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Analysis of Band Structure for 2D Acoustic Phononic
Structure by BEM and the Block SS Method
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Abstract: By its very basis, the block Sakurai-Sugiura (SS) method may be ap-
plied to solving nonlinear eigenvalue problem formulated by boundary integral
equation. In this paper, the methodology of BEM combined with the block SS
method is applied to the computation of band structures of phononic structures for
acoustic problems. Since the conventional boundary integral equation yields the
real fictitious eigenfrequencies when it is applied to an exterior problem of scatters,
Burton-Miller’s method is employed to remove the real fictitious eigenfrequen-
cies resulted by the boundary of the scatterers. The application of the method is
demonstrated through analyses of band structures of homogenous and composite
structures.
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1 Introduction

The composite structures so-called phononic crystals, which show band structures
for acoustic/elastic waves, are considered as elastic analogous extensions of pho-
tonic crystals. The existence of bandgaps in phononic crystals is also observed
by both theoretical studies [Kushwaha, Halevi, Dobrzynski, and Djafari-Rouhani
(1993); Sigalas and Economou (1993)] and experimental investigations [Parmley,
Zobrist, Clough, Perez-Miller, Makela, and Yu (1995); Martínez-Sala, Sancho,
Sánchez, Gómez, and Llinares (1995)]. It is shown that the propagation of elas-
tic waves with particular frequencies within bandgaps is forbidden by the phononic
crystals. This property enables phononic crystals to provide a sound and vibration
isolated environment as a result of the created bandgaps. Furthermore, phononic
crystals can also be used as wave filters or waveguides with a moderate number of
dot defects or linear defects distributed in a certain way [Sigalas (1998); Khelif,
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Djafari-Rouhani, Vasseur, and Deymier (2003); Khelif, Choujaa, Djafari-Rouhani,
Wilm, Ballandras, and Laude (2003)].

Several numerical methods have already been developed for computation of
band structures of phononic crystals, for example, plane wave expansion (PWE)
method [Kushwaha, Halevi, Dobrzynski, and Djafari-Rouhani (1993); Sigalas
and Economou (1993); Goffaux and Vigneron (2001)], multiple-scattering theory
(MST) method [Kafesaki and Economou (1999); Psarobas, Stefanou, and Modi-
nos (2000); Liu, Chan, and Sheng (2002)], finite difference time domain (FDTD)
method [Tanaka, Tomoyasu, and Tamura (2000); Vasseur, Deymier, Khelif, Lam-
bin, Djafari-Rouhani, Akjouj, Dobrzynski, Fettouhi, and Zemmouri (2002); Wang,
Wen, Han, and Zhao (2003)], wavelet method [Yan and Wang (2006)] and finite
element method (FEM).

The research interest in the analysis of phononic crystals is the bandgaps searching.
Similar to photonic crystals, numerical analyses of bandgaps for phononic crystals
usually result in eigenvalue problems. The boundary element method (BEM) is one
of the widely used numerical computation tools for wave problems, requiring the
discretization of the boundary only. For scattering problems, it satisfies the radia-
tion conditions by giving appropriate Green’s function. There are two methodolo-
gies of analysis for periodic composite structures: one is to give the Bloch condi-
tions on a unit cell and use the conventional Green’s function [Li, Wang, and Zhang
(2012)], and the other is to apply the Bloch conditions directly to the wave equa-
tion [Knipp and Reinecke (1998); Barnett and Greengard (2010)]. However, both
methodologies result in nonlinear eigenvalue problems when they are applied to
obtaining dispersion curves of phononic crystals. The transcendental eigen equa-
tion makes it difficult to solve the eigenvalues by standard eigensolvers directly.
For photonic crystals, there is a work in which the nonlinear eigenvalue problem is
converted to a generalized one by transforming the system matrix with the former
methodology [Li, Wang, and Zhang (2012)].

The Sakurai-Sugiura (SS) Method [Sakurai and Sugiura (2003); Asakura, Sakurai,
Tadano, Ikegami, and Kimura (2003); Ikegami, Sakurai, and Nagashima (2010)],
is a numerical technique for solution of eigenvalue problems. It has been applied
to generalized and nonlinear eigenvalue problems. It is claimed that the SS method
has the capability of reducing the eigenspace of the original nonlinear eigenvalue
problems and extracting the desired eigenvalues located within a certain domain of
complex plane. The SS method has been applied to calculations of core-excited
states of formaldehyde [Tsuchimochi, Kobayashi, Nakata, Imamura, and Nakai
(2008)] and resonance of 2D acoustic cavity combined with BEM [Gao, Mat-
sumoto, Takahaishi, and Yamada (2011)], and its capability of parallel calculation
[Sakurai, Kodaki, Tadano, Takahashi, Sato, and Nagashima (2008)] may make the
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equations formulated by BEM easy to be solved on different processors indepen-
dently.

The present work offers a methodology of band structrure calculation for two-
dimensional phononic crystals. BEM combined with the block SS method is em-
ployed to compute dispersion curves. The constant elements are adopted for sim-
plicity of numerical treatment. We have to mention that the scattering problem
analyzed by BEM yields fictitious frequencies, which can be removed by Burton-
Miller’s method [Burton and Miller (1971)]. The application of the technique is
demonstrated through bandgap analyses of homogenous and composite structures.
The results show the effectiveness of the proposed method.

2 Formulation

2.1 Governing equation

The propagation of time-harmonic acoustic waves in a homogeneous and isotropic
medium is governed by Helmholtz’s equation:

∇
2 p(x)+ k2 p(x) = 0 in D, (1)

where p(x) is the sound pressure at a point x in the domain D, ∇2 is Laplace’s
operator, k = ω

c is the wave number, ω is the circular frequency, c is the wave
speed.

The boundary condition on the boundary S is given as

p(x) = p̄(x) on Sp, (2)

q(x) =
∂ p
∂n

(x) = iρω v̄(x) on Sq, (3)

p(x) = zv(x) on Sz, (4)

where n(x) is outward normal to the boundary S at point x, i is the imaginary unit,
ρ is the density of the medium, v is the particle velocity in the outward normal
direction, and z is the acoustic impedance.

Since no energy is radiated from the infinity to the field, the sound pressure p must
satisfy the Sommerfeld radiation condition:

lim
|x|→+∞

|x|
τ−1

2

(
∂ p(x)
∂ |x|

− ikp(x)
)
= 0, (5)

where τ=2 for 2D case.
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2.2 Boundary integral equations

The integral representation for Eq. (1) is written as

p(x)+
∫

S
q∗(x,y)p(y)dS(y)−

∫
S

p∗(x,y)q(y)dS(y) = 0, x in D, (6)

where p∗ is the fundamental solution of Helmholtz’s equation in 2D, given as

p∗(x,y) =
i
4

H(1)
0 (kr), (7)

q∗(x,y) =
∂ p∗(x,y)

∂n(y)
=−ki

4
H(1)

1 (kr)
∂ r

∂n(y)
, (8)

where r = |x−y|, x and y are two different points, n(y) is the normal direction on
the boundary at the point y, H(1)

0 and H(1)
1 are the Hankel functions of the first kind

of zero and first order, respectively.

The normal derivative of Eq. (6) at the point x is written as

q(x)+
∫

S
q̂∗(x,y)p(y)dS(y)−

∫
S

p̂∗(x,y)q(y)dS(y) = 0 in D, (9)

where p̂∗(x,y) and q̂∗(x,y) are the normal derivatives of p∗(x,y) and q∗(x,y) at
point x, respectively, as follows:

p̂∗(x,y) =
∂ p∗(x,y)

∂n(x)
=−ki

4
H(1)

1 (kr)
∂ r

∂n(x)
, (10)

q̂∗(x,y) =
∂q∗(x,y)

∂n(x)

= −k2i
8
[H(1)

0 (kr)−H(1)
2 (kr)]

∂ r
∂n(x)

∂ r
∂n(y)

−ki
4

H(1)
1 (kr)

∂ 2r
∂n(x)∂n(y)

. (11)

Let x approach the boundary S, then the conventional boundary integral equation
(CBIE) can be obtained from Eq. (6), as

C(x)p(x)+−
∫

S
q∗(x,y)p(y)dS(y)−

∫
S

p∗(x,y)q(y)dS(y) = 0. (12)

where −
∫

denotes that the integral is evaluated in the sense of Cauchy-principal value
(CPV), C(x) depends on the geometry of boundary S at point x, and for smooth
boundary C(x) = 1/2.
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Similarly, from Eq. (9), the normal derivative boundary integral equation (NDBIE)
is obtained as

C(x)q(x)+=
∫

S
q̂∗(x,y)p(y)dS(y)−−

∫
S

p̂∗(x,y)q(y)dS(y) = 0, (13)

where =
∫

denotes that the integral is evaluated in the sense of finite-part of divergent
integral [Zheng, Chen, Matsumoto, and Takahashi (2011)]. We can also eliminate
the hyper-singularity in Eq. (13) using regularization method [Qian, Han, Ufimtsev,
and Atluri (2004); Qian, Han, and Atluri (2004)].

Combining the CBIE and NDBIE, we can write the integral equation for Burton-
Millier’s method as follows,

1
2

p(x)+−
∫

S
q∗(x,y)p(y)dS(y)−

∫
S

p∗(x,y)q(y)dS(y)

+
1
2

αq(x)+α=
∫

S
q̂∗(x,y)p(y)dS(y)−α−

∫
S

p̂∗(x,y)q(y)dS(y) = 0, (14)

where α is the coefficient of Burton-Miller’s method. In this study, α is chosen as
i/2k.

Discretizing Eq. (14) with n constant elements, the discretized form of the boundary
integral equation is obtained, as follows:

1
2

pi(x)+
1
2

αqi(x)+
n

∑
j=1

∫
S j

[q∗(x,y)+α q̂∗(x,y)]dS(y)p j(y)

−
n

∑
i=1

∫
S j

[p∗(x,y)+α p̂∗(x,y)]dS(y)q j(y) = 0, (15)

where S j denotes the j-th element, p j, q j are the sound pressure and its normal
derivative on the S j element respectively. Let the integrals in Eq. (15) be denoted
as

B̂i j =
∫

S j

[q∗(x,y)+α q̂∗(x,y)]dS(y), (16)

Ĝi j =
∫

S j

[p∗(x,y)+α p̂∗(x,y)]dS(y). (17)

Furthermore, let us write

Bi j =

{
B̂i j i 6= j
B̂i j + 1

2 i = j
, (18)
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and

Gi j =

{
Ĝi j i 6= j
Ĝi j + 1

2 i = j
. (19)

By using the representations in Eqs. (18) and (19), Eq. (15) is written as
n

∑
j=1

Bi j p j =
n

∑
j=1

Gi jq j. (20)

Assuming the fundamental solution is applied at each center of the constant ele-
ment, a system of algebraic equations is obtain in the matrix form:

B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · Bnn




p1

p2

...
pn

=


G11 G12 · · · G1n

G21 G22 · · · G2n

...
...

. . .
...

Gn1 Gn2 · · · Gnn




q1

q2

...
qn

 , (21)

or

Bp = Gq, (22)

where B and G are n× n matrices, p and q are vectors that contain the sound
pressure and its normal derivative of the boundary element, respectively. Moreover,
in this work, both vectors are unknowns but have certain periodic relations given
by extra equations, which are discussed in the following section.

2.3 Periodic boundary conditions and the eigenvalue problem

Let us consider a 2D phononic structure as shown in Fig. 1. The cylindrical scatter-
ers, infinitely long in z direction, are periodically collocated in the matrix medium
that is assumed to be air in this study. With the radius of the cylinders R, and the
lattice constant a, the filling fraction can be obtained as follows,

f = πR2/a2. (23)

To calculate the band structure, we need to analyze only a unit cell shown in Fig.
2(a), and apply the periodic boundary condition on the boundary of the unit cell.
The reciprocal lattice and the first Brillouin zone are shown in Fig. 2(b). k=(kx,ky)
is the Bloch wavevector in x-y plane.

The periodic structure requires that the sound pressure p(x) must satisfy the fol-
lowing relationship according to the Bloch theorem:

p(x+ l) = eik·l p(x), (24)
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(a) Phononic structure with cylindrical scatterers. (b) 2D square lattice (dashed line).

Figure 1: 2D Phononic crystal.

where l = n1ax + n2ay is the translation vector, ax, ay are the lattice base vectors.
The periodic boundary condition is applied on the boundary elements of the unit
cell, which restricts the infinite problem to a bounded one. Because of the symme-
try of the Brillouin zone, we let the wave vector vary only along the boundary of
the first Brillouin zone: M→ Γ→ X→M. Then, all the waves propagating in the
composite structure are obtained.

R

a

(a) Unit cell of square lattice. (b) First Brillouin zone and the irre-
ducible Brillouin zone (shade).

Figure 2: Unit cell and Brillouin zone.

In order to introduce the periodic boundary condition, we separate the elements
into three groups: (i) the dependent elements; (ii) the independent elements; (iii)
the internal elements, which are illustrated in Fig. 3. The dependent elements
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Figure 3: The meshed model of the unit cell. The open circular symbols denote the
independent element; the solid circular symbols denote the dependent element; the
cross symbols denote the internal elements

are represented by open circular symbols, the independent elements are by solid
circular ones, and internal elements are by cross symbols.

We define the quantities corresponding to the three element groups represented by
the following expressions:

pD,qD: Nodal sound pressure and normal derivative at dependent elements.

pI,qI: Nodal sound pressure and normal derivative at independent elements.

pC,qC: Nodal sound pressure and normal derivative at internal elements.

With the above definitions, Eq. (22) can be written as

(
BD BI BC

) pD

pI

pC

=
(

GD GI GC
) qD

qI

qC

 . (25)

According to Eq. (24), pI and pD satisfy the relation:

PD = ei[ka]xyPI, (26)

for the normal derivatives q, it has the opposite normal direction, so we have

qD =−ei[ka]xyqI, (27)

where [ka]xy = kxax when the relation between PD and PI is along the x direction,
[ka]xy = kyay when the relation is along the y direction.
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Substituting Eqs. (26) and (27) into Eq. (25), we obtain a system of equations rep-
resented only by the quantities of the independent and internal elements. Eq. (25)
can be rewritten as follows:

(
BDei[ka]xy BI BC

) pI

pI

pC

=
(
−GDei[ka]xy GI GC

) qI

qI

qC

 . (28)

Then, combining the coefficients column vectors corresponding to the same quan-
tities, we obtain the following system of equations:(

BDei[ka]xy +BI BC
)( pI

pC

)
=
(
−GDei[ka]xy +GI GC

)( qI

qC

)
. (29)

We finally obtain the following equations by moving the unknowns to the left-hand
side,

(
BDei[ka]xy +BI GDei[ka]xy−GI AC

) pI

qI

xC

= 0, (30)

where xC denotes the unknowns on the internal elements, and AC denotes the coef-
ficient matrix of xC. The constant elements guarantee that the number of dependent
elements is equal to that of the independent elements, which results in a square
system matrix. The Eq. (30) can be written in the form of a nonlinear Bloch’s
eigenvalue problem:

F(ω)(x) = 0, (31)

where F is a square matrix that contains ω implicitly and transcendentally. The
highly nonlinear property makes it difficult to solve it by direct search method. In
the next section, the block SS method is employed as a solver, which converts the
nonlinear eigenvalue problem to a size-reduced linear eigenvalue problem.

2.4 The nonlinear Bloch eigenvalue problem solved by the block SS method

In order to solve the nonlinear Bloch eigenvalue problem given by Eq. (31), we use
the block version of the SS method. The block SS method uses a set of arbitrary
vectors rather than one. This technique raises the ability of obtaining more eigen-
values. For instance, let l be the number of the initial vectors and 2K− 1 be the
maximun order of moment matrices, then K× l eigenvalues can be gained. This
means that the solving procedure does not require a high-order moment matrix for
calculating large number of eigenvalues. High order moment demands more inter-
polation points to keep accurate numerical results. However, every interpolation
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point involves one BEM calculation, hence, low-order moment matrices are desir-
able to reduce the total computation time.

For the nonlinear Bloch eigenvalue problem given by Eq. (31), the m-order moment
matrix is defined, as follows:

Mm =
1

2πi

∫
Γ

UHF(z)−1Vzmdz, (m = 0,1,2, · · · ,K), (32)

where Γ is a positive oriented Jordan curve in the complex plane of the wave num-
ber, V is formed by L nonzero arbitrary N dimensional column vectors, where N is
the number of elements. UH denotes the conjugate transpose of U and we choose
as U = V in this work.

The following generalized eigenvalue problem of two Hankel matrices, whose com-
ponents consist of the above moment matrices, extracts the eigenvalues of the orig-
inal nonlinear Bloch eigenvalue problem located within the contour integral path
Γ,

H<
Klw = kHKlw, (33)

where H<
Kl , HKl are written as, follows:

HKl =


M0 M1 · · · MK−1
M1 M2 · · · MK

...
...

. . .
...

MK−1 MK · · · M2K−2

 , (34)

H<
Kl =


M1 M2 · · · MK

M2 M3 · · · MK+1
...

...
. . .

...
MK MK+1 · · · M2K−1

 . (35)

Further more, we transform the generalized eigenvalue problem to a standard linear
eigenvalue problem. Since the number of eigenvalues is not known, the rank detec-
tion is carried out by using the singular value decomposition (SVD) as follows:

HKl = CΣEH . (36)

Let σ1,σ2, . . . ,σKl be the singular values of HKl , the singular values correspond-
ing to the eigenvalues actually existing in the integral path and the small singular
values are separated by a threshold. The threshold is used to determine the rank of
the Hankel matrices. Since the threshold values are not the same among different
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problems, it is necessary to find the location of the gap in the singular values sorted
in descendent order. We introduce another set of values δ1,δ2, . . . ,δKl−1:

δi−1 = ∆σi =
log10 (σi)− log10 (σi−1)

∆h
, (i = 2,3, ...,Kl), (37)

where ∆h = i− (i−1) = 1. The set of δi implies the variation of singular values. If
δi is larger than a threshold δ ∗, it is indicated that the (i+1)-th singular value can
be considered as a small singular value that should be removed. In this paper, we
chose as δ ∗ = 1. We note that Kl is rather small and the computation cost for SVD
is negligibale.

Assuming that i = m′, where m′ singular values are used for calculating the eigen-
values, an m′×m′ matrix is obtained, as follows:

Hm′y = λy. (38)

Let H = CHH<
KlE , H′ = H(1 : m′,1 : m′), and Hm′ = Σm′

− 1
2 H′Σ−

1
2

m′ , then the prob-
lem is converted to a linear eigenvalue problem of Hm′ , which can be solved by
standard eigen-solver library directly.

The contour integration path is a circle since circular path retains a high accuracy
for numerical calculation, and trapezoidal rule is employed to evaluate the contour
integral.

3 Numerical examples

We give two examples to demonstrate the validity of the proposed method. The first
one is a homogeneous problem: the cylinders are considered as rigid scatterers.
The second example is a composite structure in which the cylindrical scatterers
have a different material property, density, from that of the matrix medium. In the
description of the second example, domain 1 (denoted by subscript ‘1’) denotes the
matrix medium and domain 2 (denoted by subscript ‘2’) denotes the inclusions.

3.1 Homogeneous structure

We show in Fig. 4 the unit cell of the analysis model including rigid cylinders in the
medium. The parameters of the homogeneous structure are shown in Tab. 1. The
unit cell with the periodic boundary condition results in a plane exterior problem
of a circular boundary.

We compute the eigenfrequencies of the structure with CBIE and Burton-Miller’s
method. The results are shown in Fig. 5 and Fig. 6, respectively. The integration
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1

1

Unit:m

Figure 4: The unit cell with a rigid scatterer (the rigid scatterer is shown in gray
and the matrix material is in white).
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Figure 5: Dispersion curves obtained for the homogenous model by CBIE
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Table 1: The parameters of homogenous structure

Domain Density [kg/m3] Wave speed [m/s] Filling fraction
1 ρ1 = 1.22 C1 = 337.20 f = 0.55

path is a circle in the complex plane, centered at γ = (2550,0) and its radius is
ρ = 2000, the range of eigenvalues to calculate is [550,4550].

The dispersion curve in Fig. 5 indicates that some fictitious circular eigenfrequen-
cies are also obtained, compared with previous research [Kushwaha (1997)]. When
the wave vector k is varing, the fictitious eigenvalues are constants, observed as hor-
izontal lines in Fig. 5. These real fictitious circular eigenfrequencies correspond to
the boundary of the rigid cylinder with Neumann boundary condition. This means
the eigenvalue problem for interior closed boundary is also computed by the block
SS method.

These real fictitious circular frequencies satisfy

J j

(
ωR
c

)
= 0, ( j = 0,1,2, · · ·), (39)

where J j is the Bessel function of the j-th order. The fictitious eigenfrequencies
are related to the zeros of the Bessel function. These real fictitious eigenvalues
are produced by the interior of the circular closed boundary, and they are called
Neumann eigenvalues [Colton and Kress (1983)].

Since complex eigenvalues are also included in the results, we pick out the real
ones by checking the values of the imaginary part. The imaginary part must satisfiy
the following condition:

Im(ω)

ρ
< β , (40)

where β is a very small positive threshold. In the present work, it is taken as
β = 0.0085.

However, those real fictitious circular frequencies cannot be distinguished in this
way because they do not result from numerical error, but from a mathematical rea-
son. Burton-Miller’s method [Burton and Miller (1971)] can add a relatively large
imaginary part to the real fictitious circular frequencies. Hence, we can exclude
these fictitious frequencies from the results.

We find that from the comparisons of the results shown in Fig. 5 and Fig. 6 the hor-
izontal lines formed by real fictitious circular frequencies are removed by applying
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Figure 6: Dispersion curves obtained for the homogenous model by Burton-
Miller’s method. The shaded range implies the bandgap.

Burton-Miller’s method. Actually, the real fictitious ones are moved to one side of
the real axis, then eliminated by considering their large imaginary parts.

The dispersion curves illustrated in Fig. 6 show excellent agreement with the results
given by the literature [Kushwaha (1997)].

3.2 Composite structure

We show in Fig. 7 a unit cell containing an inclusion in the medium. Tab. 2 contains
the material constants and parameters of the composite structure. The structure of
the previous example has a closed boundary, and Neumann boundary condition is
given on it, however, the boundary of domain 1 of this example is the interface
between domain 1 and domain 2.

Table 2: The parameters of composite structure

Domain Density [kg/m3] Wave speed [m/s] Filling fraction
1 ρ1 = 1.22 C1 = 337.20

f = 0.5
2 ρ2 = 0.09 C2 = 1241.50

The results presented in this section are aimed to illustrate that the fictitious circular
frequencies are also generated by the interior closed interface. It should be noted
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1

1

Unit:m

Figure 7: The nit cell with an inclusion (domain 2 is shown in gray and domain 1
is shown in white).

that the fictitious eigenfrequencies are decided by the material of domain 1 but not
by that of domain 2. The results in Fig. 8 are also showing fictitious eigenfrequen-
cies as those shown in Fig. 5. The boundary condition on the interior boundary
between domain 1 and domain 2 is different from Neumann boundary condition in
this example.

Because the filling fraction is different in this example, the real fictitious eigenfre-
quencies are different from those of the previous example, but, they also satisfy Eq.
(39). This means that they are also the eigenfrequencies corresponding to the circu-
lar domain with the Neumann boundary condition on its boundary. It may be found
in the results shown in Fig. 9 that the fictitious eigenfrequencies are also removed
using Burton-Miller’s method. For this phononic composite structure, we find two
bandgaps in the band structure in the same range as that of Fig. 6.

4 Conclusion

The present approach has been demonstrated to be effective through the numerical
examples for eigenfrequency analyses of periodic phononic structures. A method-
ology for calculations of band structures of acoustic phononic composite strucures
is presented. This is achieved by combining the BEM with the block SS method.
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Figure 8: Dispersion curves of the composite model obtained by CBIE
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Figure 9: Dispersion curves of the composite model obtained by applying Burton-
Miller’s method. The shaded ranges imply the bandgaps.
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The bandgaps have been observed correctly both in homogeneous and composite
phononic structures. When applying the CBIE, the fictitious real eigenfrequencies
have appeared in the dispersion curves as the eigenfrequencies of the inclusions
with the Neumann boundary condtions. To exclude the fictitious eigenfrequencies,
Burton-Miller’s method, which adds a number that has a large imaginary compo-
nent on the real fictitious ones, can be used.
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