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Multi-domain boundary knot method for ultra-thin
coating problems

Hui Zheng1, Wen Chen1,2,3, Chuanzeng Zhang4

Abstract: This paper develops a multi-domain boundary knot method (BKM)
formulation to solve the heat conduction problems of ultra-thin coatings. This ap-
proach overcomes the troublesome singular integration difficulty in the boundary
element method in the simulation of such ultra-thin coating problems. Our numer-
ical results show that the present BKM is very promising with sufficient accuracy
in predicting the temperature distributions and the other physical quantities in thin
coated layers even when the thickness ranges from 10−1m to 10−9m. The present
method can also easily be extended to the three-dimensional problems.
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heat conduction

1 Introduction

Thin coatings often outperform their substrate counterparts in terms of the heat
and wear-resistance properties. As the coating deposition techniques and advanced
coating materials have greatly been improved in recent decades, an increasing num-
ber of thin-coating films has been designed and employed to improve the machin-
ing performances in industrial applications (Bhushan, B. Chemical, 1999; Rhodes
J, Walker AC, 1987; Hollaway LC, Zhang L, Photiou NK, Teng J et al, 2006).
Consequently, there is a high demand in the accurate numerical simulation of heat
conduction in ultra-thin coatings. For instance, it is known that the cutting temper-
ature field plays a key role in the tool performance indicators such as the accuracy
of the equipment surface, tool wear and lifespan, chip formation, surface quality,
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and cutting forces (Zhang Yaoming, Gu Yan, Jeng-Tzong Chen, 2010; Du F, Lovell
MR, Wu TW, 2001).

The standard numerical methods such as the finite element and the finite differ-
ence methods have been applied to the simulation of heat transfer in thin coatings.
However, their computational costs grow exponentially with the increasing aspect
ratio of thin structures. As an alternative approach, the boundary element method
(BEM) (Zhang Yaoming, Gu Yan, Jeng-Tzong Chen ,2010 ; Stephenson DA, Jen
TC, Lavine AS ,1994 ; Stephenson DA, Jen TC, Lavine AS ,1997; Du F, Lovell
MR, Wu TW, 2001) has long been considered to avoid such drawbacks. However,
the standard BEM involves singular and nearly singular integrals, which need very
carefully to be performed in the analysis of thin body or ultra-thin coating prob-
lems. Moreover, surface meshing of three-dimensional (3D) thin body domains
remains a nontrivial task.

In order to alleviate the mesh generation, recent decades have witnessed a fast
development of meshless techniques which require neither domain nor boundary
meshing. Generally, the meshless methods can be divided into the domain-type or
boundary-type techniques, depending on whether their basis functions satisfy the
governing equations of interest. As an alternative boundary-type meshless method
competing with the BEM, the method of fundamental solutions (MFS) has in recent
decades attracted increasing attentions, since the method avoids the challenging
singular integration in the BEM and is mathematical simple, easy-to-implement,
accurate, integration-free, and spectral convergent (Golberg MA, Chen CS, 1998;
Li Ming, Chen CS, Hon YC, 2011). However, the artificial boundary outside the
physical domain required in the MFS is largely placed by trial and error approach
and can cause numerical instability, especially for domains with a complex bound-
ary (Kitagawa T., 1991; Balakrishnan K, Ramachandran PA. 2001).

The boundary knot method (BKM) (Chen W, Wang FZ., 2010; Chen W, Fu ZJ, Wei
X., 2009) is a recently developed method to circumvent this major drawback of the
MFS while keeping all its merits being mathematically simple, easy-to-program,
truly meshless, and integration-free. This method employs the non-singular general
solutions instead of the singular fundamental solutions to avoid the singularity and
the artificial boundary.

In this study, we make the first attempt to extend the BKM to the heat conduction
analysis of ultra-thin coatings. Considering different mechanical properties of each
layer material, a multi-domain BKM formulation is developed to handle a wide
range of coating thickness. Our numerical experiments show that the BKM solution
outperforms the BEM (Zhang Yaoming, Gu Yan, Jeng-Tzong Chen, 2010) in terms
of the accuracy and efficiency. We find that the BKM keeps a high accuracy even
when the coatings are very thin at micro- or nano-scales
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A brief outline of the rest of this paper is as follows. In Section 2, we briefly
present the basic formulation of the BKM method. And then Section 3 proposes a
multi-domain BKM formulation to analyze the ultra-thin layer problems, followed
by Section 4, where the accuracy and stability of the proposed method are tested
by two benchmark problems. Section 5 concludes this paper with some remarks.

2 BKM formulation

This section will give a brief introduction to the BKM formulation through an il-
lustrative case:

L{uh(x)}= 0, x ∈Ω (1)

uh(x) = G(x), x = B f (2a)
∂uh(x)

∂n
= F(x), x = Bq (2b)

where L{} represents a linear differential operator, uh denotes the homogeneous
solution, x ∈ Rd , d=2, 3, Ω means the entire domain, B = Bq +B f is the boundary
of the domain Ω, and G(x)and F(x)are Dirichlet and Neumann boundary conditions
along the boundaries B f and Bq, respectively.

Unlike the DR-BEM (Chen W, Tanaka M. A ,2002; Wang Fuzhang, Chen Wen
and Jiang Xirong, 2009; Nardini D, Brebbia, CA, 1983) and the MFS where the
singular fundamental solution is employed to represent the homogeneous solution,
the BKM approximates the homogeneous solution by using the nonsingular general
solution µ as the basis function as shown in the following formula

uh(x) =
M

∑
k=1

αkµ(rk) (3)

where the subscript k is the index of the source points on the boundary, M is the
number of knots on the boundary, αk denotes the desired coefficients, µ is the
nonsingular general solution, and rk = ‖x− xk‖ is the Euclidean distance norm.

3 BKM for coating problems

In this section, the multi-domain BKM is presented for the steady-state heat con-
duction in a two-layer coating. And then we discuss the efficiency and validity of
the present scheme in details.
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3.1 Mutlidomain BKM formulation

Consider the steady-state heat conduction in a layered system with an ultra-thin
coating as shown in Figure 1. Here, Ω = Ω1∪Ω2, where Ω1 and Ω2 are the ho-
mogenous and isotropic subdomains, respectively. The boundary of the subdomain
Ω1 is denoted by B1, while the boundary of the subdomain Ω2 is represented by
B2. The contact interface of the two subdomains is BI . The temperature field in the
thin coating structure is governed by the Laplace equation

Figure 1: Boundary discretization of two subdomains

∆Th(x) = 0, x ∈Ω (4)

where ∆ represents the Laplace operator and Th denotes temperature variable. The
boundary conditions are given by

Th(x) = G(x), x ∈ Bq (5)

∂Th(x)
∂n

= F(x), x ∈ B f (6)

where G(x) and F(x) are Dirichlet and Neumann boundary conditions, respectively.
B is the boundary of the domain, BI the interface of the domain, i.e., B = B2∪B1∪
BI .

On B1 and B1 of Ω1 as shown in Fig. 1, the following discretized equations of the
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BKM can be obtained via the BKM formula (3):

[G1]

(
{α1}
{α1

I }

)
= {T 1} (7a)

[G1
I ]

(
{α1}
{α1

I }

)
= {T 1

I } (7b)

[F1]

(
{α1}
{α1

I }

)
= {Q1} (7c)

[F1
I ]

(
{α1}
{α1

I }

)
= {Q1

I } (7d)

where G1
I and F1

I are the boundary conditions formed by Eq. (2) on B1, G1 and F1

are the boundary conditions formed by Eq. (2) on BI , T 1
I and B1 are the interface

temperature and the normal derivative (flux) of the temperature on B1, B2 and B2
are the unknown coefficients on B2 and B1, respectively, and T 1 and Q1 denote the
temperature and the normal derivative of the temperature on B1.

Similarly, for B2 and BI on Ω2, we also have

[G2]

(
{α2}
{α2

I }

)
= {T 2} (8a)

[G2
I ]

(
{α2}
{α2

I }

)
= {T 2

I } (8b)

[F2]

(
{α2}
{α2

I }

)
= {Q2} (8c)

[F2
I ]

(
{α2}
{α2

I }

)
= {Q2

I } (8d)

where G2
I and F2

I are the boundary conditions formed by Eq. (2) on BI , G2 and F2

are the boundary conditions formed by Eq. (2) on B2, T 2
I and Q2

I represent the in-
terface temperature and the normal derivative of the temperature on BI , receptively,
T 2 and Q2 are the temperature and the normal derivative of the temperature on the
subdomain Ω2, and α2 and α1

I are the unknown coefficients for B2 and BI .

For a well-posed boundary value problem, there is only one unknown, either T or
Q, at each nodal point on the boundaries. However, along the interface BI , both
T and Q are unknowns. In order to solve the problem, the following continuity
conditions at the interface must be satisfied.

(a) Continuity of temperature

T 2
1 = T 2

1 (9)
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(b) Continuity of normal flux

k1Q1
1 =−k1Q2

1 (10)

Where k1 and k2 denote the coefficients of the heat conductivity of the two sub-
domains, respectively. According to the continuity conditions (9) and (10) at the
interface, equations (5) and (6) can be discretized by

[G1] [0]
[G1

I ] [0]
[F1

I ]
k2
k1
[F2

I ]

[0] G2




ϕ1

ϕ1
I

ϕ2

ϕ2
I

 =


[T 1]
[0]
[0]
[T 2]

 (11)

The above formulation can easily be extended to the multilayer problems. The
boundary and interface unknowns can simultaneously be solved by equations (11).
Once the boundary unknowns are evaluated, the temperature distributions at any
internal point can be calculated via equation (3).

3.2 Implementation procedure

The BKM has a clear distinction from the BEM for ultra-thin coating problems
in that the former employs the nonsingular general solution, whose expression for
steady-state heat conduction equation is given by

uh = e−c(x2−y2) cos(2cxy) (12)

where c is a problem-dependent shape parameter. Some schemes are developed
to determine the appropriate shape parameter, such as the golden section search
algorithm (Kontoni DPN, Partridge PW, Brebbia CA, 1991; Chen, JT, Wong FC,
1998) . In this study, we will use the direct search method (Kontoni DPN, Partridge
PW, Brebbia CA, 1991).to obtain the optimal shape parameter c. Below we give
the key steps in the BKM solution of the heat conduction problem in the multi-layer
thin coating problems.

Step 1. For nb collocation boundary points {x}nb
i=1 in Bq, we set a step size ζ and

an ending point m.

Step 2. For w = 1 to m/ζ :

(1) Solve equations (7) and (8) by using the BKM with c = wζ .

(2) Evaluate the BKM numerical solution ũ with test points nt on the boundary Bq

and then calculate the relative error of µ . Since the analytical solution is usually
not available in practice, this study uses the residual error of the governing equation
and Dirichlet boundary condition for the error in µ . More details can be found in
Kontoni DPN, Partridge PW, Brebbia CA(1991).
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(3) Calculate the error of µ at the test points at the iteration w.

Step 3. Find w in Step 2 and the minimum error of µ at the w-th iteration, then the
optimal shape parameter will be c = wζ .

4 Numerical results and discussions

4.1 4.1 A thin coating on a shaft

As depicted in Fig. 2, a circular shaft with a thin coating is considered. The heat
conductivities of the subdomains Ω1 and Ω2 are supposed to be the same. r1 = 2
and r2 = 6 are the inner and outer radii of the subdomain Ω2. The subdomain Ω1
is considered to be the coating with an outer radius r3 = 7. The boundaries of both
domains are supposed to satisfy the Dirichlet boundary condition. The analytical
solution is T = x2−y2+6. We uniformly distribute 8 test knots along the boundary
of r4 = 3.5 and r5 = 6.5.

Figure 2: Cross section of a shaft with a thin coating

To simplify the problem, we assume that the two subdomains have the same ma-
terial constants and heat conductivities. In the practice, however, the situations are
more complicated. This case is considered only to verify the validity of the BKM
with an available analytical solution.

5 to 100 uniform knots are applied along each boundary of the two domains, which
means that the total number of the knots ranges from 15 to 300. The following
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averaged relative error is used in this study

ε =
1
N

√
N

∑
k=1

(
T − T̄

T
) (13)

The temperatures and the heat fluxes at points situated on r4 = 3.5 and r5 = 6.5 (see
Fig. 2) are displayed in Figs. 3 and 4. The shape parameter is c=0.01 in this case.
The results demonstrate that the calculated temperature and heat flux are reliable.
The solution accuracy is improved as the number of the knots increases.

Figure 3: Relative errors of the computed temperatures and heat fluxes on r4 = 3.5
as shown in Fig. 2

4.2 A rectangular plate of a 2D solid with a thin coating

This case is a simplified engineering problem and has been investigated by the BEM
(Zhang Yaoming, Gu Yan, Jeng-Tzong Chen, 2010). We make a direct comparison
between the present BKM and the BEM for this case. As shown in Fig. 5, a 2×1m2

rectangular region of a 2D solid with a thin coating is considered. The thickness of
the thin coating is defined as h, and the structure is the approximate representation
of a real machining process. In2001, Du F, Lovell MR, Wu TW (2001) considered a
similar coating test case, in which the exact solution is T = x2/(1+h). By contrast,
the test case presented in this paper is more general, and thus the numerical results
are expected to be more accurate if the example in (Du F, Lovell MR, Wu TW
2007) is revisited.
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Figure 4: Relative errors of the computed temperatures and heat fluxes on r5 = 6.5
as shown in Fig. 2

In this case, the subdomain Ω1 is considered to be the coating layer while Ω2 is
the substrate. Heat conductivities of the subdomains Ω1 and Ω2 are respectively
r3r1 and r2. For the subdomain r4, 10 uniform knots are applied on each horizontal
side, and 1 knot is used on each vertical side. For the subdomain r5, 10 knots are
applied on each horizontal side in conjunction with 8 on the vertical side. In total,
the number of knots is 48. We obtain the optimal shape parameter c via the direct
search method as described above in Section 3.2. When the coating thickness Ω2
ranges from 10−1m to 10−9m, the optimal fluxes ∂T /∂n at point D(1.5,1) of the
interface of both subdomain Ω1 and Ω2 are listed in Table 1.

The temperatures and the heat fluxes ∂T /∂n at point E (0.5,1+h/2) as shown in Fig.
5 are respectively displayed in Fig. 6 and Table 2. It can be observed that the BKM
shows a higher accuracy than the BEM when the coating thickness h ranges from
10−1m to 10−9m.

In this example, we find that the value of the shape parameter should be larger
than 0.7 when h=10−9m. Otherwise, the results will generally tend worse as the
shape parameter increases. To gain some helpful insight into the choice of the
shape parameter, 10 uniform knots along the line y=1+h/2 as shown in Fig. 5 are
distributed to analyze the influence of the shape parameter on the solution accuracy
and stability. Figs. 7 and 8 show the temperatures and the heat fluxes on the line
y=1+h/2 with the shape parameters c= 0.2, 0.6, 1 and 1.4 for different coating
thicknesses h. Figs. 9 and 10 illustrate the temperatures and the heat fluxes with



188 Copyright © 2013 Tech Science Press CMES, vol.90, no.3, pp.179-195, 2013

Figure 5

Figure 6: Relative errors of the calculated temperatures at point E as shown in Fig.
5
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Table 1: Results of normal fluxes ∂T /∂n at point D on the interface of the subdo-
mains Ω1 and Ω2 as shown in Fig. 5

Thickness
(m) Exact BEM

Relative
error BKM Optimal c

Relative
error

1.0E-1 3.00 2.999972 9.28E-6 3.000000059 0.283 1.98E-8
1.0E-2 3.00 2.999787 7.08E-5 2.999999988 0.386 3.72E-9
1.0E-3 3.00 3.000048 1.62E-5 2.999999966 0.408 1.10E-8
1.0E-4 3.00 3.000024 8.15E-6 2.999999965 0.621 1.17E-8
1.0E-5 3.00 2.998634 4.55E-5 2.999999990 0.506 3.32E-9
1.0E-6 3.00 2.998325 5.58E-4 2.999999969 0.657 1.03E-8
1.0E-7 3.00 2.999276 2.41E-4 3.000000055 0.563 1.83E-8
1.0E-8 3.00 2.998910 3.63E-4 3.000000477 0.884 1.59E-7
1.0E-9 3.00 3.001953 6.51E-4 2.999999832 0.754 5.61E-8

Table 2: Results of heat fluxes ∂T /∂n at point E in the subdomain Ω1 as shown in
Fig. 5

h [m] Exact BEM
Relative

error BKM Optimal c
Relative

error
1.0E-1 6.100000 6.099934 1.08E-5 6.100000 0.252 1.56E-8
1.0E-2 6.010000 6.007734 3.77E-4 6.009996 0.389 1.82E-8
1.0E-3 6.001000 5.997616 5.64E-4 6.001047 0.484 2.77E-8
1.0E-4 6.000100 5.996694 5.68E-4 6.000642 0.331 2.26E-8
1.0E-5 6.000010 5.996604 5.68E-4 6.000009 0.451 5.73E-8
1.0E-6 6.000001 5.996595 5.68E-4 6.000002 0.541 1.51E-7
1.0E-7 6.000000 5.996595 5.68E-4 6.000002 0.384 3.01E-7
1.0E-8 6.000000 5.996594 5.68E-4 6.000006 0.521 9.52E-7
1.0E-9 6.000000 5.996594 5.68E-4 6.000122 0.905 2.03E-5

h=10−2m, 10−4m, 10−6m and 10−8m for a variable shape parameter c.

From Figs.7 and 8 one can find that the accuracy of the BKM solution drops
ascdecreases for h=10−1m. This indicates that better BKM solution for h=10−1m,
which is thicker than others, will be obtained as the shape parameterc decreases.
With the shape parameter c=0.2 and c=0.6, we can not get the correct BKM solu-
tion for h=10−9m. This indicates that the shape parameter should be larger for very
thin coating problems.
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Figure 7: The temperature along the liney =1+h/2 as shown in Fig. 5

Figure 8: The heat fluxes along the line y=1+h/2 as shown in Fig. 5
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Figure 9: The temperature along the liney =1+h/2 as shown Fig. 5

Figure 10: The heat fluxes along the liney =1+h/2 as shown in Fig. 5
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From Figs.9 and 10, we can find that the BKM solution gets worse as the h drops
for c=0.4. This indicates that small value of c leads a better BKM solution in a
thicker thickness.From Figs.9 and 10, we can also find that the BKM solution are
getting worse when the shape parameter c increases with a fixed thickness h. From
all numerical experiments reported above, we observe that the shaper parameter
cshould increase as h decreases, however, c<0.6 always leads to good results ex-
cept when the thickness is h=10−9. For the coating thickness h=10−9the shape
parameter should be selected around c=1.

1. Conclusions

This study makes the first attempt to apply the BKM for the heat conduction anal-
ysis in thin coating problems, and a multi-domain BKM scheme is also developed
for this simulation. In literature, the BEM is reported to be a convenient method to
simulate this kind of ultra-thin coating problems (Zhang Yaoming, Gu Yan, Jeng-
Tzong Chen, 2010). This study shows the numerical comparisons between the
BKM and the BEM. We find that the BKM has the following advantages in the
solution of steady-state heat conduction problems in ultra-thin coating systems.

• Since the BKM based method employs the nonsingular general solution rather
than the singular fundamental solution, the temperatures and other physical
quantities could be accurately evaluated even when the thickness to length
ratio of the coated film is as small as the order of 10−9m. This is more than
sufficient for modeling most thin coatings at the micro- or nano-scales.

• This study investigates both the temperature and its gradients through numer-
ical examples, which indicate that the BKM has some advantages compared
to the BEM in terms of the accuracy and efficiency for the heat conduction
analysis in ultra-thin coating systems. It is worth noting that the BKM is
much easier to program than the BEM.

• We made a detailed study on the efficiency of the BKM through the shape
parameter c in terms of the thickness of coating. Our empirical finding is
that the shape parameter c increases as the thickness of the coating decrease,
and the BKM solution gets better. We observed that the shape parameter c
from 0 to 0.6 always leads to accurate BKM results except for the case of
the coating thickness h=10−9m. For h=10−9m the shape parameter usually
should be around c=1.

Our further work along this line is to apply the BKM to more cases to investigate
its applicability and efficiency. In particular, we will apply the BKM to more chal-
lenging multi-layered coating systems and thermal effects.
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