ωa is5 the following:

xxxpa = rrrpa +
haθ 3

2
dddpa (29)

where rrrpa is the mid-surface position vector in Ωa, θ 3 is a non-dimensional, thickness-
like coordinate, ha is the thickness at position rrrpa and, finally, dddpa is a unit director.
This nomenclature is standard and is adopted in Areias, Ritto-Corrêa, and Martins
(2010). We choose to avoid drilling degrees-of-freedom and therefore two rotation
parameters are sufficient to describe the motion of the directors. The director’s
relation to the rotation parameters is:

dddpa = ΓΓΓ0QQQ(α1,α2)





0
0
1



 (30)

where ΓΓΓ0 is the fiber coordinate system transformation matrix (the method de-
scribed by Hughes Hughes (2000) and Hughes and Liu Hughes and Liu (1981)
is adopted). The rotation matrix QQQ(α1,α2) and its derivatives are determined using
the software Wolfram Mathematica Research Inc (2007) with the add-on AceGen
Korelc (2002). In a shorter notation, (30) can be written as:

dddpa = ΓΓΓ0





sinα

α
α2

− sinα

α
α1

cosα



 (31)

5 We omit the similar case of b
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Figure 2: Closed loading cycle with high values of elastic strains: comparison with
Neo-Hookean and Kirchhoff/Saint-Venant using the Hencky strain.
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with α =
√

α2
1 +α2

2 . The property dddpa · ∂dddpa
∂θ i = 0 for i = 1,2 produces the following

metric components:

[mmmaa]i j = rrrpai · rrrpa j +
haθ 3

2

[(
rrrpai ·dddpa j + rrrpa j ·dddpai

)
+

haθ 3

2
dddpai ·dddpa j

]
(32)

[mmmaa]i3 =
κsha

2
rrrpai ·dddpa (33)

[mmmaa]33 =
h2

a

4
(34)

with i = 1,2 and j = 1,2. In (32), we consider rrrpai as the derivative of rrrpa with
respect to θ i. Finally, κs is the shear correction parameter, usually taken as 5/6,
which scales the shear terms so that the correct energy is obtained. Another aspect
that deserves attention is the singularity problem in (31) Brank and Ibrahimbegovic
(2001). We propose a method to deal with this: rotations are always relative to the
Kirchhoff director6, as depicted in Figure 3. Metric components are all calculated
from rrrp and dddp from the internal products of (32).

4 Asymmetric interpolations

4.1 Test functions

We adopt the traditional shape function interpolation for rrrpa and dddpa:

rrrpa = nnnr(θθθ)rrraN (35)

dddpa = nnnr(θθθ)dddaN (36)

with rrraN and dddaN being the nodal mid-surface positions and the nodal directors, re-
spectively. The directors dddaN are calculated using the angles ∆α1 and ∆α2 using the
expressions by Hughes Hughes (2000). The shape function matrix for the 4−node
quadrilateral, nnnr, is given as:

nnnr =
1
4



· · ·

(
1+θ 1Kθ 1

)(
1+θ 2Kθ 2

)
0

· · · 0
(
1+θ 1Kθ 1

)(
1+θ 2Kθ 2

)

· · · 0 0

0 · · ·
0 · · ·(

1+θ 1Kθ 1
)(

1+θ 2Kθ 2
)
· · ·


 (37)

6 In the time-step algorithm we use the converged Kirchhoff director at t = tb so that essential bound-
ary conditions for the rotation can still be applied.
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dpbKirchhoff

dpa

dpb

∆α1

∆α2

rpb1

rpb2

Figure 3: Rotations relative to the Kirchhoff director at t = tb.

with θ iK represent the curvilinear coordinates evaluated at each node K. The right
Cauchy-Green tensor for the test functions is given by the following equation,
which is obtained by using assumed and enhanced metric (see also Areias, César de
Sá, Conceição António, and Fernandes (2003)) :

CCCtest
ab = yyyT

b




m11 m12 0
m21 m21 0
0 0 m33


yyyb + (38)

yyyT
b




0 0 NAm13A +NBm13B

0 0 NCm23C +NDm23D

NAm13A +NBm13B NCm23C +NDm23D 0


yyyb +

√
det [mmmbb]√
det [mmmbb]

yyyT
b




θ 1γ1 θ 1γ3 +θ 2γ4 0
θ 1γ3 +θ 2γ4 θ 2γ2 0

0 0 0


yyyb
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where the components mi j with i = 1,2,3 and j = 1,2,3 correspond to the com-
ponents [mmmaa]i j. The subscripts A, B, C and D indicate the points with the cor-
responding parent-domain coordinates and the terms NA, NB, NC and ND indicate
the following shape functions, as described in Table 1. In (38), yyyb are evaluated
at the element center point (θθθ === 000) so that the Patch test is satisfied. Along the
same lines (cf. Simo and Armero (1992) for a similar approach), the enhanced
metric term makes use of the metric at the element center mmmbb. The parameters
γl,withl = 1, . . . ,4 in (38) are additional degrees-of-freedom, condensed out at the
element level.

Table 1: Functions used in the assumed metric technique

I NI θθθ I

A 1
4(2−θ 1) {−1,0,0}

B 1
4(2+θ 1) {1,0,0}

C 1
4(2−θ 2) {0,−1,0}

D 1
4(2+θ 2) {0,1,0}

The test function
4
CCCab is obtained from CCCtest

ab given in (38) as:

4
CCCab =

∂CCCtest
ab

∂ rrraN

4
rrr aN +

∂CCCtest
ab

∂dddaN

4
dddaN (39)

where
4
rrr aN and

4
dddaN are test functions for the nodal mid-surface position and direc-

tor, respectively. Contrary to the trial functions, the first derivative of
4
CCCab is needed

to obtain the linearized form (28).

4.2 Trial functions

The test right Cauchy-Green tensor
4
CCCab is here obtained using different shape func-

tions than those employed for CCCab. In particular, we use interpolation in Cartesian
coordinates x,y,z7 (at t = tb) for CCCab and the classical parent-domain interpolation

for
4
CCCab (θ 1,θ 2 and θ 3). We use the classical Vandermonde matrix and correspond-

ing interpolation for an arbitrarily function φ(xxxb):

φ(xxxpb) = pi(xxxpb)
[
pi(xxxpbJ)

]−1
φJ (40)

7 Where the following notation is used x1 = x , x2 = y, x3 = z.
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where xxxpbJ corresponds to Jth node position at t = tb. In (40) summation in indices
i and J is implied. The polynomial basis ppp is classically given by the following
column-vector:

ppp = {1,x,y,z,xy,xz,yz,xyz}T (41)

Eight parameters are required for the interpolation and for this we construct a fic-
titious hexahedron to obtain the 8× 8 coefficients in (40) by extruding, along an
averaged normal, the quadrilateral contained in the reference plane. After this is
performed, shape functions and corresponding derivatives are obtained directly in
terms of xxxpb:

xxxpa = MJ(xxxpb)xxxpaJ (42)

where summation in J is implied. The term xxxpaJ in (42) corresponds to the nodal
positions at t = ta. In terms of costs, we only compute the inverse

[
pi
(
xxxpbJ

)]−1

at each element once, and this is a 8× 8 inverse with a total cost of around 83

multiplications and divisions only using the cubic cost and without accounting for
pivoting, which depends on the numerical coefficients.

The deformation gradient is obtained taking the derivative of (42) when φ = xxxpa.
We then have, in terms of components,

[FFFab]kl =
∂ [xxxpa]k
∂
[
xxxpb
]

l

=
∂ pi

∂
[
xxxpb
]

l

[
pi
(
xxxpbJ

)]−1 [xxxpaJ ]k (43)

Classically, the right Cauchy-Green tensor is simply given by:

CCCab = FFFT
abFFFab (44)

The introduction of enhanced metric components in the test functions requires the
same to be performed in the trial functions and therefore we include the same terms
here (cf. Areias, César de Sá, Conceição António, and Fernandes (2003)):

CCCtrial
ab = FFFT

abFFFab + yyyT
b

[
NJ

∑
J=1

MMMJ(θθθ)γJ

]
yyyb (45)

with γJ being additional degrees-of-freedom, as mentioned before. Four inter-
nal degrees-of-freedom are adopted corresponding to the in-plane bending modes.
Note that, in contrast with the requirements for the test functions, there is no need
to use a constant yyyb and scale the Jacobian for the trial functions. It actually cor-
responds to the original Q6 element by Wilson et al. Wilson, Taylor, Doherty, and
Ghaboussi (1973). It is well known that this further improves the performance for
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distorted meshes. The original Q6 element does not satisfy the plane patch tests,
while the present element does since compatible test functions are adopted. Fi-
nally, there is no need to use assumed metric components in the trial functions,
since transverse shear is properly accounted for.

5 Multiple-surface plasticity for moderate elastic strains

Constraints shown in Figure 2 limit the applicability of plasticity formulations to
moderate elastic strains. As shown in that Figure, around up to 10 in elastic strain
can be safely used without spurious stresses in unloading.

Recently, we have proposed a general integration algorithm for large plastic strains
with multiple yield functions in Areias, Dias-da Costa, Pires, and Infante Barbosa
(2011). Kinematic hardening and plastic anisotropy were considered in that paper,
but for the present work we limit the analysis to classical isotropic hardening. With
that purpose, we replace, by means of the Chen-Mangasarian Chen and Mangasar-
ian (1995) functions, the classical complementarity conditions by a single smooth
equation. Elasto-plastic constitutive laws in Voigt form are therefore given as:

C−1
linear∆ŜSSab−nnn∆γγγ = 000 (46)

µ
?
∆γγγ−〈µ?

∆γγγ +φφφ〉= 0 (47)

where, in (46), Clinear is the Hookean matrix, ∆ŜSSab = ClinearEEEab−∆ŠSSab is the plastic
stress increment, nnn is the matrix of flow vectors and ∆γγγ is the matrix of plastic
multiplier increments. In equation (47) µ? is a scaling parameter and φφφ is the
matrix of yield functions. Further details concerning this approach can be consulted
in Areias, Dias-da Costa, Pires, and Infante Barbosa (2011), and in particular the
determination of C , necessary for the linearized form (28).

6 Verification tests

6.1 Patch test

Three tests based on the same geometry are performed (in-plane tension, in-plane
bending and transverse shear, see Figure 4) to assess the asymmetric formulation.
Nodal coordinates are the ones in the textbook by Hughes Hughes (2000). The
element passes all tests.

6.2 Plane, beam and plate bending tests

Traditional tests confirming the correct implementation in the linear case for plane,
beam and plate bending problems are shown in Figure 5 (relevant data for the tests)
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Figure 4: Patch test data.

and in Figures 6 and 7 (comparisons with results from the literature). Exception-
ally good results are obtained, considering that only 4 enhanced metric degrees-
of-freedom are used for the shell (18 were used in the 3D element of reference
Areias, César de Sá, Conceição António, and Fernandes (2003)). In Figure 7
comparisons are made with the results presented in references Pian and Sumihara
(1984); Bathe and Dvorkin (1986); Andelfinger and Ramm (1993); Liu, Hu, and
Belytschko (1994); Piltner and Taylor (1995); Sze, Kim, and Soh (1997); Liu, Guo,
and Belytschko (1998); Sansour and Bocko (1998); Areias, César de Sá, Conceição
António, and Fernandes (2003) with exceptional performance.

For problem #6, Table 2 shows a comparison between the present work and the
results obtained with the element of Pian and Sumihara Pian and Sumihara (1984),
Simo and Armero Q1/E4 Simo and Armero (1992) and the element by Korelc and
Wriggers Korelc and Wriggers (1997). Note that their element is exactly integrated
and therefore unsuited for more complex problems (at the constitutive level). That
being the case, our work shows the best performance in this difficult benchmark,
including the Pian and Sumihara element.
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Figure 5: Linear plane, beam and plate bending tests: relevant data and target values
for monitored nodes.

Table 2: Percentage of error for the beam with five distorted elements (#6).

Error (case I) Error (case II)
Present work -2.70% -3.06%

Pian and Sumihara 1984 -3.82% -3.92%
Simo and Armero 1992 -4.00% -4.01%

Korelc and Wriggers 1997 (exactly integrated) -0.16% -0.2%

6.3 Linear shell tests

Experimentation with element technology reveals that linear tests are fundamental
in assessing competitiveness for both linear and nonlinear codes. The quality of
the results in many nonlinear problems is conditioned by the corresponding lin-
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Figure 6: Verification tests: linear plane problems, comparison with alternative
formulations (problems #1, #2 and #3).



Asymmetric Shell Elements Based on a Corrected Updated-Lagrangian Approach 493

# 40.6

0.8

1

0 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

d
is

p
la

ce
m

en
t

Distortion angle

Present work

0

0.2

0.4

Sansour 1998 (enhanced strains)

# 5

Present work

0

0.2

Pian and Sumihara 1984

0.4

0.6

Piltner and Taylor 1995

0.8

1

0 1 2 3 4 5

N
or

m
al

iz
ed

ti
p

d
is

p
la

ce
m

en
t

Distortion parameter, a

Abaqus C4PSI element

Figure 7: Verification tests: linear plane problems, comparison with alternative
formulations (problems #4 and #5).

ear performance. However, due to the presence of interfering constitutive laws,
updated vs. total Lagrangian approaches, stress integration and other interfering
factors, results in nonlinear problems are seldom conclusive concerning the actual
accuracy of the underlying interpolation technique. Therefore, we first focus on
linear shell problems. Five classical shell tests are performed as Figure 8 depicts.
The Figure contains all relevant data to reproduce the problems. Present results
are compared with well known high performance elements in Figures 9 and 10.
Test #1 is the well-known pinched cylinder problem where a reference value of
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1.82488× 10−5 m is used in the normalization, in agreement with Simo, Fox and
Rifai Simo, Fox, and Rifai (1989). Results shown in Figure 9 attest the excellent
performance of the present element. Test #2 is the Scordelis-Lo roof (see MacNeal
and Harder (1985)) in which our element was found to have similar performance
to the S4 element from Abaqus. Test #3 is the closed pinched hemisphere8 with
a target value of the radial displacement of 0.0924 Simo, Fox, and Rifai (1989).
In this test, we found that our element converges faster than the S4 element for
coarse meshes. The test #4 is the so-called twisted beam and it has been adopted
in many references with several variants. Our variant is the most demanding (with
a thickness of 0.0032 m) and was proposed by Belytschko and Wong Belytschko
and Wong (1989). Two load cases are inspected, as indicated in Figure 8. Excellent
results were obtained by the present formulation in case A. Test #5 is the so-called
Raasch’s hook (cf. Schoop, Hornig, and Wenzel (2002)) and involves bending and
torsion. The target value adopted here is 5.02 consistent units (also employed in
the first Author’s Ph.D. thesis and Abaqus/Standard benchmark suite). Results ap-
pear somehow worse than Abaqus S4 but the target value is well approximated by
the present element. An inspection shows very good results for coarse meshes.
The present results are better than the previous high-performance element HIS (cf.
Areias, César de Sá, Conceição António, and Fernandes (2003)) and QBM (cf.
Areias, Song, and Belytschko (2005)). Overall, the present work shows one of the
best performing elements four-node shell elements.

6.4 Nonlinear problems

The purpose of this section is to show the applicability to nonlinear problems and
the unprecedented robustness of the solutions, specifically:

• Higher levels or load and displacement than published results.

• Very large load steps and consistency of results between different load steps
(when considering hyperelasticity or metal elasto-plasticity)

• Asymptotically quadratic rate of convergence.

Nonlinear problems are shown in two sets: finite-displacement elastic problems
(hypoelastic) and finite strain plasticity problems. More complex constitutive laws
can of course be used (the reader can consult Areias, Dias-da Costa, Pires, and
Infante Barbosa (2011) for an efficient semi-implicit implementation of anisotropic
plasticity) but this is not the theme of this work. In addition, thickness variation
was treated in another work (see Areias, Ritto-Corrêa, and Martins (2010)) and is
not dealt in here.
8 The open 18◦ variant is now known to be redundant.
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Figure 8: Linear shell tests: relevant data and target values for monitored nodes.

Four classical geometrically non-linear problems are solved, with the correspond-
ing data summarized in Figure 11. Results shown in figures 12, 13 and 14 attest the
exceptional robustness of the proposed formulation. Newton-Raphson convergence
is asymptotically quadratic (Figure 13 ) since an exact linearization is performed.

Two classical finite strain plasticity problems are solved, using our recent algorithm
(cf. Areias, Dias-da Costa, Pires, and Infante Barbosa (2011)): the elasto-plastic
plate under deformation-dependent pressure and the pinched cylinder (both with



496 Copyright © 2012 Tech Science Press CMES, vol.88, no.6, pp.475-506, 2012

# 1

0.3

Abaqus S4

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

N
or

m
al

iz
ed

re
su

lt

Number of elements in each edge

Present work

0

0.1

0.2

Areias 2003

# 2

40 50 60 70N
or

m
al

iz
ed

d
is

p
la

ce
m

en
t

at
th

e
ce

n
te

r
of

th
e

fr
ee

ed
ge

Number of elements in each edge

Present work

0.9

1

1.1

1.2

W.K. Liu 1996

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 10 20 30

Abaqus S4

# 3

0

Abaqus S4

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

re
su

lt

Number of elements in each edge

Areias 2003
Present work

Simo 1989

Figure 9: Linear shell tests: results for problems #1 to #3.
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Figure 11: Finite-displacement problems: relevant data and target values for moni-
tored nodes.

plane stress von-Mises plasticity). Relevant data and deformed meshes (and con-
tour plots) related to these problems are shown in Figure 16. The plate under pres-
sure was described by Hauptmann et al. Hauptmann, Doll, Harnau, and Schweiz-
erhof (2001) and further detailed in Areias, César de Sá, Conceição António, and
Fernandes (2003). It consists of a plate with dimensions 508×508×2.54 consis-
tent units. Elasticity modulus is E = 6.9×104 consistent units, Poisson coefficient
ν = 0.3 and the yield stress is σy = 248 consistent units. One-fourth of the plate
is analyzed with 32× 32 elements with a sequence of deformed meshes and the
effective plastic strain contour plot shown in Sub-Figure 15(a). Results presented
in Figure 16 show slightly less stiff results than the ones in Areias, César de Sá,
Conceição António, and Fernandes (2003) and a remarkable time-step size insensi-
tivity (both 10 and 100 steps produce nearly the same results), further attesting the
robustness of the consistent updated-Lagrangian algorithm. The pinched cylinder
test with the same boundary conditions as in Figure is depicted in Sub-Figure 15(b)
was also tested in Areias, César de Sá, Conceição António, and Fernandes (2003).
It consists of a cylinder with 300 mm of radius, with E = 3000 MPa, ν = 0.3 and
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Figure 12: Finite-displacement problems: specific results compared with reference
numerical solutions Ramm (1982) and Eriksson and Pacoste (2002).

a linear hardening law: σy = 24.3 + 300εp MPa. Load-deflection results for the
16× 16 are shown in Figure, a little stiffer than the ones by Wagner, Klinkel and
Gruttmann Wagner, Klinkel, and Gruttmann (2002) for high values of displace-
ment.
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7 Conclusions

We presented a non-symmetric Petrov-Galerkin using cartesian coordinates for the
trial functions to obtain a quadrilateral shell element with high coarse-mesh accu-
racy and robustness. The element contains assumed metric components and in-
compatible modes in the test functions and incompatible modes in the trial func-



Asymmetric Shell Elements Based on a Corrected Updated-Lagrangian Approach 501

XY

Z

XY

Z

XY

Z

1.324e-03

8.321e-02

1.651e-01

2.470e-01

3.289e-01

EFFECTIVE

XY

Z

Properties:

Consistent units
σy = 248
ν=3.00000× 10−01
E=6.90000× 10+04
H=2.54000× 10+00

p = 0 p = 13.61

p = 4.308 p = 13.61

(a) Square plate under deformation-dependent pressure: data and sequence of deformed meshes. Edge
displacements are prescribed in the out-of-plane direction.

X

Y

Z

X

Y

Z

0.000e+00

5.603e-02

1.121e-01

1.681e-01

2.241e-01

EFFECTIVE

X

Y

Z

Radius=300 mm

4F

4F

Soft support (v = w = 0)

Deformed mesh and effective plastic contour plot for F = 5372 N

Soft support

Length=600 mm

ν=3.00× 10−01

σy = 24.3 + 300εp N.mm−2

Properties:
H=3.00× 10+00 mm
E=3.00× 10+03 N.mm−2

(b) Pinched cylinder: relevant data, deformed mesh and effective plastic strain contour plot.

Figure 15: Finite strain plasticity problems: relevant data and results.
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Figure 16: Finite strain plasticity problems: load/deflection results compared
with Areias, César de Sá, Conceição António, and Fernandes (2003) and Wagner,
Klinkel, and Gruttmann (2002).

tions. These are derived directly in Cartesian coordinates for a (moving) reference
configuration. A consistent updated-Lagrangian algorithm was proposed with ex-
act linearization which provided a very simple connection with the constitutive
algorithms previously developed. The algorithm is both equilibrium-consistent and
consistently linearized. With that purpose, a simplification of our recent multiple-
surface algorithm Areias, Dias-da Costa, Pires, and Infante Barbosa (2011) was
employed with a high degree of success and excellent time-step independence. The
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Patch test is passed in its three variations. Linear examples showed remarkable
robustness and mesh distortion insensitivity. The distortion tests results are better
than with the Pian-Sumihara element. Several geometrically nonlinear problems
were tested with very good robustness and accuracy, a fact that we attribute to the
form of the trial functions. The use of a correct transport stress seems to solve the
well known dependence observed in inconsistent updated-Lagrangian algorithms.
Two classical finite strain elasto-plastic problems are also shown, which complete
the assessment of the new element. Further exploration of the element and more ap-
plications are being carried out, including applications to fracture. Finally, we must
remark that the linearization was partly performed with Wolfram Mathematica Re-
search Inc (2007) with the AceGen Korelc (2002) add-on. The software employed
was SIMPLAS Areias.
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