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Topology optimization of finite similar periodic continuum
structures based on a density exponent interpolation model

Jian Hua Rong1,2,3 , Zhi Jun Zhao4 , Yi Min Xie5, Ji Jun Yi1,2

Abstract: Similar periodic structures have been widely used in engineering. In
order to obtaining the optimal similar periodic structures, a topology optimiza-
tion method of similar periodic structures with multiple displacement constraints is
proposed in this paper. Firstly, in the proposed method, the design domain is di-
vided into sub-domains. Secondly, a penalty term considering discrete conditions
of density variables is introduced into the objective function, and the reciprocal
density exponents of structural elements are taken as design variables. A topologi-
cal optimization model of a similar periodic continuum structure with the objective
function being the structural mass and the constraint functions being structural dis-
placements is constructed in the proposed method. The optimization dual method
is introduced and a set of iteration formula for Lagrange multipliers is built. Then,
virtual sub-domain design variables are introduced to establish the relation of corre-
sponding variables between all the sub-domains of the similar periodic continuum
structure in order to enforce structurally similar periodic requirement. Three exam-
ples are provided to demonstrate that the proposed method is feasible and effective
for obtaining optimal similar periodic structures.
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1 Introduction

Structural topology optimization has become an effective design tool for obtaining
more efficient and lighter structures. In the recent twenty years, various meth-
ods have been proposed to solve the topological optimization problem for contin-
uum structures. Current methods of the topological optimization include the SIMP
(Solid Isotropic Material with Penalty), method [Bendsøe et al., 1995, Ramm et
al., 1998, Wang et al. (2008)], other optimization methods, such as the evolution-
ary structural optimization proposed by Xie and Steven (1993, 1997), Liang and
Steven (2002), Li et al. (1999), and Rong et al. ( 2000, 2001, 2007), the bubble
method proposed by Eschenauer and Kobelev et al. (1994), the level set method
proposed by Osher and Sethian (1988, 1999), Wang et al. (2003) and Rong and
Liang ( 2008), the ICM (Independent, Continuous and Mapping) method proposed
by Sui et al. (1998, 2006), the meshless method proposed by Yuan et al. (2008), and
other heuristic method proposed by Tapp et al., 2004 . The effectiveness and limi-
tations of these optimization methods were discussed in the review papers written
by Eschenauer and Olhoff (2001) and Rozvany (2009). In recent years, the topol-
ogy optimization method with nodal density-based approximations [Wang et al.
(2012)] and application technologies [Olyaie et al. (2011), Du et al. (2012)] have
been proposed to develop the topology optimization theory and technology.

Similar periodic structures form an important branch of modern structures. These
include all modular structures that are composed of certain base substructures or
modules to be similarly duplicated translationally or rotationally. Typical exam-
ples are found in civil, mechanical, and aerospace engineering, such as sandwich
plates, impact protecting grids, and large space trusses. Similar periodic struc-
tures have attractive advantages. The duplication of a large number of identical
or similar modules significantly reduces the manufacturing cost and simplifies the
assembly process. In many cases, a similar periodic geometry also exhibits a dis-
tinctive aesthetic appeal. However, a similar periodic structure generally has low
efficiency in material usage due to the redundant constraint of layout periodicities.
For the design of similar periodic structures, the macroscopic distribution of the
designable material must be similar periodic, although the stress/strain distribution
may not exhibit any similar periodic characteristics. Therefore, a general macro-
scopic optimization method with additional similar periodic constraints needs to be
established to solve the optimization problem of a similar periodic structure effi-
ciently.

Work on topology optimization of periodic structures can be found in the literature
[Moses et al. (2003), Zhang et al. (2006), Huang et al. (2008), Zuo et al. (2011) ]
where the repetitive pattern is usually represented in a unit cell without the assump-
tion of periodic boundary conditions. Since the number of unit cells is prescribed,
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the size of the unit cell is determined and no scaling problem arises during the pro-
cess of translating the optimization result to the manufacturing of the final product.
These work [Moses et al., 2003, Zhang et al. ,2006, Huang et al., 2008, Zuo et
al., 2011, Chen et al., 2010] mainly deal with the topology optimization of a peri-
odic structure with structural natural frequency or mean compliance requirements.
Recently, Xie et al. (2012) investigated the convergence of topological patterns of
optimal periodic structures under multiple scales. However, the research on the
topology optimization of a similar periodic structure with multiple displacement
constraints is very limited at the macroscopic level under arbitrary loadings and
boundaries.

This paper presents a topology optimization model of similar periodic structures
with the objective function being the structural mass and the constraint functions
being structural displacements by improving algorithms from the references [Rong
et al. (2010,2011)]. To realize the layout similar periodicity of the optimization so-
lution, a virtual design domain and its variables are introduced to establish a relation
between any variable in the virtual design domain and a corresponding variables in
all the substructures of the similar periodic continuum structure. An approximate
topological optimization model for a similar periodic continuum structure is es-
tablished. Then, an optimization dual method is introduced, and a set of iteration
formula for solving Lagrange multipliers is built, and a set of iteration formula for
topology variables for the similar periodic continuum structural optimization is es-
tablished. Three examples show that the proposed method is feasible and effective
for obtaining an optimal similar periodic structure.

The following sections are organized as follows. The second section is dedicated
to the problem statement of the topology optimization for finite similar periodic
continuum structures. The third section introduces a dual method for solving its
approximate optimization problem. Before the conclusions are drawn, numerical
experiments are shown with discussions.

2 Topology optimization problem of finite similar periodic continuum struc-
tures

To obtain the optimal topology of a finite similar periodic structure, the optimiza-
tion design domain is divided into m sub-domains with actual sizes, as shown in
Fig.1. In Fig.1, ρi,k is treated as an element density variable, where i denotes the
numbering of a sub-domain, and k denotes the numbering of an element in the
sub-domain. For the finite periodic structure in Fig.1, the topology configuration
of a sub-domain is same to the topology configuration of any other structural sub-
domain along some direction ( as x direction and y direction of Fig.1), namely, there
are repetitive sub-structural modules in the structure. Any two sub-structural mod-
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ules with a repetitive configuration may be of different sub-structural geometrical
sizes for a finite similar periodic continuum structure.

Generally speaking, the number of sub-structural domains and the finite element
meshes of these sub-structures are determined by engineering designers.

Figure 1: The optimization domain being divided into eight sub-domains

2.1 Material interpolation model

In this paper, the solid isotropic material interpolation model (1) is adopted:

E(ρi,k) = (ρi,k)
αk E0 (1)

where ρi,k is the density variable of the kth element in the ith structural sub-domain,
αk is a penalty exponent. E(ρi,k) is Young’s modulus of the element by using
material interpolation, and E0 is the solid element Young’s modulus. By referring
to the reference [Rong et al. (2011)], the mass of an element can be expressed by
following interpolation equation

wi,k = (ρi,k)
αww0

i,k (2)

where wi,k and w0
i,k denote the mass and the original mass of the kth element in

the ith structural sub-domain, respectively. where αw = 2, αk = 5 are used in this
paper.

2.2 Topology optimization model of finite similar periodic continuum structures

The topology optimization problem of similar periodic structures with multiple dis-
placement constraints is investigated in this paper. The optimization problem of a
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similar periodic structure in terms of a minimum mass approach with multiple dis-
placement constraints, based on the density exponent interpolation model can be
stated as

Find : ρ = {ρ1,1 ,ρ1,2, · · · ,ρ1,n, · · · , ρm,1, · · · ,ρm,n}T (3a)

min W (3b)

s.t.
∣∣∣u f

j

∣∣∣≤U j ( j = 1, · · · ,J; f = 1,2, · · · ,L) (3c)

0 < ρmin ≤ ρi,k ≤ 1 (3d)

ρ1,k = ρ2,k = · · ·= ρm,k(i = 1,2, · · · ,m;k = 1,2, · · · ,n) (3e)

where, W is the structural mass, u f
j is the displacement of the jth degree of freedom

of the structure under the f th load case, U j is its constraint limit; L is the number
of the load cases acting on the structure , and J is the number of the displacement
constraints for each load case. ρmin is the lower limit of element density variables.
m is the number of structural sub-domains, and n is the number of elements of a
structural sub-domain.

Additional constraints (3e) are listed in the optimization model so that all the sub-
structures are of a same structural topology configuration.

2.3 Approximate continuous optimization model

By referring to the reference [Rong et al. (2011)] and incorporating the similar
periodic requirement, a series of equivalent optimization models (4) with varied
displacement constraint limits are built, in which these varied displacement con-
straints can limit the region of the design variable movements, and a penalty term
is introduced into the objective function so that a good black/white optimal similar
periodic topology can be obtained

Find : ρ = {ρ1,1 ,ρ1,2, · · · ,ρ1,n, · · · , ρm,1, · · · ,ρm,n}T (4a)

min W =
m

∑
i=1

n

∑
k=1

ρ
αw
i,k w0

i,k + γ

m

∑
i=1

n

∑
k=1

(1−
√

ρ
αw
i,k )
√

ρ
αw
i,k w0

i,k (4b)

s.t.
∣∣∣u f

j

∣∣∣≤U l f
j ( j = 1, · · · ,J; f = 1,2, · · · ,L; l = 1,2, · · ·) (4c)

0 < ρmin ≤ ρi,k ≤ 1 (4d)

ρ1,k = ρ2,k = · · ·= ρm,k,(i = 1,2, · · · ,m;k = 1,2, · · · ,n) (4e)
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where U l f
j is expressed as

U l f
j =


∣∣∣ū f

j

∣∣∣+min(β1

∣∣∣ū f
j

∣∣∣ ,(αL U j−
∣∣∣ū f

j

∣∣∣)). ∣∣∣ū f
j

∣∣∣≤ αL U j∣∣∣ū f
j

∣∣∣−min(β1

∣∣∣ū f
j

∣∣∣ ,(∣∣∣αL U j−
∣∣∣ū f

j

∣∣∣∣∣∣)). ∣∣∣ū f
j

∣∣∣> αL U j
,

j =1, · · · ,J; f = 1,2, · · · ,L
l =1,2, · · ·

(5)

where β1 is a displacement limit changing factor, and its typical values varying
between 0.04 and 0.08 are used for displacement constraints in the examples of
this paper. Here, a so-called inner loop iteration process namely is a process to
solve an approximate model derived from the optimization model (4), whose objec-
tive function and constraint functions are replaced by their approximate functions.
Here αL is a relaxation coefficient for the displacement constraints, and αL=1.02
is used in the examples of this paper. ū f

j represents the displacement of the jth
degree of freedom of the structure under the f th load case at the previous outer
loop iteration step. γ is a weighted parameter for the discrete condition of all den-
sity variables ρi,k (i = 1,2, · · · ,m;k = 1,2, · · · ,n), namely (1−

√
ρ

αw
i,k )
√

ρ
αw
i,k =0,

(i = 1,2, · · · ,m;k = 1,2, · · · ,n). γ = 0.45 has been used in the examples in this
paper.

Defining design variables xi,k = 1/(ρi,k)
αk (i = 1,2, · · · ,m;k = 1,2, · · · ,n), and

incorporating the approximate expressions of the displacement constraints in the
appendix, then solving Eq. (4) can be transferred to solving Eq. (6).

Find : x = {x1,1 ,x1,2, · · · ,x1,n, · · · , xm,1, · · · ,xm,n}T (6a)

min :
m

∑
i=1

n

∑
k=1

(bi,k(xi,k)
2+ai,kxi,k) (6b)

s.t.
m

∑
i=1

n

∑
k=1

C f
i k jxi,k ≤ D f

j ( j = 1, · · · ,J; f = 1,2, · · · ,L) (6c)

1≤ xi,k ≤ x̄max (6d)

x1,k = x2,k = · · ·= xm,k (i = 1,2, · · · ,m;k = 1,2, · · · ,n) (6e)
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where

C f
i k j = ( jūi k)T Ki k

0 ū f ,i k(ρ
(l−1)
i,k )2αk sign(ū f

j ) (7a)

D f
j =U l

j, f − (ū f
j −

m

∑
i=1

n

∑
k=1

( jūi k)T Ki k
0 ū f ,i k(ρ

(l−1)
i,k )αk)sign(ū f

j ), j=1,··· ,J, f=1,2,··· ,L (7b)

bi,k = [
0.5α (α +1)(1− γ)(

x(l−1)
i,k

)α+2 +
0.5α1 (α1 +1)γ(

x(l−1)
i,k

)α1+2 ](
w0

i,k

max(w0
i,k)

i=1,2,··· ,m;k=1,2,··· ,m

) (7c)

ai,k = [
−α (α +2)(1− γ)(

x(l−1)
i,k

)α+1 − α1 (α1 +2)γ(
x(l−1)

i,k

)α1+1 ](
w0

i,k

max(w0
i,k)

i=1,2,··· ,m;k=1,2,··· ,m

) (7d)

α = αw/αk ,α1 = αw/(2αk ), x(l−1)
i,k = 1/(ρ(l−1)

i,k )αk , x̄max = 1/ρ
αk
min .

To satisfy the positive definite condition of the objective function Hessian matrix,
it is required that bi,k > 0, which yields γ < 1.75. γ=0.45 is used in the examples
of this paper.

3 Dual method for solving the approximate optimization problem

If Eq. 6e, in the optimization model is not considered, and the constant items in the
objective function are omitted, solving Eq. (6) can be transferred to solving a dual
optimization model (8){

max : ϕ(λ )
s.t. λ ≥ 0

(8)

where φ(λ ) = min(L(x,λ ))
1≤xi,k≤x̄i,k,i=1,2,··· ,m;k=1,2,··· ,n

,

L(x,λ ) =
m
∑

i=1

n
∑

k=1
(bi,kx2

i,k +ai,kxi,k)+
J×L
∑

v=1
λv(

m
∑

i=1

n
∑

k=1
di k vxi,k− ev)

where, di k [( f−1)×J+ j] =C f
i k j/ max

i=1,2,··· ,m;k=1,2,··· ,n
(
∣∣∣C f

i k j

∣∣∣),
( f = 1,2, · · ·,L; j = 1,2, · · ·,J),

e[( f−1)∗J+ j] = D f
j / max

i=1,2,··· ,m;k=1,2,··· ,n
(
∣∣∣C f

i k j

∣∣∣)
The one and second order partial derivatives of the objective function in the model
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(8) with respect to Lagrange multipliers are derived as follows

∂φ(λ )/∂λv|λ=0 = (
m

∑
i=1

n

∑
k=1

di k vx∗i,k− ev)

+
m

∑
i=1

n

∑
k=1

(2bi,k x∗i,k +ai,k)(∂ x∗i,k/∂λv)

(9)

∂
2
φ(λ )/(∂λv∂λr)

∣∣
λ=0 =

m

∑
i=1

n

∑
k=1

di k v
∂ x∗i,k
∂λr

+
m

∑
i=1

n

∑
k=1

2bi,k
∂ x∗i,k
∂λv

∂ x∗i,k
∂λr

+
m

∑
i=1

n

∑
k=1

di k r
∂ x∗i,k
∂λv

(10)

The following equation may be obtained by the K-T condition and the Lagrange
function.

∂ L(x,λ )/∂ xi,k = 2bi,kx∗i,k +ai,k +
J×L

∑
v=1

λvdi k v =


≤ 0 x∗i,k = x̄max

= 0 1 < x∗i,k < x̄max

≥ 0 x∗i,k = 1
(11)

Setting Ia =
{
(i,k) , 1 < x∗i,k < x̄max (i = 1,2, · · · ,m;k = 1,2, · · · ,n)

}
as an ac-

tive design variable set, from the sensitivity of the 2th case in the equation (11)
with respect to Lagrange multipliers, the Eq. (12) can be directly derived:

2bi,k∂ x∗i,k/∂ λv +di k v = 0 (12)

From the equation (12), the following equations can obtained

∂ x∗i,k/∂ λv =−di k v/(2bi,k) (13)

and

∂
2 x∗i,k/(∂ λv∂ λr) = 0 (14)

Moreover, from the 1th and 3th cases in the equation (11), the following form can
be obtained

∂ x∗i,k/∂ λv = 0 (15)
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From Eq. (9,10) and Eq.(12-15), the one and second order partial derivatives of
the objective function in the model ( 8 ) with respect to Lagrange multipliers are
simplified as follows

∂φ(λ )/∂λv|λ=0 = (
m

∑
i=1

n

∑
k=1

di k vx∗i,k− ev)

− ∑
(i,k)∈Ia

(2bi,kx∗i,k +ai,k)di k v/(2bi,k)
(16)

∂
2
φ(λ )/(∂λv∂λr)

∣∣
λ=0 =− ∑

(i,k)∈Ia

di k vdi k r/(2bi,k) (17)

If the constant items of the second order approximation of ϕ(λ ) are omitted, the
following quadratic programming model for solving Lagrange multipliers may be
built.{

min : 1
2 λ T D λ +HT λ

s.t. λ ≥ 0
(18)

where

Hv =−
m
∑

i=1

n
∑

k=1
di k vx∗i,k + ev + ∑

(i,k)∈Ia

(2bi,kx∗i,k +ai,k)di k v/(2bi,k)

Dvr = ∑
(i,k)∈Ia

di k vdi k r/(2bi,k)
(19)

In this paper, x∗i,k (i = 1,2, · · · ,m;k = 1,2, · · · ,n) and λ are iteratively obtained, the
design variables xi,k at the previous outer loop iteration step are substituted into
Eq.(19) by approximately replacing x∗i,k in order to obtaining D and H. λ can be
obtained by solving the quadratic programming model (18).

A virtual domain is constructed and introduced so that the similar periodic con-
straints are satisfied in the optimal topology. The topology configuration of this
virtual domain is same to that of any sub-domain in the optimized structure. Set-
ting the design variable average of kth elements in all sub-domains of the optimized
structure as the design variable xk of the kth element in this virtual domain, then the
design variable xk can be expressed as:

xk =
1
m

m

∑
i=1

xi,k , k = 1,2, · · · ,n (20)
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Considering bi,k (i = 1,2, · · · ,m;k = 1,2, · · · ,n) all are positive, from Eq.(11) and
Eq.(20), the following equation can be obtained

x∗k +
1
m

m

∑
i=1

(ai,k +
J×L

∑
v=1

λvdi k v)/(2bi,k)


≤ 0 x∗k = x̄max
= 0 1 < x∗k < x̄max
≥ 0 x∗k = 1

(21)

Eq.(21) is used as an iterative formula for design variables of the virtual domain.
When the design variables of the virtual domain are renewed, setting xi,k = xk (i=
1,2, · · · ,m;k = 1,2, · · · ,n) makes that the similar periodic constraints (4e) be sat-
isfied in the optimal topology. After obtaining xi,k(i = 1,2, · · · ,m;k = 1,2, · · · ,n)
, xi,k is treated as x∗i,k and is substituted into Eq.(19) to get λ by solving Eq.(18),
then this new Lagrange multiplier λ is substituted into Eq.(21) , and xk and xi,k are
again obtained. This inner loop iteration calculation is repeated until a convergent
solution is obtained. Resetting ρ∗ obtained at this outer loop iteration step as ρ l ,
after a new structural finite element analysis, the whole process as motioned above
is repeated until the following condition is satisfied.∥∥∥ρ

l−ρ
(l−1)

∥∥∥/∥∥∥ρ
(l−1)

∥∥∥≤ ε (22)

To escape the checkerboard patterns of solid and void elements in the optimiza-
tion process, a filtering technique proposed in the reference [Sigmund (1998)] is
adopted to modify C f

i k j,ai,kand bi,k for all material elements. After obtaining an ob-
vious topology configuration, this filtering technique is removed in the optimization
process.

4 Examples

4.1 Beam structural topology optimization design

The first example is a beam 160 mm long and 40 mm high as shown in Fig.2a. An
uniform static load of q = 450kN/m is applied on the middle area along vertical di-
rections at the most top edge of the beam as shown in Fig.2a. The thickness of the
structure is 4 mm. The Young module E0=200 GPa, Poisson ratio ν = 03 and mass
density ρ0 = 7800 kg/m3 are specified. Fig.2a shows the structural displacement
boundary conditions. Fig. 2b is the finite element mesh of an initial design struc-
ture. The displacement of the point A along its vertical direction is constrained,
and its displacement limit is 1.05× 10−4m The displacement of the point B along
its vertical direction is constrained, and its displacement limit also is 1.05×10−4m.
The maximum design domain is divided into a regular mesh of 240×60 with a to-
tal of 14400 equal regular four-node plane stress elements. The two layer elements
located on the beam top and bottom are specified as non-design elements.
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Figs.3a-3d depict optimal designs obtained by the proposed method for periodic
constraints with 4× 1 periodicity, 8× 2 periodicity, 12× 3 periodicity and 16× 4
periodicity, respectively. Table 1 shows the mass and displacements at constraint
points for the optimal topologies obtained by the proposed method with various
periodicity requirements. From the optimization process, It can be found that the
displacement constraints are satisfied, and objective functions are all convergent at
the end of the optimization process. From the table 1, it can be seen that the optimal
topology mass increases and the sub-domain size effect on the optimal topology
mass decreases with structural periodicity increasing under the same displacement
constraints. From the optimal designs obtained by the proposed method, It can
be found that the design of macrostructures with periodic geometries is different
from the pure material design of microstructures, and is of important engineering
application value.

Figure 2: Initial beam design domain, its load and boundary conditions, and its
finite element mesh

Table 1: The masses and displacements at constraint points of the optimal topolo-
gies obtained by the proposed method with various periodicity requirements

periodicity
The total mass of the
optimal topology (kg)

Displacement at
point A (mm)

Displacement at
point B (mm)

4×1 0.0244 0.1017 0.0149
8×2 0.0364 0.0977 0.0210

12×3 0.0409 0.1040 0.0360
16×4 0.0477 0.1029 0.0283
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Figure 3: Optimal designs obtained by the proposed method for various periodic
constraints: ( a) 4× 1 periodicity, (b) 8× 2 periodicity; (c) 12× 3 periodicity and
(d) 16×4 periodicity
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4.2 Topology optimization design of a roof frame

Fig.4 shows an initial structural model, its load case, displacement boundary condi-
tion and its maximum design domain of a roof frame supported by simply. In Fig.4,
Lx = 30m, Ly1 = 2.1m, Ly2 = 3.6m and lx = 3m. The thickness of the structure is
0.24m. Two load cases are specified as:P1 = 111kN, P2 = 90kN, P3 = 138kN,P4 =
86kN andP5 = 169kN are assumed in the load case one; P1 = 111kN, P2 = 90kN,
P3 = 138kN, P4 = 200kN and P5 = 107kN are assumed in the load case two. The
Young module E0=200 GPa, Poisson ratio ν = 03 and mass density ρ0= 7800
kg/m3 are specified. A displacement constraint limit at the middle point of the
structural top side along its vertical direction is specified as 6mm. Due to structural
and load symmetries, only a half roof frame, as shown in Fig.5, is optimized. The
maximum design domain of the half roof frame is divided into an irregular mesh of
360×50 with a total of 18000 irregular four-node plane stress elements. The two
layer elements located on the roof frame top and bottom sides and the one layer
elements located on the left side of the design domain are specified as non-design
elements. A similar periodic topology with a similar periodicity 5× 1 constraint
along the horizontal direction is set.

Fig.6 shows the optimal topology of a half roof frame with 5×1 similar periodicity,
obtained by the proposed method. The mass and displacement at the constraint
point for the optimal topology are 30345.03kg and 5.776mm, respectively.

Figure 4: The initial design domain of a roof frame

4.3 Three dimensional beam topological design

Fig. 7 shows an initial structural model, its load case and its maximum design
domain. An uniform static load of τ = 40000kN/m2 is applied on four areas with
0.083m×0.075m of the top plane and the bottom plane at structural left end along
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Figure 5: The initial design domain of a half roof frame

Figure 6: The optimal topology of a half roof frame with 5×1 similar periodicity,
obtained by the proposed method
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vertical directions. The Young module E0=200 GPa, Poisson ratio ν = 03 and
mass density ρ0 = 7800 kg/m3 are specified. A displacement constraint limit at
the middle point of the top side of the structural left end along vertical directions
is specified as 0.0034m, and its initial displacement is 0.193mm . The maximum
design domain of the three dimensional beam is divided into a regular mesh of
120× 20× 8 with a total of 19200 equal regular eight-node brick elements. The
two layer elements located on the beam top and bottom planes are specified as non-
design elements. A periodic topology with a periodicity 4×1 constraint along the
horizontal direction is specified

Fig.8 shows the optimal topology of the three dimensional beam with 4×1 periodic-
ity, obtained by the proposed method. The mass and displacement at the constraint
point for the optimal topology are 3.6114×104kg and 0.3302mm, respectively.

Figure 7: the initial design domain of a three dimensional beam with 4.×1 period-
icity, its load case and displacement boundary condition

5 Conclusions

A topology optimization method of similar periodic structures with multiple dis-
placement constraints has been developed in this paper. Additional similar periodic
constraint has been added to the optimization formulation to ensure that the struc-
ture comprises a prescribed number of similar periodic substructures. The optimal
similar periodic topology is obtained by an improving dual method. Several 2D
and 3D examples are presented. The following conclusions can be drawn:

1) . The proposed method can be used to effectively optimize 2D and 3D similar
periodic structures. The optimal design with prescribed displacement constraints,
obtained by using the proposed method, will have a lower mass than the initial,
guess design.

2) . The optimal topology highly depends on the total number and the aspect ratio
of the similar periodic substructures.
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Figure 8: The optimal topology of a three dimensional beam with 4.×1 periodicity
obtained by the proposed method, observed from different perspectives
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3) . The value of the objective function (structural mass) becomes higher when
the total number of the similar periodic substructures increases. However, the ad-
vantage of a similar periodic design is that the manufacturing or construction cost
could be much reduced.
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APPENDIX

Explicit expressions of displacement constraints
In finite element analysis, the structural static equilibrium equation under the f th
load case may be expressed as
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Ku f = P f (A-1)

where K denotes the global stiffness matrix of a structure, u f denotes the structural
nodal displacement vector of the structure under the f th load case, and P f denotes
the load vector of the f th load case.

Defining 1/(ρi,k)
αk as a design variable, only the stiffness matrix of the kth element

in the ith structural sub-domain changes, when 1/(ρi,k)
αk changes. Therefore, the

partial derivative of the global stiffness matrix can be expressed as follows,

∂ K /∂ (1/(ρi,k)
αk) =−K̄ i,k

0 (ρi,k)
2αk (A-2)

where K̄ i,k
0 represents the element stiffness matrix of the kth element in the ith struc-

tural sub-domain in the global stiffness matrix dimension when the topological vari-
able ρi,k equals to unity. It is assumed that the element design variable change has
no effect on the load vector P f . We obtain the partial derivative of the displacement
vector with respect to 1/(ρi,k)

αk from Eq.(A1) and Eq.(A2) as

∂ u f /∂ (1/(ρi,k)
αk) = (ρi,k)

2αk K−1K̄i,k
0 u f (A-3)

To find the partial derivative of u f
j with respect to 1/(ρi,k)

αk , an unit virtual load
vector F j is introduced, in which only the jth component is equal to unity and all
the others are equal to zero. Multiplying both sides of Eq. (A3) by (F j)T , following
equation can be obtained

∂ u f
j /∂ (1/(ρi,k)

αk) = (ρi,k)
2αk(F j)T K−1K̄i,k

0 u f

= (ρi,k)
2αk( ju)T K̄i,k

0 u f

= (ρi)
2αk( jui k)T Ki,k

0 u f , i k

(A-4)

where ju is the displacement due to the unit load F j, Ki,k
0 is the element stiffness

matrix of the kth element in the ith structural sub-domain when the topological
variable ρi,k equals to unity. u f , i k and jui k are the element displacement vectors
containing the entries of u f and ju respectively, which are related to the kth element
in the ith structural sub-domain. The computation of the right hand side of equation
(A4) can be done at element level.

Therefore, the one order approximation of u f
j at the design point x(l−1)

i,k = 1/(ρ(l−1)
i,k )αk

(i = 1,2, · · · ,m;k = 1,2, · · · ,n), where x(l−1)
i,k denotes the design variables obtained
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at the (l−1)th outer loop iteration step , can be expressed as,

u f
j = ū f

j +
m

∑
i=1

n

∑
k=1

(u f
j )
′
xi,k

∣∣∣
x(l−1)

(xi,k− x(l−1)
i,k )

= ū f
j +

m

∑
i=1

n

∑
k=1

( jūi k)T Ki k
0 ū f ,i k 1

(x(l−1)
i,k )2

(xi,k− x(l−1)
i,k )

=

(
ū f

j −
m

∑
i=1

n

∑
k=1

( jūi k)T Ki k
0 ū f ,i k(ρ

(l−1)
i ,k )αk

)

+
m

∑
i=1

n

∑
k=1

( jūik)T Ki k
0 ū f ,i k

(ρ
(l−1)
i ,k )2αk

(ρi,k)αk

(A-5)

where ū f
j ,

jūi kand ū f ,i k are u f
j ,

jui k and u f ,i at the , (l− 1)th outer loop iteration
step, respectively.




