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The Post-Buckling Behavior of A Tubular String in An
Inclined Wellbore

Deli Gao1 and Fengwu Liu1

Abstract: A down-hole tubular string in an inclined wellbore, under variable
axial and torsional loading, may simultaneously undergo a sinusoidal as well as
helical buckling, at different sections. In this paper, the buckling equation for a
tubular string, in an inclined wellbore, subjected to axial and torsional loading, is
established by an equilibrium method. The analytical solutions for the buckling
equations, for sinusoidal and helical configurations of buckled tubular string, are
obtained by Galerkin and nonlinear scaling methods. Methods for computing the
contact forces between the buckled tubular string and wellbore, are developed. The
analytical solutions are in good accordance with the numerical results, for the non-
linear buckling equation. The critical loads for sinusoidal as well as helical buck-
ling of a down-hole tubular string are determined, using the constraint condition
under which the contact force is nonnegative. Thus, the post-buckling behavior of
a tubular string, with different configurations, in an inclined wellbore, is determined
by the presented analytical method.

1 Introduction

The buckling of down-hole tubular strings, such as a coiled tubing, a drill string, a
casing string, or a tubing string, is a fundamental problem in petroleum engineering.
Such a buckling may affect the normal down-hole operations, such as transmitting
the loads or controlling the well trajectory, or may even result in the failure of
the down-hole tubular strings, due to an excessive bending stress, excessive casing
wear, and fatigue.

Since the first paper concerning the helical buckling of a drill-string in a vertical
well, published by Lubinski (1962), the subject of down-hole tubular buckling has
received a considerable attention in the field of petroleum engineering. Owing to
the variable axial load under the action of its own weight, the buckling behavior of
a tubular string in an inclined wellbore is more complicated than that in a horizontal
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well. Down-hole tubular-strings may have the different buckled configurations at
different depths, including the initial configuration, a sinusoidal configuration, a
transition from a sinusoidal to a helical configuration, and a helical configuration.

Down-hole tubular buckling in an inclined wellbore, under the action of its own
weight, and of a compressive force applied at its upper end, has been analyzed
by several authors since 1964. Down-hole tubular sinusoidal buckling was first
studied by Paslay and Bogy (1964), and the critical load for the onset of a sinusoidal
buckling was obtained by using an energy method [Miska et al., (1995, 1996), Wu
et al. (1994)], which was also used to determine the critical load for the onset of
helical buckling. The energy method was used to obtain the different critical loads,
by assuming different buckling configurations. The equation for the buckling of
a down-hole tubular, in inclined wellbore, under an axial load was developed by
Mitchell(1995), who developed a simplified algebraic equation for an approximate
analytical solution of the tubular which buckles helically. The numerical solution
for the nonlinear buckling equation, derived for an arbitrary hole, was also used to
obtain some results, by Mitchell(1997). The critical load for the helical buckling of
a tubular string in an inclined wellbore was studied by Huang and Pattillo (2000).

The equation for the buckling of a tubular string, subjected to axial as well as
torsional loads, in a horizontal wellbore, was developed by Gao(1998). In this
equation, the axial load on the tubular string is invariable along the axial direction.
The analytical solutions for a sinusoidal as well as a helical configuration of the
tubular string, and the corresponding contact forces, were obtained by using the
Galerkin method and a nonlinear scaling method. These analytical solutions are in
good agreement with the numerical results obtained by solving the corresponding
strongly nonlinear ordinary differential equations [Gao et al(1998) and (2002)] and
Liu [Liu et al (1999)]. Based on the constraint condition under which the contact
force is nonnegative [Liu et al (1999) and (2002)], the critical loads for sinusoidal
as well as the helical configurations, were obtained separately. Therefore, the ana-
lytical solutions were obtained for down-hole tubular buckling behaviors, ranging
from a sinusoidal to a helical configuration. Furthermore, analytical solutions were
obtained for helical buckling of a down-hole tubular string, with hinged as well as
fixed end conditions [Liu et al (1999)].

However, the loads on a tubular string in an inclined wellbore are variable along
the axial direction. In a down-hole tubular string, the initial equilibrium configura-
tion, a sinusoidal configuration, a transition from sinusoidal configuration to heli-
cal configuration, and the helical configuration, may all occur simultaneously. The
equations governing the buckling of a down-hole tubular, subjected to axial as well
as torsional loads, in an inclined wellbore, are developed in this paper. The analyti-
cal solutions for these equations governing the buckling of the tubular are obtained
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for sinusoidal as well as helical configurations, by the Galerkin method and a non-
linear scaling method. The contact force between the buckled tubular string and
the wellbore are obtained. The maximum sinusoidal buckling load, and the mini-
mum helical buckling load, are determined by using the constraint conditions under
which the contact force is nonnegative. Therefore, the various buckling behaviors
of the down-hole tubular can be described for different buckled configurations, in
an inclined wellbore. These research results enable a thorough understanding of
the buckling characteristics of the down-hole tubular.

2 Buckling Equation for the Tubular

The following basic assumptions are invoked in the present research work:

(1) The elasticity theory for a slender beam can be used to define the relationship
between the bending moment and the curvature;

(2) The down-hole tubular string is so long, that the end conditions are not consid-
ered in the analysis;

(3) The down-hole tubular string keeps a continuous contact with the wellbore;

(4) The wellbore is circular, straight, rigid and frictionless.

A down-hole tubular string, subjected to an axial load F and a toque Mn, and con-
strained within an inclined wellbore, is considered. The coordinate system em-
ployed is shown in Fig.1. It is assumed that the axial line of the wellbore is in the
vertical plane, and that the angle between the axial line of the wellbore and vertical
line is denoted as α . The initial equilibrium state of the tubular string is in the
bottom of wellbore, under its own weight.

As the loading on the tubular string is increased to some critical values, the tubu-
lar string will be buckled to depart from the initial equilibrium state. The buckled
tubular string is assumed to keep continuous contact with the wellbore. The ge-
ometric contact between the buckled tubular string and wellbore, and the overall
configuration, are shown in Fig.2,

where, N is the contact force between the buckled tubular string and the wellbore. θ

is the angle between the buckled tubular string and the initial equilibrium position.
r is the tubular string/wellbore radial clearance. According to the assumption of
continuous contact, any point C in the axial line of the buckled tubular string is
always on the cylindrical surface with a radius of r. The radius vector of any point
C in the axial line is represented by r(s), where s is the arc length measured from
one end of the tubular string.

r = xi+ yj+ zk (1)
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Figure 1: The Down-hole tubular string in an inclined wellbore (side view)
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Figure 2: Down-hole tubular string in an inclined wellbore (cross section)
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x = r0 cosθ , y = r0 sinθ (2)

dr
dz

=
dx
dz

i+
dy
dz

j+k (3)

The equilibrium equations of the buckled tubular string can be expressed as:

dF
dz

+ f = 0 (4)

dM
dz

+
dr
dz
×F = 0 (5)

where F is the internal force vector in the tubular string, M is the moment of internal
force, and f is the external force per unit length. f can be expressed as:

f = (qsinα−N cosθ) i−N sinθ j−qcosα k (6)

The moments are related to the curvature and the twist of the tubular string, through
the conventional relationships of the slender-beam theory, as generalized to three
dimensions:

M = EI(
dr
dz
× d2r

dz2 )+GJ
dγ

dz
dr
dz

(7)

where E is the elastic modulus of tubular string; G is the shear modulus; I is the
inertia of tubular string section; J is the polar moment of inertia; γ is the twist angle
of tubular string.

Combining Eq.4 , Eq.5 and Eq.7, the differential equation for the buckled configu-
ration, defined by the angle θ , can be expressed as follows:

d4
θ

d z4 −6(
d θ

d z
)2 d2

θ

d z2 +3
Mn

EI
d θ

d z
d2

θ

d z2 +
d

d z
(

F
EI

dθ

d z
)+

qsinα

EIr
sinθ = 0 (8)

where q is the weight of the tubular string per unit length, F0 is the axial load at the
lower end of the tubular string. F is the axial load on the section of z, which can be
expressed by:

F = F0−qzcosα (9a)

The torque in the section at z is:

Mz = MA +Mn (9b)

where MA = EI r2
(d θ

d z

)3
is the additional torque with the buckling deformation

(Liu and Gao,1999).
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Furthermore, the contact force between the buckled tubular string and the wellbore
can be described as follows:

N = EIr[4
d3

θ

d z3
dθ

d z
+3(

d2
θ

d z2 )2− (
dθ

d z
)4]

+Mnr[(
dθ

d z
)3− d3

θ

d z3 ]+Fr(
dθ

d z
)2 +qsinα cosθ

(10)

The effect of the torque on the buckling behavior of the down-hole tubular has
been discussed in the previous papers [Gao et al.(1998) and Liu et al (1999)]. For
simplicity, the effect of the torque will be not considered below.

A parameter is introduced as:

ω0 =

√
F0

2EI
(11a)

and the dimensionless parameters are introduced, as:

ξ = ω0z, n =
N

EIrω4
0
, ε =

q
F0

√
2EI
F0

(11b)

where ξ is the dimensionless position, n is the dimensionless contact force, and ε

is the dimensionless ratio of the variation of the axial load.

The buckling equation can be rewritten in a dimensionless form as:

θ
′′′′
ξ −6θ

′2
ξ θ
′′
ξ

+2[(1− εξ cosα)θ ′
ξ
]′
ξ
+Q0 sinα sinθ = 0 (12a)

where Q0 is the dimensionless lateral load, and can be determined by:

Q0 =
q

EIrω4
0

(12b)

The contact force, in its dimensionless form, can be expressed as:

n = 4θ
′′′
ξ

θ
′
ξ
+3θ

′′2
ξ −θ

′4
ξ +2(1− εξ cosα)θ ′2ξ +Q0 sinα cosθ (13)

3 Solutions for tubular buckling equation, for a sinusoidal buckling configu-
ration

As the change of the axial load of the tubular string, under its own weight, is very
low, the dimensionless parameter ε in Eq.12a is a small quantity. The solutions of
the buckling equation for a sinusoidal buckling configuration can be obtained by
the Galerkin method.
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For the sake of simplicity, the trial function for the buckling configuration can be
assumed as:

θ = Asin(η) (14)

where

η =
2

3ε cosα
[1− (1− εξ cosα)3/2] (15)

Omitting the terms of higher-order in ε , Eq.12a can be rewritten as:

θ
′′′′
η −6θ

′2
ηθ
′′
η +2θ

′′
η +Q1 sinθ = 0 (16a)

where

θ
′
η =

dθ

d η
; θ

′′
η =

d2
θ

d η2 ; θ
′′′
η =

d3
θ

d η3 ; θ
′′′′
η =

d4
θ

d η4 ;

Q1 =
Q0 sinα

(1− εξ cosα)2 (16b)

Applying the Galerkin method to Eq.16a, we can obtain the weighted-residual ex-
pression as:∫

π

0
(θ ′

′′′

η −6θ
′2
ηθ
′′

η +2θ
′′

η +Q1 sinθ)sinηdη = 0

As the half-wave-length of the sinusoidal buckling configuration is very small, rela-
tive to a long tubular string, εξ in the half wavelength of the sinusoidal configuration
can be regarded as being invariant. We can obtain:

A =

√
8(1−Q1)
12−Q1

(17)

The sinusoidal buckling configuration can be expressed by:

θ =

√
8[(1− εξ cosα)2−Q0 sinα]
12(1− εξ cosα)2−Q0 sinα

sin(η) (18)

Based on numerical analysis, the lateral buckling amplitudes were been obtained
by Mitchell (1997), using the least-squares method, as:

θmax = 1.12271[(1− εξ cosα)−
√

Q0 sinα] 0.460(1− εξ cosα)0.040 (19)
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Figure 5: Comparison between the present analytical and numerical solutions for
the dimensionless contact force caused by a sinusoidal buckling

The comparison between Eq.18 and Mitchell’s formula Eq.19 is shown as Fig.3.

Based on the analytical solution Eq.18, the numerical solution of Eq.12a for sinu-
soidal buckling configuration can be obtained. The comparison between the present
analytical and numerical solutions for a sinusoidal buckling configuration is shown
in Fig.4, and the comparison between their corresponding contact forces is shown
in Fig.5, where, Q0 = 1.0, α = 30o, ε = 0.01.

As shown in Fig.4, the analytical solution for sinusoidal configuration, obtained
from Eq.14 has a good correlation with the numerical solution.

Assuming an appropriate amplitude of the sinusoidal buckling configuration, the
initial force of sinusoidal buckling can be obtained as below:

Q1 = 1 (20)

Using the critical condition Q1 = 1, the location ξcrs at which the sinusoidal buck-
ling starts, can be determined by Eq.16b.

As shown in Fig.5, the difference between the analytical and numerical results for
the contact force increases, as Q1 decreases. To improve the accuracy of analytical
solution, an improved trial function for the sinusoidal buckling configuration is
assumed as below:

θ = Asin(η)+Bsin(3η) (21)

We substitute Eq.21 into the buckling equation, Eq.16a and obtain the weighted
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residual equations:{∫
π

0 (θ ′′′′η −6θ ′2ηθ ′′η +2θ ′′η +Q1 sinθ)sinηdη = 0∫
π

0 (θ ′′′′η −6θ ′2ηθ ′′η +2θ ′′η +Q1 sinθ)sin(3η)dη = 0
(22)

For a given Q1, the undetermined coefficients A, B can be determined from Eq.22.
Furthermore, the sinusoidal buckling configuration can be obtained from Eq.21.

The comparison of the analytical solution with the numerical solution is shown in
Fig.6. The results demonstrate that the analytical results for both θ and n are all
in good coincidence with the numerical results, where α=90◦C and ε=0 [Liu et al
(1999) and (2002)].

It is known that the negative contact force has no physical significance. Based
on this constraint condition, the critical condition for the onset of the sinusoidal
configuration can be determined by the nonlinear algebra equations as below:

3
2 A3 +27AB2 + 9

2 A2B−A +Q1(A− 1
8 A3 1

4 AB2 1
8 A2B) = 0

63B+ 3
2 A3 +27A2B+ 243

2 B3 +Q1(B 1
4 A2B 1

24 A3) = 0
−2A2−108AB−306B2−A4−12A3B−54A2B2−108AB3−81B4 +Q1 = 0

(23)

Eq.23 is solved to obtain:

Qsmin = 0.5266, A = 0.5808, B =−0.004108 (24)

where Qsmin is the maximum load for the sinusoidal buckling configuration. Thus,
the range of load for a stable sinusoidal configuration can be obtained as follows:

0.5266 < Q1 < 1 (25)

Furthermore, the portion of the tubular string which buckles sinusoidally can be
determined. Thus, the entire sinusoidal buckling behavior of the tubular string in
an inclined wellbore has been determined.

4 Solution for a helical buckling configuration

As the loads on the tubular string increase to a critical value, the tubular string
will buckle helically. The helical configuration can also be obtained by solving the
Eq.12a. The nonlinear scaling method is adopted, for the small parameter ε in the
Eq.12a.

New variables are introduced as:

λ = εξ (26)
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η =
g(λ )

ε
(27)

and for a helical buckling configuration is assumed as:

θ = θ0(λ ,η)+ εθ1(λ ,η)+ ε
2
θ2(λ ,η)+Oθ3(λ ,η) (28)

Substituting Eq.28 into Eq.12a, the coefficient equation of ε0 can be obtained as:

ε
0 : g′4(λ )

∂ 4θ0

∂η4 −6g′4(λ )(
∂θ0

∂η
)2 ∂ 2θ0

∂η2 +2(1−λ cosα)g′2(λ )
∂ 2θ0

∂η2 = 0 (29)

The solution of Eq.29 can be expressed as [Gao et al (1998)]:

∂θ0

∂η
=±
√

1−λ cosα

g′(λ )
(30a)

Assume that g(λ ) satisfies the relation as:

g′(λ ) =
√

1−λ cosα (30b)

Then:

g(λ ) =− 2C1

3cosα
(1−λ cosα)3/2 +C2 (30c)

Assuming C1=1, and η(ξ =0)=0, we can obtain:

C2 =
2

3cosα
(30d)

g(λ ) =
2

3cosα
[1− (1−λ cosα)3/2] (31)

η =
2

3ε cosα
[1− (1−λ cosα)3/2] (32)

Therefore, the zeroth-order perturbed solution for Eq.12a can be obtained as:

θ0(λ ,η) =±η (33)

Substituting Eq.33 into the coefficient equation of order ε1, we can obtain:

∂ 4θ1

∂η4 −4
∂ 2θ1

∂η2 +
hsinα sinη

(1−λ cosα)2 = 0 (34)

The solution of the Eq.34 can be obtained as:

θ1 =−1
5

hsinα sinη

(1−λ cosα)2 (35)
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Substituting Eq.35 into the coefficient equation of ε2, we can obtain:

∂ 4θ2

∂η4 −4
∂ 2θ2

∂η2 +
7

50
h2 sin2

α sin(2η)
(1−λ cosα)4 +

3hsin(2α)cosη

2(1−λ cosα)7/2 = 0 (36)

The solution of the Eq.36 can be obtained as:

θ2 =− 7
1600

h2 sin2
α sin2η

(1−λ cosα)4 −
3

10
hsin2α cosη

(1−λ cosα)7/2 (37)

Together, the asymptotic solution of buckling equation for helical configuration can
be determined as:

θ =±[η− 1
5

Q0 sinα sinη

(1−λ cosα)2 −
7

1600
Q2

0 sin2
α sin2η

(1−λ cosα)4 −
3
10

εQ0 sin2α cosη

(1−λ cosα)7/2 ] (38a)

Considering ε << Q0, Eq.38a can be simplified as:

θ =±(η− 1
5

Q1 sinη− 7
1600

Q2
1 sin2η) (38b)

For verifying the accuracy of the analytical solution by non-linear scaling method,
the numerical results of buckling equation for helical configuration have been ob-
tained. The comparison between the analytical and numerical solutions is shown as
in Fig.7 and Fig.8. The broken lines in the figures indicate that the corresponding
contact forces are negative, and the solutions in the region have no physical signif-
icances. The analytical and numerical solutions show a good agreement as seen in
the figures.

Substituting Eq.38a into Eq.13, the critical condition for helical buckling can be
obtained by the condition nmin ≥ 0:

Qcrh = 0.5290 (39)

As Q1 < 0.5290, the tubular string will be buckled helically.Therefore, the entire
helical buckling behaviors of the tubular string in an inclined wellbore have been
determined.

5 Results and discussion

(1) The deformation of buckled tubular string

The configuration of a tubular string which buckles sinusoidally can be ex-
pressed as:

θ=

√
8(1-Q1)
12-Q1

sinη (40)
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Figure 7: Comparison between the analytical and numerical solutions of the buck-
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and the configuration of a tubular string which buckles helically can be ex-
pressed as:

θ =±(η− 1
5

Q1 sinη− 7
1600

Q2
1 sin2η) (41)

For a given tubular string in an inclined wellbore, Q0 can be determined from
α , ε and F0. Q1 can also be represented as the dimensionless lateral load at
any location ξ of buckled tubular string. Therefore, the relation between the
configuration of buckled tubular string, and the force at any location, can be
determined by Eq.40 or Eq.41.

When α=90◦, the inclined wellbore degenerates into a horizontal wellbore, and
Eq.15 changes into η = ξ and Eq.16b changes into Q1 = Q0. The results are
the same as those obtained by Liu et al (1999) and Gao et al (2002).

When α = 0o
,the inclined wellbore degenerates into a vertical wellbore, and

Eq.15 changes into η = 2
3ε

[1− (1− εξ )3/2] and Eq.38a changes into θ =±η .
The first order derivative of θ is:

θ
′
ξ

=
√

1− εξ (42)

The result is same as that of Mitchell(1988).

Based on Eq.40 or Eq.41, the stresses in a buckled tubular string, and the
change of the axial length of a buckled tubular string can be determined [Gao
et al (2002)].

(2) Critical conditions for different configurations of the buckled tubular string

The range of the force for a sinusoidal configuration to result, is 0.5266 <
Q1 < 1 from Eq.25, and the range of the force for a helical configuration to
result is Q1 < 0.5290 from Eq.39. Thus, it can be seen that the maximum load
for a sinusoidal configuration to exist, is very close to the minimum force for
a helical configuration to result. The results show that there is no transition
from a sinusoidal to a helical configuration, for the buckled tubular string in an
inclined wellbore.

Based on the stability of numerical solution,Mitchell(1997) had given an ap-
proximate range for the critical force. Because the solution of the non-linear
buckling solution is not unique, both the sinusoidal and helical configurations
are all the solutions of buckling equation Eq.12a. The method by Mitchell may
have difficulties in assuring the accuracy of the critical forces.

Using different assumptions for the buckled configuration, Wu and Juvkam-
Wold(1994) and Miska et al (1995, 1996) had obtained the critical loads for the
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sinusoidal buckling and the helical buckling, by an energy method. The differ-
ent critical loads had been obtained by using different hypothetical configura-
tions. The actual buckled configuration could not be determined by the energy
method. The difference between different results is obvious. Several typical re-
sults are list in Table.1, where A is the coefficient of Fcr=A

√
EIqsinα/r, which

is a general formula of the critical load for buckling of the tubular string in an
inclined wellbore.

(3) Contact force between helically buckled tubular and wellbore

The contact force exerted by the helically buckled tubular string, on wellbore
is considered to be the main cause of the locking-up of the tubular string. The
contact force can be obtained by substituting Eq.38a into Eq.13. A simplified
form of the contact force can be determined by omitting the high-orders of
small quantities.

n=(1-λcosα)2-
9
5

Q0 sinα cosη-
(

1
50

-
7
25

cos2
η

)
sin2

α (43)

When α=0, the inclined wellbore degenerates into a vertical wellbore, and the
dimensionless contact force changes into:

n=(1-λcosα)2 (44)

Furthermore, the actual contact force can be expressed as:

N=
r (F0-qz)2

4EI
=

rF2

4EI
(45)

The form of this formula for the contact force, is the same as that for a weight-
less tubular string buckled helically [Lubinski et al., (1962)], but the axial load
here is variable instead of a constant.

6 Sample Calculation

The example problem [Mitchell (1997)] consists of a 2-7/8-in tubing(6.5 lbm/ft)
buckled inside a 7 in casing(32 lbm/ft). For this case, q=0.640 lbf/in, I=1.61 in.4

and r=1.61 in. The calculated results are shown in table 2.

7 Conclusions

1. The equation for the buckling of a down-hole tubular in inclined wellbore,
under the action of axial as well as torsional loads, has been developed. The
tubular buckling behavior has been illustrated by solving the strongly non-
linear ordinary differential equation.
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Table
2:B
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load
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(M
itchell,1997)

0
0

0
0

0
10

3,652
5,032

5,021
10,329

30
6,197

8,539
8,520

17,528
50

7,670
10,569

10,545
21,694

70
8,495

11,706
11,680

24,027
90

8,763
12,076

12,049
24,786
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2. The analytical solution of the tubular buckling equation is obtained for a si-
nusoidal configuration by using the Galerkin method.The minimum load for
sinusoidal configuration to exist, is determined by assuming that the ampli-
tude of sinusoidal configuration is equal to zero. The maximum load for
the sinusoidal configuration to exist, is determined by using the constraint
condition under which the contact force between the buckled tubular and the
wellbore is nonnegative. The down-hole tubular string from the initial sinu-
soidal buckling to its end can be located in an inclined wellbore by the critical
loads. Furthermore, the contact force between the tubular string buckled si-
nusoidally, and the inclined wellbore has been obtained. Thus, the entire
sinusoidal buckling behavior of a down-hole tubular string in an inclined
wellbore can be described quantitatively.

3. The perturbed solution of the buckling equation, for a helical buckling con-
figuration, has been obtained by using a nonlinear scaling perturbation method,
and the corresponding critical buckling load is determined by using the con-
straint condition under which the contact force between the buckled tubular
string and inclined wellbore is nonnegative. The results show that there is al-
most no transition from a sinusoidal configuration to a helical configuration
for the buckled tubular string, in an inclined wellbore.

4. The analytical solutions are in good accordence with the corresponding nu-
merical results, for the down-hole tubular buckling equation, in an inclined
wellbore.
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