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A Scalar Homotopy Method with Optimal Hybrid Search
Directions for Solving Nonlinear Algebraic Equations
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Abstract: In this paper, a scalar homotopy method with optimal hybrid search
directions for solving nonlinear algebraic equations is proposed. To conduct the
proposed method, we first convert the vector residual function to a scalar function
by taking the square norm of the vector function and then, introduce a fictitious time
variable to form a scalar homotopy function. To improve the convergence and the
accuracy of the proposed method, a vector with multiple search directions and an
iterative algorithm are introduced into the evolution dynamics of the solutions. Fur-
ther, for obtaining the optimal search direction, linear and nonlinear optimization
algorithms are develploped. Taking the advantages of finding the optimal search
direction, the proposed novel method is able to consider hybrid search directions
for solving the nonlinear algebraic equations. The formulation presented in this
paper demonstrates a variety of flexibility with the use of the algorithm for find-
ing optimal hybrid search directions. In addition, our proposed method does not
necessarily need to calculate the inverse of the Jacobian matrix and has great nu-
merical stability for solving nonlinear well-posed algebraic equations as well as the
ill-posed problems which may have an ill-conditioned or singular Jacobian matrix.
Results reveal that the proposed method can improve the convergence and increase
the numerical stability for solving nonlinear algebraic equations

Keywords: the scalar homotopy method, scalar function, optimization, Jacobian,
ill-posedness, Newton’s method.

1 Introduction

For solving engineering problems, numerical methods used in computational me-
chanics lead to seeking the solution of a system of linear algebraic equations for a
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linear problem, or that of a Non-Linear Algebraic Equations (NAEs) system for a
non-linear problem. Over the past years, many contributions have been made to-
wards the numerical solutions of linear or non-linear problems [Atluri (2002)] The
iterative-based method, such as Newton’s method, the method of steepest descent
are most common methods. Newton’s method converges quadratically; however,
it is sensitive to the initial guess of solution and is very expensive in the compu-
tations of the inverse of the Jacobian matrix. Therefore, modifications of New-
ton’s method, such as the continuous Newton method [Hirsch and Smale (1979)],
the Jacobian-Free NewtonKrylov method [Knoll and Keyes (2004); Lemieux et
al. (2010)], the fictitious time integration method [Liu and Atluri (2008); Ku,
Yeih, Liu, and Chi (2009)], the scalar Newton-homotopy continuation method [Ku,
Yeih, and Liu (2010)], and the dynamical Newton-like method [Ku, Yeih, and Liu
(2011)], have been extensively developed for this purpose. All of these methods
are based on a fixed search direction for solving problems. Accordingly, limita-
tions such as slow convergence, numerical instability, or low accuracy may arise
while encountering nonlinear algebraic equations especially for the ill-posed prob-
lems which may have an ill-conditioned or singular Jacobian matrices.

The nonlinear algebraic equations with ill-posedness such as ill-conditioned system
or singular Jacobian matrix are frequently encountered in science and engineering
and many problems in engineering and science require the solution of ill-posed
problems and a good and stable numerical algorithm for solving the ill-posed non-
linear problems is very important. Over the past years, many contributions have
been made towards the numerical solutions of ill-posed problems. Most of these
methods are based on the so-called regularization methods. The main objective of
regularization is to incorporate more information about the desired solution in order
to stabilize the problem and find a useful and stable solution. Among these meth-
ods, the most common and well-known form of regularization is that of Tikhonov
[Groetsch, (1984)] Tikhonov regularization is a method in which the regularized
solution adopts two directions using the combination of the residual norm and a
size constraint of the regularized solution From the regularization method, we can
find that it is useful to incorporate more search directions for finding the solution of
ill-posed problems. However, for conventional Tikhonov’s regularization method
to determine the regularization method requires a lot of computation efforts such as
the L-curve method [Hanson, 1992] or the discrepancy principles [Morozov (1984,
1966)]. Liu and Kuo (2011) proposed a dynamic Tikhonov regularization method
to solve the nonlinear ill-posed problems in which the searching direction is as-
sumed to combine the direction of steepest descent vector and an unknown coeffi-
cient multiplying the direction of unknown vector. Liu and Atluri (2011a) adopted
an iterative method using an optimal descent vector, for solving an ill-conditioned
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system. In their study, two search directions including the combination of the steep-
est descent direction and the residual direction are used. From these two pioneer
works, they show that it is possible to construct an optimal direction by determin-
ing the weighting factor between two directions. It is then interesting to know that
how many directions are allowed when ill-posed problems are encountered as well
as how to determine the unknown weights for each direction

In this study we propose a novel method based on a scalar homotopy function with
optimal hybrid search directions for solving nonlinear algebraic equations. To im-
prove the convergence and the accuracy of the proposed method, a vector composed
by multiple search directions with unknown weights is used and an iterative algo-
rithm based on the evolution of the residual vector is introduced into the evolution
dynamics of the solutions. Further, for obtaining the optimal search directions, lin-
ear and nonlinear optimization algorithms are developed. Taking the advantages
of finding the optimal search direction, the proposed novel method is able to con-
sider hybrid search directions for solving the nonlinear algebraic equations. The
proposed method is then adopted for the solution of ill-posed problems. First of all,
the formulation of the method is described as follows.

2 Mathematical backgrounds

2.1 The scalar homotopy method

The early practical application of homotopy-like methods to numerical solution of
nonlinear equations is commonly attributed to Davidenko (1953). Recently, more
references can be found in the application of homotopy methods. Liao (2004) em-
ployed the basic ideas of homotopy to propose a general method for nonlinear prob-
lems, namely the homotopy analysis method, and this method has been successfully
applied to solve many types of nonlinear problems. He (2005) studied the homo-
topy method through a series of different non-linear ordinary differential equations.
In this study, we consider the following nonlinear algebraic equations as:

Fi (x1, . . . ,xn) = 0, i = 1, . . . ,n (1)

Using x : = (x1, . . . ,xn)
T and F : = (F1, . . . ,Fn)

T , Eq. (1) can be written as:

F(x) = 0 (2)

the homotopy method represents a way to enhance the convergence from a local
convergence to a global convergence All the homotopy methods are based on the
construction of a vector function, H(x,τ) which is called the homotopy function.
The homotopy function serves the objective of continuously transforming a func-
tion G(x) into F(x) by introducing a homotopy parameter τ . The homotopy param-
eter τ can be treated as a time-like fictitious variable, and the homotopy function
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can be any continuous function such that: H(x,0) = G(x) and H(x,1) = F(x).
Hence we construct H(x,0) in such a way that its zeros are easily found while we
also require that, once the parameter τ is equal to 1, then H(x,τ) coincides with the
original function F(x)
Among the various homotopy functions that are generally used, the fixed point
homotopy function, i.e. G(x) = x− x0 and the Newton homotopy function, i.e.
G(x) = F(x)−F(x0) are simple and powerful ones that can be successfully applied
to several different problems. The Newton homotopy function is

H(x,τ) = τF(x)+(1− τ)[F(x)−F(x0)] = 0 (3)

where x0 is the given initial values and τ ∈ [0,1]. In many vector-based homotopy
methods, each step involves computing the inverse of the Jacobian matrix which
often raises the difficulty of divergence in certain circumstances; in such cases each
step is as costly as a Newton step. Liu, Yeih, Kuo and Atluri (2009) and Ku, Yeih,
and Liu (2010) used the fixed point homotopy function and the Newton homotopy
function respectively to make an anology for the scalar homotopy method to the
theory of plasticity. Using the same concept, we first convert the vector equation of
F = 0 into a scalar equation by noticing that

F = 0⇔ ‖F‖2 = 0 (4)

where ‖F‖2 = F2
1 +F2

2 + . . .+F2
n . Obviously, the left-hand side implies the right-

hand side. Conversely, by ‖F‖2 = F2
1 +F2

2 + . . .+F2
n = 0 we have F1 = F2 = . . .=

Fn = 0, and thus F = 0
Using Eq. (4), we can transform the vector equation into a fictitious time dependent
scalar function h(x,τ) as follows:

h(x,τ) =
1
2
‖F(x)‖2 +

1
2
(τ−1)‖F(x0)‖

2 = 0 (5)

Equation (5) holds for all τ ∈ [0,1]. To motivate this study, we first consider a
fictitious time function Q(t) where t is the fictitious time and Q(t) has to satisfy
that Q(t)> 0, Q(0) = 1, and Q(t) is a monotonically increasing function of t, and
Q(∞) = ∞. Then we introduce the proposed fictitious time function Q(t) into Eq.
(5) and have

h(x, t) =
1
2
‖F(x)‖2− 1

2
1

Q(t)
‖F(x0)‖

2 = 0 (6)

Using the fictitious time function, Q(t), when the fictitious time t = 0 and t = ∞,
we can obtain

h(x, t = 0) =
1
2
‖F(x)‖2− 1

2
‖F(x0)‖

2 = 0⇔ F(x) = F(x0) (7)
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h(x, t = ∞) =
1
2
‖F(x)‖2 = 0⇔ F(x) = 0. (8)

It is clear that the tracking of a solution path for the proposed scalar Newton ho-
motopy function, as the homotopy parameter τ is gradually varied from 0 to 1, is
equivalent to the fictitious time varying from t = 0 to t = ∞.

If we assume that h(x, t) = 0 is satisfied for any time greater than zero, multiplying
Q(t) at both sides of Eq. (6) one can construct a space-time manifold [Ku, Yeih
and Liu (2010)] written as

h(x, t) =
1
2

Q(t)‖F(x)‖2− 1
2
‖F(x0)‖

2 = 0. (9)

Then, we can use the ‘consistency equation’ to force the trajectory of the solution
x always remain on this manifold which means the total derivate of h(x, t) with
respect to the time t should be zero as:

Dh
Dt

=
∂h
∂ t

+∇h · dx
dt

= 0 (10)

where ∇ denotes the gradient operator. The derivatives of the scalar function,
h(x, t), with respect to x and t can be written as

∂h
∂ t

=
1
2

Q̇(t)‖F(x)‖2 whereQ̇(t) =
dQ(t)

dt
. (11)

∇h =
∂h
∂x

= Q(t)BTF(x) (12)

where the superscript ‘T’ denotes the transpose of a matrix and B is the Jacobian
matrix. Since Eq. (10) is a scalar equation, it is obviously impossible to determine
the evolution dynamics of x (i.e., dx

dt ) from Eq. (10) uniquely. Now let us assume
that the evolution dynamics of x is in the direction of a vector, say u. It means that
we have

ẋ =
dx
dt

= λu. (13)

where λ is a proportional constant.

Inserting Eqs. (11), (12) and (13) into Eq. (10), we then can derive

λ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)Bu
. (14)

Inserting Eq. (14) into Eq. (13), we can obtain the evolution dynamics of x as:

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)Bu
u. (15)
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By defining v = Bu, one can rewrite Eq. (15) as:

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)v
u. (16)

2.2 Iteration algorithm based on the evolution of the residual vector

Let us take a look of the evolution of the residual vector F which can be written as:

Ḟ(x(t)) = Bẋ. (17)

Substituting Eq. (16) into Eq. (17), we then have:

Ḟ(x(t)) =
−

.

Q(t)
2Q(t)

‖F(x)‖2

FT(x)v
v. (18)

Using the forward Euler scheme, we can approximately express Eq. (18) as

F(x(t +∆t)) = F(x(t))−∆t
Q̇(t)

2Q(t)
‖F(x)‖2

FT (x)v
v (19)

where ∆t is the time increment. For simplicity, we let

β := ∆t
Q̇(t)
2Q(t)

. (20)

Since we require that the evolution path of x should always remain on the space-
time manifold, we then can obtain the following expressions from Eq. (9):

‖F(x(t))‖2 =
‖F(x0)‖2

Q(t)
and ‖F(x(t +∆t))‖2 =

‖F(x0)‖2

Q(t +∆t)
. (21)

Taking the square norm of Eq. (19) for both sides and using Eqs. (20) and (21), we
can obtain

‖F(x0)‖2

Q(t +∆t)
=
‖F(x0)‖2

Q(t)
−2β

‖F(x0)‖2

Q(t)
+β

2 ‖F(x0)‖2

Q(t)
‖F(x)‖2

(FT (x)v)2 ‖v‖
2 . (22)

Rearranging the above equation, we can obtain an algebraic equation for β as

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (23)

where

a0 =
‖F(x)‖2 ‖v‖2

(FT (x)v)2 =

{
‖F(x)‖‖v‖
(FT (x)v)

}2

=

(
1

cosθ

)2

(24)
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in which θ denotes the angle between the residual vector F and the vector v. From
the Cauchy-Schwarz inequality, it can be easily verified that a0 ≥ 1 Now let us
define:

s :=
Q(t)

Q(t +∆t)
=
‖F(x(t +∆t))‖2

‖F(x(t))‖2 (25)

It can be found that this ratio s is the ratio between the square norm of the residual
vector in the next state and the square norm of the residual vector in the current
state. It is for sure that we hope s ≤ 1, such that for each state the norm of the
residual vector decreases. From Eq. (25), Eq. (23) now can be written as

a0β
2−2β +1− s = 0. (26)

We can obtain the solution for β as:

β =
1−
√

1− (1− s)a0

a0
.if,1− (1− s)a0 ≥ 0 (27)

For simplicity, we let

1− (1− s)a0 = r2. (28)

Eq. (28) can be rewritten as

s = 1− 1− r2

a0
. (29)

Substituting Eq. (24) into Eq. (29), one can obtain

s = 1−
(
1− r2

)(
FT (x)v

)2

‖F(x)‖2 ‖v‖2 . (30)

Remember that s means the ratio between the square norm of the residual vector in
the next state and the square norm of the residual vector in the current state, and it
is better to minimize this parameter in our numerical scheme.

Now by using the forward Euler scheme on Eq. (16), one can rewrite the evolution
of solution as:

x(t +∆t) = x(t)− (1− r)
(FT (x)v)
‖v‖2 u. (31)

Eq. (31) may be viewed as an iterative formula, rewritten as:[Liu and Atluri, 2011b]

xk+1 = xk− (1− r)
FT (xk)v
‖v‖2 u. (32)
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2.3 Finding search directions using nonlinear algorithm

A previous study [Liu and Atluri, 2011c] developed an algorithm to find the optimal
vector for v = v1 +αv2. The optimal value of α can be obtained by substituting
the above expression into Eq. (30), then take the derivative of s (or equivalently the
derivative of a0 with respect to α) to be zero and the following expression can be
obtained: [Liu and Atluri, 2011c]

α =
(v1 ·F)(v1 ·v2)− (v2 ·F)‖v1‖2

(v2 ·F)(v1 ·v2)− (v1 ·F)‖v2‖2 . (33)

Based on a similar aspect, we proposed a new optimization method which can find
the optimal vector for the solution using optimal hybrid search directions. First, we
assume that

u =
m

∑
k=1

αkuk (34)

which means that the searching direction is a linear combination of m known vec-
tors with undetermined coefficients. It follows directly that

v = Bu =
m

∑
k=1

αk (Buk) =
m

∑
k=1

αkvk. (35)

By a similar procedure, we can obtain a system of m nonlinear algebraic equations
to determine the unknown coefficients:

(F ·v)(v ·vk)− (v,v)(F,vk) = 0, f ork = 1,2,3 . . . ,m. (36)

Eq. (36) is a necessary condition for finding the extreme value of s or equivalentlya0.
To seek for the minimum value of s, one can expect that the inner product between
the vectors v and F should not be zero, i.e. the angle between vectors v and F
should not be πvyg We now prove that an additional constraint for the undeter-
mined coefficients is required to ensure the solution of Eq. (36) to be unique. Now
assume another vector as

u∗= pu (37)

where p is a proportional constant and u can be written as Eq. (34) and satisfy Eq.
(36). Now we substitute u∗ into Eq. (37) to replace u in Eq. (35) then use the ex-
pression of v and substitute it into Eq. (36), it can be easily found that Eq. (36) can
be satisfied automatically. It then means that when a direction is the optimal one,
any vector lies in this direction can be the optimal one. This means that infinitely
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many solutions exist for the set of equations written in Eq. (36). In addition, we
can check the evolution of x by using pu to replace u in Eq. (31) and using pv to
replace v in Eq. (31), it will be found that p can be cancelled and make no differ-
ence in the evolution of x at all. From the above argument, we can conclude that
some constraint is required to make the possible solutions be finite. For example,
one can use the following equation as additional constraint:

m

∑
k=1

α
2
k = 1. (38)

Summing up the previous arguments, we say the optimal direction for many vectors
can be determined by solving Eqs.(36) and (38) together. This method we named
it as the nonlinear algorithm and summed up as follows:

Nonlinear algorithm:

Step 1: Solving (F ·v)(v ·vk)− (v,v)(F,vk) = 0 for k=1,. . . m

and
m
∑

k=1
α2

k = 1 together. (Inner iteration)

Step 2: After obtaining α , Eq.(32) is used to solve the solution x (Outer iteration)

In order to determine the optimal direction, a set of nonlinear algebraic equations
should be solved first which for sure makes the numerical scheme more compli-
cated. In reality, only for the first several steps we may pay a lot of effort on seeking
the solution of the unknown coefficient vector α . If we select the ‘solution’ of α in
the previous step as the initial guess of the current step, soon the solution of α can
be found for each step quickly enough.

2.4 Finding search directions using linear algorithm

It is well known that for the n-dimensional problem, the dimension of solution vec-
tor x is n. That means at most k = n, that is at most we can provide n-linearly
independent vectors such that they can represent any vector in the space. For sim-
plicity, if one make

uk :=


δ1k
δ2k
...
δnk

 f ork = 1, . . . ,n (39)

with δpq =

{
1, p = q
0, p 6= q

the Kronecker delta symbol.
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It then can be seen that in order to minimize a0, it can be achieved if v = F. It then
follows

[
v1 v2 · · · vn

]


α1
α2
...
αn

=


F1
F2
...
Fn

 . (40)

It is known that the solution of the unknown coefficient vector α can be uniquely
determined if det[ v1 v2 . . . vn ] 6= 0. Accordingly, Eq. (40) can be further
reduced to

Bα = F. (41)

Solving Eq. (41) is much simpler than solving Eqs. (36) and (38) together using
nonlinear algorithm. But notice that it can be only achieved while n independent
directions of uk are given. We will provide numerical examples to support our
viewpoints later.

When we only have m directions where m < n, we still can have the following
equations which is similar to Eq. (40):

[
v1 v2 · · · vm

]


α1
α2
...
αm

=


F1
F2
...
Fn

 . (42)

To solve Eq. (42), one can solve it in the sense of least square or adopt the so-
called pseudo-inverse concept. Actually solving Eq. (42) by using the least square
method is equivalent to the following minimization problem:

min

[ v1 v2 · · · vm
]


α1
α2
...
αm

−F


2

. (43)

It then can be seen that in Eq. (43), we try to select the unknown coefficients
such that the vector v is mostly close to the vector F and this also implies that the
angle between v and F is then mostly close to zero. Solving the problem in Eq.
(43) is much simpler than solving Eqs. (36) and (38) using nonlinear algorithm
together. Furthermore, solving Eq. (43) only the minimum value of s is obtained
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and solving Eqs.(36) and (38) may result in obtaining the maximum value of s but
not the minimum value of s

To solve Eq. (43), it is equivalent to solve the following linear algebraic equation
as

VT V


α1
α2
...
αm

= VT


F1
F2
...
Fn

 (44)

in which V≡
[

v1 v2 · · · vm
]
.

Notice that if m = n Eq. (44) is the same as Eq. (41) which will result in that
the best choice for vector v is in the direction of B−1F if the inverse of Jacobian
matrix exists. And the iteration formula becomes the well-known Newton method
if r = 0 in Eq.(32) is selected. It is more interesting when the Jacobian matrix be-
comes singular, then the inverse of Jacobian matrix does not exist at all. For most
inverse problems, we all know that the numerical algorithm becomes unstable due
to the inherent ill-posedness. It then can be found that it is impossible to numer-
ically calculate B−1 at all. For solving n unknowns by n equations this becomes
difficult because some of these equations are nearly linearly dependent to others.
That means the rank of the Jacobian matrix is not equal to n such that one cannot
construct n linearly independent vectors (directions, which are ui). To use less di-
rections is then commonly seen in the techniques for solving the inverse problems.
For example, the well-known Tikhonov’s method adopts two directions; one is in
the direction of BTF with known coefficient α1 = 1 and the other direction is in
the direction of x (the unknown vector) with an unknown coefficient to be deter-
mined. The Landweber iteration method adopts the direction of BTF only, but it
does not obey the property of manifold-based algorithm as mentioned in this paper.
The scalar homotopy method [Ku, Yeih and Liu (2010)] selects the direction of
BTF and it follows the property of manifold-based algorithm. The fictitious time
integration method [Liu and Atluri (2008)] selects the direction of F but it does not
obey the property of manifold-based algorithm. On the other hand, the dynamic
Jacobian inverse free method [Ku, Yeih and Liu (2011)] selects the direction of
F and it follows the property of manifold-based algorithm. All these methods are
proved to have the ability to overcome the numerical instability but they all suffer
from slow convergence. To our best knowledge it is not known up to date that how
many directions are allowed when ill-posed problems are encountered. In addition,
how to determine the unknown weights of these selected directions for number of
directions is bigger than two is still an open question.

In the following, we proposed a modified algorithm to select as many directions as
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possible such that the convergence can be fastened.

Modified algorithm (for singular Jacobian matrix)

Step 1: Constructing the equations (n equations) for unknowns (m unknowns)

Step 2: Constructing the Jacobian matrix B (which is n by m)

Step 3: Checking the rank of S=VTV(m by m matrix), one can adopt the following
definition:

tol(S) = m∗norm(S)∗ ε (45)

where the function tol(S) gives the tolerance value, the function norm returns the
norm value of matrix S by using the largest singular value of S and ε is the priori-
selected precision which depends on the problem itself and the accuracy of the
computer. The rank of matrix S is now defined as the number of singular values
which are bigger than tol(S)

Step 4: Building m directions (ui) and using the following algorithm to pick only k
directions where k is equal to the rank of matrix S :

Step 4.1 Building vectors vi = Bui

Step 4.2 Calculating the norm of mismatch vectors, hi ≡
∥∥∥FTF

vT
i F vi−F

∥∥∥.
Step 4.3 Pick the first k directions whose mismatch hi is smaller.

The following examples demonstrate our proposed methods for solving NAES.

3 Numerical illustrations

3.1 Example 1

Let us consider a system of nonlinear algebraic equations as:{
x2−2y−1 = 0
x− ey = 0

(46)

It is obvious that one of the solutions is (1,0). We now first test the case where u1
and u2 are known vectors. We assign u1 = [ 1 0 ]T and u2 = [ 0 1 ]T . It can be
seen that these two vectors are linearly independent vectors and therefore according
to our direction the optimal direction should be selected such that v is parallel to F.
We first use the nonlinear algorithm to determine the optimal direction. For solving
this nonlinear system with the use of the inner iteration on the nonlinear algorithm,
we use the manifold-based algorithm developed by Liu and Atluri [Liu and Atluri,
(2011b)] which is equivalent to let the searching direction be u = BFT in Eq. (32)
with assigning r = 0.01. The convergent criterion for the inner iteration is set as
‖Fα‖ ≤ 10−20 where Fα denotes the residual vector for solving Eqs.(36) and (38)
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together. We records the number of inner iteration steps for each outer iteration
in the nonlinear algorithm for solving unknown vector x. For the convergence
criterion of Eq. (46) in the outer iteration, we set as the root mean square error is
less than 10−5. For the first outer iteration step, we give the initial guess for α is
[ 1 0 ]T . For the following outer iteration steps, we adopt the final value of α

in the previous step as the initial guess. For the outer iteration, we give the initial
guess of (x,y) = (1,1)

It is reported that after 8 outer iteration steps, the approximate solution is obtained
as (1.0023,0.0023) which is very close to the solution (1,0). The root mean square
error versus the number of outer iteration step is shown in Figure 1. The cosine
function values of the angles between two vectors v and F for outer iteration steps
are illustrated in Figure 2. It can be seen that these cosine function values are all
close to 1 which means that v is approximately parallel to F. Remember that all
numerical algorithm have errors, it is then not possible to exactly find the vector v
which is parallel to F in numerical sense. In addition, we also record the number
of inner iteration steps for each outer iteration step as the black dash line shown in
Figure 3. Now we change the requirement to ‖Fα‖ ≤ 10−10, the result is shown
as the red line in Figure 3. It can be seen that for the beginning, the convergence
criterion can be reached very quickly. However, while the numerical solution is
almost close to the real solution the required inner iteration increases which means
that the Jacobian matrix for the system involving Eqs. (36) and (38) using the inner
iteration for nonlinear algorithm varies too dramatically such that to use the value
of α for the previous step as the initial guess for the current step is not suitable now.

Next, we assign u1 =BTF and u2 = [ x y ]T . This means now the searching direc-
tion is no longer the fixed direction but relates to the residual vector and unknown
vector. We set the convergence criterion for the inner iteration in the nonlinear
algorithm as ‖Fα‖ ≤ 10−10 and all other conditions are the same as stated above.
We first use the nonlinear algorithm to determine the value of α . In Figure 4, the
cosine function values for the angles between the vectors v and F are illustrated.
We can find out that for some iteration steps, the values are zero which means v
is perpendicular to F and that means maximum value of s but not the minimum
value is found. It then can be said that to use Eqs. (36) and (38) together using
the nonlinear algorithm is not a robust method. We then change the algorithm for
finding the value of α by using Eq. (44). The cosine function values for the angles
between the vectors v and F are illustrated also in Figure 4 by the solid red line. It
can be found that now we can see the angle between v and F is zero.

In the final stage for this example, we now use u1 = [ 1 0 ]T and u2 = [ 0 1 ]T .
For solving the optimal value of α , we use Eq. (44) to determine it. The conditions
are all the same as the previous stage. The root mean square error versus the itera-
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Figure 1: RMSE versus outer iteration step.

Figure 2: Cosine function value of angles between v and F versus outer iteration
step.

tion step is illustrated in Figure 5, it can be seen that totally 9 steps are required to
reach convergence. In addition, the cosine values of the angles between v and F for
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Figure 3: The influence of convergence criterion for the internal iteration on the
required internal steps.

Figure 4: The influence of different algorithms for solving α

all iteration steps are illustrated in Figure 6. It can be seen that exactly the angle
between v and F keeps zero during the iteration process. The approximate solution
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obtained is (1.0025,0.0025).

Figure 5: RMSE versus iteration step using Eq. (41) to determine αu

3.2 Example 2

In the second example, we solve for the following nonlinear equations:
xy+ y2z−2 = 0
x+2y−3z = 0
xyz− ez−1 = 0

(47)

There exists one obvious solution (1,1,1). First, we assign u1 = [ 1 0 0 ]T ,u2 =
[ 0 1 0 ]T and. u3 = [ 0 0 1 ]T We first use the nonlinear algorithm to solve
this problem. The initial guess for the solution (x0,y0,z0) = (4,3,2) and the ini-
tial guess for (α1,α2,α3) = (1/

√
3,1/
√

3,1/
√

3). The convergence criterion for
solving the undetermined coefficients for αs is set to be 10−4 and the convergence
criterion for finding the solution (x,y,z) is set as the root mean square error is less
than 10−10. The results of the cosine values of the angles between v and F for all
outer iteration steps are illustrated in Figure 7. It can be seen that the searching
direction follows the direction of B−1F. One can also use Eq. (44) to determine
the undetermined coefficients α and it is easy to verify that the searching direction
really follows the direction of B−1F. Now let us assume we only select two direc-
tions, say u1 = B−1

[
1 0 0

]T and u1 = B−1
[

0 1 0
]T . We then can say
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Figure 6: Cosine function value of angles between v and F versus outer iteration
step using Eq. (41) to determine αu

the optimal selection of the undetermined coefficients (α1,α2) must make the vec-
tor v =

[
F1 F2 0

]T . We define the mismatch as (v1−F1)
2 +(v2−F2)

2which
theoretically should be zero. Eq. (44) is used to solve the unknown undetermined
coefficients (α1,α2) and mismatches for the first ten steps are illustrated in Figure
8 and it can be said that the current proposed algorithm really can make v and F as
closely as possible.

3.3 Example 3

In this example, we study the following system of two NAEs:

F1 (x1,x2) = x2
1 + x2

2−2 = 0,
F2 (x1,x2) = e(x1−1)+ x2

2−2 = 0,
(48)

where

B =

[
2x1 2x2

e(x1−1) 2x2

]
(49)

This is an interesting example because the iteration for Newton’s method fails when
the initial guess is selected as (3,5) as shown in Figure 9. As the trajectory ap-
proaches to x1 = 3.5192 during the iteration, it happens x2 ≈ 0.0. It then is found
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Figure 7: Cosine function value of angles between v and F versus outer iteration
step using Eqs.(36) and Eq. (37) to determine α

Figure 8: Mismatch versus number of iteration step.
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from Eq. (49) that the Jacobian matrix now is nearly singular. This leads the tra-
jectory of (x1,x2) oscillates at the axis for x1 = 3.5192 as shown in Figure 9.

Figure 9: Trajectory for the solution using Newton’s method.

The convergence criterion is selected as the root mean square error is less than
10−6. We now use the modified algorithm mentioned in the previous section and
make the precision in the modified algorithm: ε = 0.01. The initial guess is set as
(x1,x2)=(3,5). While the rank of the Jacobian matrix is not equal to 2, according to
our modified algorithm we can only choose one direction. We set our two directions
as u1 = F and u2 = BT F. The following three methods are tried as mentioned in
the followings:

Method 1. When rank(B) = 1, set u = u1 always.

Method 2. When rank(B) = 1, set u = u2 always.

Method 3. When rank(B) = 1, set u by the modified algorithm.

We first check the convergence of root mean square error (RMSE) as shown in
Figure 10. We can find that Newton’s method fails to converge. Other methods
such as method 1 to method 3 can converge. Actually when we check the trajectory
of (x1,x2)for all methods, we can find that method 1 happens to be the same as
method 3. These two methods all converge after 11 iterations. Method 2 converges
after 35 iterations. It is worth mentioned that method 1 (method 3 also) converges to
the solution (x1,x2)=(1,-1) and method 2 converges to other solution (x1,x2)=(1,1).
The trajectories for all methods are shown in Figure 11.
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Figure 10: Evolutions of root mean square errors for example 3 using different
methods.

Figure 11: Trajectories of solutions for example 3 using other methods.
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3.4 Example 4

In this example, we consider an almost linear problem [Brown (1973)]:

Fi = xi +
j=n

∑
j=1

x j− (n+1), i = 1, · · · ,n−1, (50)

Fn =
j=n

∏
j=1

x j−1 (51)

with a closed-form solution as xi = 1, for i = 1, · · · ,n.
It is easy to find that if the path of solution approaches to the origin (x = 0) the Ja-
cobian matrix becomes singular and results in the failure of Newton’s method. We
now adopt the modified algorithm stated in the previous section to solve this prob-
lem. In our study, the number of equations is set as n = 10. The parameter ε is set
to be 10−16, the convergence criterion is RMSE≤ 10−6 and the maximum number
of iteration steps is 20,000 steps. The parameter r in Eq. (32) is set to be zero. The
initial guess is given as x0 = [0.1,0.1,0.1,0.1,0.3,0.1,0.1,0.1,0.1,0.2]T We study
the following three methods. Method 1 is that we only use one direction, u1 = BTF
Method 2 is that we construct ten directions by adopting u1 = BTF/norm(BT) and
uk = Buk−1/norm(B),k = 2, ...,10. The modified method stated in the previous
section is then used to select appropriate directions. Method 3 is that we construct
ten directions by using ten unit vectors. The modified method stated in the previous
section is then used to select appropriate directions.

We first examine the RMSE versus the number of iteration steps for three methods
as shown in Fig. 12. It can be found that all three methods can obtain the solution.
It takes 2516 steps for method 1, 22 steps for method 2 and 8 steps for method 3.
We further examine the rank(S) for each step using method 2 or method 3 as shown
in Fig. 13. It can be seen for the first step, the rank of the S matrix is not equal to
10 but 9 for method 3 and the rank of the S matrix is 10 for method 1. From the
second step to the final step, the rank of S matrix for both method 1 and method 3
is 10. It is then can be said that method 1 is totally equivalent to Newton’s method.
The reason why method 3 converges faster than method 1 is because that after the
first step method 3 makes the location of x at a better point such that further using
the Newton’s method is more efficient.

3.5 Example 5

A classical example of an ill-posed problem is a nonlinear Fredholm integral equa-
tion of the first kind which is well known as a nonlinear ill-posed problem. In the
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Figure 12: RMSE versus number of iteration for three different methods in example
4.

Figure 13: Rank of Jacobian matrix for method 2 and method 3 in example 4.
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final example, we study the example as follows.

1∫
0

x(s)x(t)dt = Acos(β s) ,A > 0

where A and β are constants. We let A = 1 and β = 3 in the followings. We give
data for Acos(β s) in the region s ∈ [0,1] by equally dividing the region into 20
segments, that means totally 21 data points are used. Therefore, we also use these
21 points as the integration quadrature points and the trapezoidal rule is used for

integration. Two exact solutions exist: x(s) =±
√

Aβ

sinβ
cos(β s) =±

√
3

sin3 cos(3s).
[Polyanin and Manzhirov, 2007]. The initial guess are given as x(t) = 10.0 for
t ∈ [0,1] and the following three methods are used to find the solutions:

Method 1: We only adopt one direction as u1 =
F
‖F‖

Method 2: We only adopt one direction as u1 =
BT F
‖BT F‖

Method 3: We only adopt two directions as u1 =
F
‖F‖ ,u2 =

BT F
‖BT F‖ and then deter-

mine the optimal coefficients using the linear algorithm.

Method 4: We first construct 21 directions as u1 =
F
‖F‖ and uk =

BT uk−1
‖BT uk−1‖

for k =
2, ...,21 and then determine the optimal coefficients using the modified algorithm.
The parameter ε = 10−10 is used.

All these methods use the following termination criterions: (1) when the root mean
square error is less than 10−3, or (2) when the number of iteration steps exceeds
1,000 steps. In addition, the parameter r in Eq. (32) is set to be zero.

We will examine the influence of noise by examining results for random relative
noises level σ = 0% and 1% in data. We first examine the root mean square error
versus iteration steps as shown in Figure 14. In this figure, we only show results
that obtained by using data without any noise for different methods. We can see that
method 1 and method 2 which only adopt one searching direction cannot reach the
convergence criterion within 1,000 steps. On the contrary, method 3 and method 4
can reach the convergence criterion in 9 steps. In method 3, we adopt two specific
directions but in method 4 we use the modified algorithm which can automatically
select as many searching directions as possible. We illustrate rank(S) for method
4 as shown in Figure 15. We can see that for method 4, rank is 2 for all steps that
means method 4 selects two directions only. This is similar to the method 3. One
may wonder if method 4 chooses the same directions as method 3 does. Remember
that the first two directions u1 and u2 are exactly the specific directions used in
method 3. We check this doubt by showing Figure 16. We can find out that actually
method 4 adopts different directions in comparison with method 3.
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Figure 14: RMSE versus number of iteration for different methods in Example 5.

Figure 15: Rank for S matrix for each step versus number of iteration step in
method 4.
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Figure 16: Selected directions for method 4.

In the final, we will examine the results by only show the results for those with
noise level of 1% as shown in Figure 17. It can be seen that although method 1
and method 2 basically already catch the shape for the exact solution but deviation
between numerical solution and exact solution can be easily found. Method 3 and
method 4 obtain very close solution and deviation is negligible. Remember that in
this figure, all data are added with random noise. It then can be said that our pro-
posed method has a good noise resistance. One more thing worth mentioned here
is that method 3 and method 4 can reach solution very quickly and this fast con-
vergence property makes our method more interesting. We believe this proposed
method has a very promising future in solving the ill-posed inverse problems but
we have to admit more research should be carried out to fulfill this.

4 Conclusions

In this paper, a scalar homotopy method with optimal hybrid search directions for
solving nonlinear algebraic equations is proposed. The important fundamental con-
cepts and the construction of the scalar homotopy method, the iteration algorithm
based on the evolution of the residual vector, and the optimization of multiple hy-
brid search directions are clearly addressed. Several numerical illustrations for
solving the problems with ill-posedness which may have ill-conditioned or singu-
lar Jacobian matrix are conducted. Findings from this study are drawn as follows.
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Figure 17: Solution for example 5 using different methods.Solution for example 5
using different methods.

1. The proposed method is based on the construction of a scalar homotopy func-
tion with the use of the optimization algorithm to find optimal hybrid search
directions. With the novel formulation proposed in this study, the present
method is applied to the solution of nonlinear algebraic equations. Results
reveal that the proposed method can improve the convergence and increase
the numerical stability for solving ill-posed problems.

2. Taking the advantages of finding the optimal search directions, the proposed
novel method is able to consider hybrid search directions for solving non-
linear algebraic equations. The formulation presented in this paper demon-
strates a variety of flexibility with the use of the algorithm for finding optimal
hybrid search directions which can be used to improve the convergence and
increase the numerical stability.

3. Numerical illustrations reveal that the selection of the optimal vector plays a
crucial role for finding the stable solution. With the use of the proper opti-
mal vector, the proposed method reaches the solution very quickly and this
fast convergence property makes our method more interesting. In addition,
difficulties such as slow convergence, numerical instability, or low accuracy
for solving the ill-posed problems that arose previously in many numerical
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methods may be overcome by means of our proposed method.
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