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Abstract: During the last decades, multigrid methods have been extensively used
in order to solve large scale linear systems derived from the discretization of par-
tial differential equations using the finite difference method. Approximate Inverses
in conjunction with Richardon’s iterative method could be used as smoothers in
the multigrid method. Thus, a new class of smoothers based on approximate in-
verses could be derived. Effectiveness of explicit approximate inverses relies in the
fact that they are close approximants to the inverse of the coefficient matrix and
are fast to compute in parallel. Furthermore, the class of finite difference approxi-
mate inverses proposed in conjunction with the explicit preconditioned Richardson
method present improved results against the classic smoothers such as Jacobi and
Gauss – Seidel method. Moreover, a dynamic relaxation scheme is proposed based
on the Dynamic Over / Under Relaxation (DOUR) algorithm. Furthermore, re-
sults for the multigrid preconditioned Bi-CGSTAB based on approximate inverse
smoothing and a dynamic relaxation technique are presented for a class of model
problems.
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1 Introduction

Let us consider a class of problems defined by the following Partial Differential
Equation (P.D.E.) subject to the following general boundary conditions:
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α (x)u+β (x)
∂u
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= γ (x) ,x ∈ ∂Ω (1b)

where Ω is a closed bounded domain, ∂Ω denotes the boundary of Ω, ∂η is the
direction of the outward normal and ai, j (x)> 0,b j (x)> 0,c(x)≥ 0 are sufficiently
smooth functions on Ω.

By applying the finite difference (FD) method to a PDE results in the following
sparse linear system, i.e.

Au = s, (2)

where the coefficient matrix A is a nonsingular large, sparse, unsymmetric, positive
definite, diagonally dominant matrix of regular structure, viz.,
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(3)

while u is the FD solution at the nodal points and s is a vector with components
resulting from the combination of source terms and imposed boundary conditions.

Explicit preconditioning methods have been extensively used for solving sparse lin-
ear systems on multiprocessor systems, and the preconditioned form of the sparse
linear system (2) is

MAu = Ms, (4)
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where M is a suitable preconditioner. The preconditioner M has to be efficiently
computed in parallel and MA should have a clustered spectrum. The effectiveness
of explicit approximate inverse preconditioning relies on the use of suitable precon-
ditioners that are close approximants to the inverse of the coefficient matrix and are
fast to compute in parallel, [Gravvanis (2009); Gravvanis, Filelis-Papadopoulos,
Giannoutakis and Lipitakis (2012); Giannoutakis and Gravvanis (2008); Gravvanis
and Giannoutakis (2011)]. In this article we present a parameterized “smoother”
based on the explicit approximate inverse preconditioner and the explicit precon-
ditioned Richardson iterative method. Approximate inverses based on the mini-
mization of the Frobenius norm of the error have been also proposed and used in
conjunction with the multigrid method, [Bröker, Grote, Mayer and Reusken (2001);
Frederickson (1996)].

During the last decades, multigrid methods, for solving large sparse linear systems,
have gained substantial interest among the scientific community for both their ef-
ficiency and convergence behavior in many research fields, [Frederickson (1996);
Furumura and Chen (2004); Haelterman, Viederndeels and Van Heule (2006); Za-
khama, Abdalla, Smaoui and Gürdal (2009)]. Multigrid methods are based on the
observation that the high frequency components of the error are damped effectively
by a stationary iterative method (such as Jacobi or Gauss - Seidel), however the
low – frequency components are not damped effectively. In order for low fre-
quency components of the error to be handled, a series of coarser grids with higher
discretization step are used as shown in Figure 1. In this series of coarser grids
the low–frequency modes of the error are more oscillatory and can be damped effi-
ciently by a stationary iterative method, [Hackbusch (1985a, 1985b); Trottenberg,
Osterlee and Schuller (1970); Wesseling (1982)]. Multigrid methods are composed
by four discrete elements: stationary iterative method, restriction operator, prolon-
gation operator and cycle strategy. The stationary iterative methods are first order
iterative methods such as Richardon, Jacobi and Gauss – Seidel method. Restriction
and prolongation are transfer operators from finer to coarser grids and from coarser
to finer grids respectively. The cycle strategy refers to the sequence in which the
grids are visited until a solution with the prescribed tolerance is achieved.

In order to accelerate convergence and increase robustness, multigrid can be used
as a preconditioner to the Krylov subspace iterative methods, [Trottenberg, Os-
terlee and Schuller (1970)]. Krylov subspace methods such as Bi–CGSTAB with
multigrid preconditioning in conjunction with Approximate Inverse Smoothing are
presented along with comparative results.
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Figure 1: Square domain with different discretization step h

2 Multigrid method based on Explicit Approximate Inverses

Let us consider the linear system derived from the discretization of a PDE on a unit
square domain with mesh size h:

Ahuh = sh (5)

The linear system (5) is then solved using the multigrid method based on Explicit
Approximate Inverse smoothing in conjunction with the DOUR scheme, [Haelter-
man, Viederndeels and Van Heule (2006)]. In order to form the multigrid method
for the solution of linear system (5), the basic components of the method should
be introduced, [Bröker, Grote, Mayer and Reusken (2001); Hackbusch (1985a);
Trottenberg, Osterlee and Schuller (2000); Wesseling (1982)].

These components are the prolongation and restriction operators as well as the re-
spective coefficient matrices and cycle strategy, [Hackbusch (1985a); Trottenberg,
Osterlee and Schuller (2000); Wesseling (1982)]. Another essential component
is the stationary iterative method, namely smoother, which is used for ν1 pre–
smoothing steps and ν2 post–smoothing steps on each level, [Hackbusch (1985a);
Trottenberg, Osterlee and Schuller (2000); Wesseling (1982)]. The prolongation
and restriction operators used are the bilinear interpolation and full – weighting
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Figure 2: Representation of the prolongation and restriction procedure where the
coarse grid consists of “circle” nodes and the finer grid with both “circle” and
“triangle” nodes

respectively, [Hackbusch (1985a); Trottenberg, Osterlee and Schuller (2000); Wes-
seling (1982)]. The two transfer operators are schematically represented in Figure
2.

The solution of a model problem can be achieved by successive applications of a
multigrid Cycle, such as the V, W or F Cycle, according to arbitrary termination
criterion. The proposed multigrid scheme descends to the coarsest possible level,
where the exact solution is obtained. The coarsest level has only one unknown at
the center of the grid. The Cycle strategy used in the proposed multigrid schemes
is the V - Cycle. The iterative algorithm for the V – Cycle multigrid method is
given in [Trottenberg, Osterlee and Schuller (2000)]. Various cycle strategies and
their corresponding algorithms are presented in [Hackbusch (1985a); Trottenberg,
Osterlee and Schuller (2000); Wesseling (1982)].

An important component in multigrid methodology is a stationary iterative solver,
namely smoother, that can be described by the following recurrence relation known
as general iteration method:

x(k+1)
` = x(k)` +M`r`,r` = s`−A`x

(k)
` , (6)

where k denotes the current iterative step, s`, A` are the right hand side and the
coefficient matrix and x(k)` is the solution vector. Equation (6) describes a family
of stationary iterative methods, according to the choice of the M` matrix. The
basic smoother for the multigrid iteration is the Jacobi method. The Jacobi iterative
method can be derived from equation (6) by substituting M` =D−1. For the damped
Jacobi method with relaxation parameter ω the M` matrix is of the form M` =
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ωD−1. Further discussions and proofs about classical smoothers can be found in
[Hackbusch (1985a, 1985b); Wesseling (1982)].

Approximate inverses in conjunction with the general iterative method (6) can be
used as smoothers for multigrid schemes, by choosing M` = (M`)

δ l
r , where (M`)

δ l
r

is a class of finite difference approximate inverse with “fill - in” parameter r and
“retention” parameter δ l at the `-th level of discretization, [Evans and Lipitakis
(1979)]. The new class of smoothing methods proposed can be described as fol-
lows:

x(k+1)
` = x(k)` +ω (M`)

δ l
r

(
s`−A`x

(k)
`

)
(7)

where ω is the damping parameter with 0 < ω ≤ 1.

Let us assume the sparse approximate factorization, such that

A≈ LrUr,r ∈ [1,m−1] (8)

where r is the so called “fill–in” parameter and Lr,Ur are upper and lower matrices,
respectively, of the same profile as the coefficient matrix A, [Evans and Lipitakis
(1979)]. The elements of the decomposition factors Lr,Ur can be computed by the
ALUBOT algorithm, [Evans and Lipitakis (1979)].

Let Mδ l
r = (µi, j) , i ∈ [1,n], j ∈ [i−δ l+1, i+δ l−1] be the approximate inverse of

the coefficient matrix A. The elements of a class of banded forms of the approxi-
mate inverse, by retaining δ l elements, can be computed by solving recursively the
following systems:

Mδ l
r Lr = (Ur)

−1 and UrMδ l
r = (Lr)

−1 ,r = [1,m−1),δ l = [1,ρm) (9)

where ρ = 1,2, ...m−1.

Then, the elements of the optimized form, of the approximate inverse based on
a shifted window from top to bottom of the generalized approximate inverse are
computed by the Optimized Banded Generalized Approximate Inverse (OBGAIM)
algorithm [Gravvanis (2000, 2002, 2009); Lipitakis and Evans (1987)]. The com-
putational work of the OBGAIM algorithm is O(n×δ l× r). It has been shown
that the value of the “retention” parameter δ l can be chosen as multiples of the
semi–bandwidth m, [Gravvanis (2000, 2002, 2009)].

In multigrid convergence theory two properties must be satisfied in order for the
two–grid cycle to converge, [Hackbusch (1980, 1981, 1982, 1985a, 1985b); Wes-
seling (1979)]:

• The smoothing property, [Hackbusch (1980, 1981, 1982, 1985a, 1985b)]
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‖A`Sν
` ‖2 ≤ η (ν)‖A`‖2 ,0≤ ν < ∞, `≥ 1 (10)

where η (ν) is any function with limν→∞η (ν) = 0.

• The approximation property, [Hackbusch (1980, 1981, 1982, 1985a, 1985b)]

‖A`−PA`−1R‖2 ≤
CA

‖A`‖2
, `≥ 1. (11)

If the above two properties are satisfied convergence, independent of number of
the levels `, for the W–Cycle is also implied. Hackbusch stated that for symmetric
positive definite matrices, convergence for the V–Cycle independent of the levels `
is also implied, [Hackbusch (1980, 1981, 1982, 1985b)]. The approximation prop-
erty is independent of the smoother implied and depends only on the discretization,
the prolongation and restriction operators. The approximation property has been
proven, for various elliptic boundary value problems, [Hackbusch (1980, 1981,
1982, 1985b)]. Additionally, the smoothing property of the classical smoothers for
symmetric positive definite problems, such as the Jacobi or Gauss–Seidel iterative
method, is satisfied. Further details and proofs for the multigrid rate of conver-
gence are given in [Hackbusch (1980, 1981, 1982); Wesseling (1979)]. Further-
more, sharp estimates of the multigrid rate of convergence with general smoothing
and acceleration, based on V and W cycles, for elliptic boundary value problems
have been presented by Bank and Douglas along with empirical results, [Bank and
Douglas (1985)]. The aforementioned generalized estimates also apply for the case
of explicit approximate inverse smoothing. Additionally, Notay has proved conver-
gence bounds for perturbed two-grid and multigrid with general smoothers that also
apply to approximate inverse smoothing [Notay (2007)]. Moreover, the smoothing
property for S.P.D problems is satisfied for the classical smoothers such as the Ja-
cobi and Gauss–Seidel iteration. For the Banded Approximate Finite Difference
Inverse matrix the smoothing property is proven as follows:

Let

‖A`Sν
` ‖2 ≤ ‖A`‖2 ‖S

ν
` ‖2 = ‖A`‖2

∥∥∥(I`−ω (M`)
δ l
r A`

)ν
∥∥∥

2

≤
∥∥∥(I`−ω (M`)

δ l
r A`

)∥∥∥ν

2
‖A`‖2

(12)

In order for the smoothing condition to be satisfied there has to be∥∥∥(I`−ω (M`)
δ l
r A`

)∥∥∥
2
< 1

By substituting I` = M`A` we have∥∥∥(M`A`−ω (M`)
δ l
r A`

)∥∥∥
2
=
∥∥∥(M`−ω (M`)

δ l
r

)
A`

∥∥∥
2

(13)
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and by substituting M` = (M`)
δ l
r + M̃`, where M̃` is the error matrix, [Gravvanis

(1996)], we obtain∥∥∥(M`−ω (M`)
δ l
r

)
A`

∥∥∥
2
=
∥∥∥((M`)

δ l
r + M̃`−ω (M`)

δ l
r

)
A`

∥∥∥
2

=
∥∥∥(I−ωI)(M`)

δ l
r A`+ M̃`A`

∥∥∥
2

(14)

When δ l→ n and r→m−1 then the error matrix M̃` tends to zero. Since ω∈(0,1],
we have∥∥∥(I−ωI)(M`)

δ l
r A`+ M̃`A`

∥∥∥
2
≈
∥∥∥(I−ωI)(M`)

δ l
r A`

∥∥∥
2
≤ (1−ω)

∥∥∥(M`)
δ l
r A`

∥∥∥
2
(15)

For real symmetric positive definite matrices (Laplace equation with zero boundary
values), it can be shown∥∥∥(I`−ω (M`)

δ l
r A`

)∥∥∥
2
≤ (1−ω)

∥∥∥(M`)
δ l
r A`

∥∥∥
2
= (1−ω)ρ

(
(M`)

δ l
r A`

)
(16)

In order for the smoothing property to be satisfied there has to be

(1−ω)ρ

(
(M`)

δ l
r A`

)
< 1⇔ ω > 1− 1

ρ

(
(M`)

δ l
r A`

) (17)

Therefore,

η (ν) =
[
(1−ω)ρ

(
(M`)

δ l
r A`

)]ν

,with limν→∞η (ν)→ 0 (18)

It should be stated that the theoretical estimates were found to be in qualitative
agreement with the results presented in Figure 3 for model problem I. The choice
of the relaxation parameter governs the smoothing properties of the inverse. In ad-
dition the value of the relaxation parameter should satisfy the smoothing condition,
and hence the Dynamic Over / Under Relaxation (DOUR) algorithm is used.

The choice of the relaxation parameter governs the smoothing properties of the ap-
proximate inverse. In addition, the value of the relaxation parameter should satisfy
the smoothing condition, and hence the Dynamic Over / Under Relaxation (DOUR)
algorithm is used, [Haelterman, Viederndeels and Van Heule (2006)].

The proposed approximate inverse smoothing scheme (7) requires a relaxation pa-
rameter ω in order to be more effective and efficient. The choice of the relaxation
parameter is non-trivial for a wide variety of problems and various choices of the
“retention” parameter.
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From Figure 3, it can be observed that for greater values of the “retention” param-
eter δ l the optimal value of the relaxation parameter ω tends to ω=1. As the order
n of the linear system (5) increases, finding the optimal value for the relaxation pa-
rameter by using different possible relaxation parameters is inefficient. A method
to compute the relaxation parameter dynamically is a “predictor–corrector” like
scheme. This scheme is based on the DOUR (Dynamic Over / Under Relaxation),
[Haelterman, Viederndeels and Van Heule (2006)].

As the order n of the linear system (5) increases, finding the optimal value for
the relaxation parameter by using different possible relaxation parameters is ineffi-
cient. A method to compute the relaxation parameter dynamically is a “predictor–
corrector” like scheme. This scheme is based on the DOUR scheme, [Haelterman,
Viederndeels and Van Heule (2006)].

Let us consider the equivalent expression for the relaxation scheme (7),

x(k+1)
` = x(k)` +ω

(
S
(

x(k)`

)
− x(k)`

)
(19)

where S
(

x(k)`

)
= x(k)` +(M`)

δ l
r

(
s`−A`x

(k)
`

)
.

By applying the predictor–corrector scheme, [Haelterman, Viederndeels and Van
Heule (2006)], we have

x̃(k)` = x(k)` +ω

(
S
(

x(k)`

)
− x(k)`

)
(20)

x(k+1)
` = x(k)` +κ

(
∆x(k)`

)
,∆x(k)` = x̃(k)` − x(k)` (21)

where

κ =

〈
∆x(k)` ,s`−A`x̃

(k)
`

〉
〈

∆x(k)` ,A`∆x(k)`

〉 (22)

From (19), (20), (21) and (22) we obtain

x(k+1)
` = x(k)` +ωe

(
S
(

x(k)`

)
− x(k)`

)
,ωe = ω (1+κ) (23)

where ωe is the effective relaxation parameter and equation (23) is the proposed it-
erative scheme. The equation (23) denotes a two stage non-stationary approximate
inverse smoother. Further information and convergence analysis of the DOUR al-
gorithm are given in [Haelterman, Viederndeels and Van Heule (2006)].

In order to accelerate the convergence, multigrid methods are used in conjunc-
tion with Krylov subspace iterative solvers. For complex applications the use of
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Figure 3: Convergence behavior for the approximate inverse smoother for different
values of the “retention” parameter δ l and the relaxation parameter ω

multigrid as a preconditioner to a Krylov subspace method results in an efficient
iterative solution method, [Trottenberg, Osterlee and Schuller (2000)]. The pro-
posed V-Cycle multigrid scheme is used in conjunction with Bi–Conjugate Gra-
dient Stabilized method resulting in MGV(ν1,ν2,ν3) Bi–CGSTAB, where ν1 de-
notes the pre–smoothing steps, ν2 denotes the post–smoothing steps and ν3 denotes
the number of cycles performed during the preconditioning. The algorithm of the
MGV(ν1,ν2,ν3) Bi–CGSTAB can be expressed as follows:

Let u0be an arbitrary initial approximation to the solution vector u and r0 the resid-
ual vector for this initial approximation. Then,

compute r0 = s−Au0 (24)

set r′0 = r0,ρ0 = α = ω0 = 1 and v0 = p0 = 0 (25)

Then, for i = 1, ...,(until convergence) compute the vectors ui,ri,zi,yi, pi,xi, ti and
the scalar quantities α,β ,ωi,ρi as follows:

compute ρi = (r′0,ri−1), and β = (ρi/ρi−1)
/
(α/ωi−1) (26)
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compute pi = ri−1 +β (pi−1−ωi−1vi−1) , (27)

per f orm ν3 Cycles o f V (ν1,ν2) method

with (M`)
δ l
r f or the linear system Ayi = pi,

(28)

compute vi = Ayi (29)

compute α = ρi/
(
r′0,vi

)
,and xi = ri−1−αvi, (30)

per f orm ν3 Cycles o f V (ν1,ν2) method

with (M`)
δ l
r f or the linear system Azi = xi,

(31)

compute ti = Azi, (32)

set ωi = (ti,xi)/(ti, ti) (33)

compute ui = ui−1 +αyi +ωizi, and ri = xi−ωiti. (34)

3 Numerical Results

In this section numerical results will be presented for the proposed multigrid sche-
mes. Furthermore, comparative results of the proposed schemes against the classic
smoothers will be presented. The results were obtained using the MATLAB en-
vironment. The convergence factor depends on the required number of iterations
for convergence, [Bröker, Grote, Mayer and Reusken (2001); Hackbusch (1985a);
Trottenberg, Osterlee and Schuller (2000)]. The convergence factor with respect to
the 2-norm is defined as:

q = m
√
‖rm‖2

/
‖r0‖2 (35)

where rm is the residual vector at the m-th iteration. The termination criterion for
all model problems was ‖rm‖2

/
‖r0‖2 < 10−10 and the numbering of the grid was

lexicographical. The pre–smoothing and post–smoothing iterations for the model
problems were chosen by default at ν1 = 2 and ν2 = 1 respectively. Furthermore,
the number of cycles for preconditioning in MGV(ν1,ν2,ν3) Bi–CGSTAB method
was chosen by default at ν3 = 1.

Model Problem I: Let us consider the following P.D.E.:

−∆u = 2
[(

1−6x2)y2 (1− y2)+ (1−6y2)x2 (1− x2)] ,(x,y) ∈Ω (36a)

u(x,y) = 0,(x,y) ∈ ∂Ω (36b)
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where ∆ is the Laplace operator and Ω is the unit square and ∂Ω denotes the bound-
ary of Ω.

The five point stencil on all required grids of the multigrid method was used. In
Table 1, the convergence factors and the convergence behavior of the V(2,1) multi-
grid method for various smoothers and mesh sizes are presented. In Table 2, the
convergence factors and convergence behavior of the V(2,1) multigrid method with
Approximate Inverse Preconditioner (AIP) smoothing for mesh size h = 1/128 and
different values of the “retention” parameter δ l, are given. In Figure 4, behavior
of the error measures ‖ri‖2 of the V(2,1) multigrid method for various smoothers
with mesh size h=1/128, is depicted. In Table 3, the convergence factors and con-
vergence behavior of the MGV(2,1,1) Bi–CGSTAB for various mesh sizes and
smoothers are presented. In Table 4, the convergence factors and convergence
behavior of the MGV(2,1,1) Bi–CGSTAB method for various choices of the “re-
tention” parameter δ l and mesh size are given. In Figure 5, behavior of the error
measures ‖ri‖2 of the MGV(2,1,1)-BiCGSTAB for various smoothers and mesh
size h=1/128 is presented.

Table 1: Convergence factors and convergence behavior of V(2,1) multigrid
method, for various mesh sizes of the finer grid and smoothers, for model prob-
lem I.

h 1/128 1/256 1/512 1/1024 1/2048
Smoother Convergence factor (Iterations)
Damped Jacobi

ω=4/5 0.2840(18) 0.2901(18) 0.2954(18) 0.2993(19) 0.3087(19)
Gauss - Seidel 0.1463(11) 0.1464(12) 0.1471(12) 0.1489(12) 0.1570(12)
AIP (δ l=1) 0.2097(14) 0.2168(15) 0.2209(15) 0.2089(14) 0.2073(14)
AIP (δ l=2) 0.2145(15) 0.1961(14) 0.2070(14) 0.2233(15) 0.2544(16)

Model Problem II: Let us also consider a convection–diffusion problem given by:

−ε (∆u)+α
∂u
∂x

= Asin(`πy)
((
−ε`2

π
2)x2 +

(
ε`2

π
2−2α

)
x+(α +2ε)

)
,

(x,y) ∈Ω (37a)

u(x,y) = 0,(x,y) ∈ ∂Ω (37b)

where ∆ is the Laplace operator,Ω is the unit square and ∂Ω denotes the boundary
of Ω. The five point stencil was used to discretize the second order partial deriva-
tives and the first order partial derivative was discretized using the downwind stable
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Figure 4: Behavior of the error measures ‖ri‖2 of the V(2,1) multigrid method for
various smoothers and mesh size h=1/128, for model problem I.

Figure 5: Behavior of the error measures ‖ri‖2 of the MGV(2,1,1)-BiCGSTAB for
various smoothers with mesh size h=1/128, for model problem I.
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Table 2: Convergence factors and convergence behavior of V(2,1) multigrid
method, for various values of the “retention” parameter δ l with mesh size h=
1/128, for model problem I.

δ l 1 2 2m 4m
Smoother Convergence factor (Iterations)

AIP 0.2097(14) 0.2145(15) 0.0451(7) 0.0372(6)

Table 3: Convergence factors and behavior of MGV(2,1,1)-BiCGSTAB, for various
mesh sizes of the finer grid and smoothers, for model problem I.

h 1/128 1/256 1/512 1/1024 1/2048
Smoother Convergence factor (Iterations)

Damped Jacobi
ω=4/5 0.0277(6) 0.0345(6) 0.0330(6) 0.0350(7) 0.0352(6)

Gauss - Seidel 0.0188(5) 0.0172(5) 0.0146(5) 0.0133(5) 0.0135(5)
AIP (δ l=1) 0.0269(6) 0.0547(8) 0.0455(7) 0.0651(8) 0.0407(7)
AIP (δ l=2) 0.0259(6) 0.0281(6) 0.0469(8) 0.0502(7) 0.0378(7)

Table 4: Convergence factors and convergence behavior of MGV(2,1,1)-
BiCGSTAB, for various values of δ l with mesh size h= 1/128, for model problem
I.

δ l 1 2 2m 4m
Smoother Convergence factor (Iterations)

AIP 0.0269(6) 0.0295(6) 0.0033(4) 0.0024(4)

discretization scheme. The values of the parameters for the convection–diffusion
P.D.E were set arbitrarily to ε = 0.1,α = 2, `= 3.

In Table 5, the convergence factors and convergence behavior of the V(2,1) multi-
grid method for various mesh sizes and smoothers are presented. In Table 6, the
convergence factors and convergence behavior of the V(2,1) multigrid method with
AIP Smoothing for different values of the “retention” parameter δ l are given. In
Figure 6, behavior of the error measures ‖ri‖2 of the V(2,1) multigrid method, for



On the Multigrid Method Based on Finite Difference 247

various smoothers with mesh size h=1/128, is depicted. In Table 7, the conver-
gence factors and convergence behavior of the MGV(2,1,1) Bi–CGSTAB method
for various mesh sizes and smoothers are presented. In Table 8, the convergence
factors and convergence behavior of the MGV(2,1,1) Bi–CGSTAB in conjunction
with AIP smoothing for various values of the “retention” parameter δ l with mesh
size h= 1/128 are given. In Figure 7, behavior of the error measures ‖ri‖2 of the
MGV(2,1,1)-BiCGSTAB for various smoothers with mesh size h=1/128, is pre-
sented.

In Table 9, the convergence factors and convergence behavior of the V(2,1)–Cycle
with the AIP smoother for various values of the perturbation parameter ε and mesh
size h=1/128, are presented.

Table 5: Convergence factors and convergence behavior of V(2,1) multigrid
method, for various mesh sizes of the finer grid and smoothers, for model prob-
lem II.

h 1/128 1/256 1/512 1/1024 1/2048
Smoother Convergence factor (Iterations)
Damped Jacobi

ω=4/5 0.3974(24) 0.4086(25) 0.4152(26) 0.4179(26) 0.4202(26)
Gauss - Seidel 0.2297(15) 0.2434(16) 0.2513(16) 0.2555(16) 0.2579(16)
AIP (δ l=1) 0.2430(16) 0.2408(16) 0.2363(16) 0.2410(16) 0.2444(16)
AIP (δ l=2) 0.1793(13) 0.2112(14) 0.2282(15) 0.2359(16) 0.2404(16)

Table 6: Convergence factors and convergence behavior of V(2,1) multigrid
method, for various choices of the “retention” parameter δ l with mesh size h=
1/128, for model problem II.

δ l 1 2 2m 4m
Smoother Convergence factor (Iterations)

AIP 0.2430(16) 0.1793(13) 0.0907(9) 0.0814(9)
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Figure 6: Behavior of the error measures ‖ri‖2 of the V(2,1) multigrid method for
various smoothers with mesh size h=1/128, for model problem II.

Figure 7: Behavior of the error measures ‖ri‖2 of the MGV(2,1,1)-BiCGSTAB for
various smoothers and mesh size h=1/128, for model problem II.
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Table 7: Convergence factors and convergence behavior of MGV(2,1,1)-
BiCGSTAB, for various mesh sizes of the finer grid and smoothers, for model
problem II.

h 1/128 1/256 1/512 1/1024 1/2048
Smoother Convergence factor (Iterations)
Damped Jacobi

ω=4/5 0.1259(11) 0.1342(11) 0.1388(11) 0.1412(11) 0.1431(11)
Gauss - Seidel 0.0559(7) 0.0468(8) 0.0515(9) 0.0525(9) 0.0528(9)
AIP (δ l=1) 0.0534(7) 0.0647(8) 0.0725(8) 0.1135(10) 0.0810(9)
AIP (δ l=2) 0.0672(8) 0.0486(7) 0.0904(8) 0.0548(7) 0.0756(7)

Table 8: Convergence factors and convergence behavior of MGV(2,1,1)-
BiCGSTAB, for various values of the “retention” parameter δ l with mesh size
h= 1/128, for model problem II.

δ l 1 2 2m 4m
Smoother Convergence factor (Iterations)

AIP 0.0534(7) 0.0672(8) 0.0106(5) 0.0101(5)

Table 9: Convergence factors and convergence behavior of the V(2,1)–Cycle
with the AIP smoother for various values of the perturbation parameter and with
h=1/128.

ε δ l
10−1 10−3 10−6

q iter q iter q iter
1 0.2430 16 0.6252 49 0.6519 54
2 0.1793 13 0.6255 49 0.6523 54

2m 0.0907 9 0.3314 22 0.4317 27
4m 0.0814 9 0.2147 14 0.3341 24



250 Copyright © 2013 Tech Science Press CMES, vol.90, no.3, pp.233-253, 2013

Model Problem III: Let us consider the Bratu nonlinear PDE in two dimensions:
−∆u(x,y)+ γu(x,y)eu(x,y)

= 2
((

x− x2)+ (y− y2))+ γ
(
x− x2)(y− y2)e(x−x2)(y−y2),(x,y) ∈Ω (38a)

u(x,y) = 0,(x,y) ∈ ∂Ω (38b)

where Ω is the unit square, ∂Ω denote the boundary of Ω and the value of γ was
arbitrarily set to γ=10. The analytical solution is

u(x,y) =
(
x− x2)(y− y2) ,(x,y) ∈Ω (39)

The Bratu non-linear problem can be solved by using a linearization method such
as Newton’s method in conjunction with the multigrid method, based on Finite Dif-
ference approximate inverses, [Gravvanis (2000); Ortega and Rheinboldt (1970)].
The outer stopping criterion for Newton’s method was set to ‖rm‖2

‖r0‖2
< 10−8.

In Table 10, the convergence behavior of the V(2,1) multigrid method for various
mesh sizes of the finer grid, for model problem III, is presented. In Table 11, the
convergence behavior of the MGV(2,1)-BiCGSTAB for various mesh sizes of the
finer grid, for model problem III, is given.

Table 10: Convergence behavior of the V(2,1) multigrid method for various mesh
sizes of the finer grid for model problem III.

δ l h
1 2 2m 4m
Outer(Inner) Iterations

1/32 4(58) 4(57) 4(53) 4(28)
1/64 4(61) 4(57) 4(54) 4(30)
1/128 4(63) 4(58) 4(54) 4(32)

4 Conclusion

The proposed schemes have been shown to have better convergence behavior and
convergence factors compared to damped-Jacobi and Gauss-Seidel smoothing schemes,
which are considered as classical smoothing schemes. Moreover, it is known that
the approximate inverse smoothing scheme possesses high level of parallelism and
does not require complex ordering and coloring schemes such as the Gauss–Seidel
iterative scheme. Furthermore, the DOUR algorithm increases the robustness and
effectiveness of the approximate inverse smoothing schemes. Finally, we state that
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the proposed multigrid scheme can be efficiently used for solving highly non-linear
initial/boundary value problems.

Table 11: Convergence behavior of the MGV(2,1,1)-BiCGSTAB for various mesh
sizes of the finer grid for model problem III.

δ l h
1 2 2m 4m
Outer(Inner) Iterations

1/32 4(25) 4(25) 4(24) 4(15)
1/64 4(25) 4(25) 4(25) 4(16)
1/128 4(28) 4(25) 4(23) 4(16)
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