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Multi-Objective Optimization of a Fluid Structure
Interaction Benchmarking

M. Razzaq', C. Tsotskas?, S. Turek', T. Kipouros?, M. Savill” and J. Hron?

Abstract: The integration and application of a new multi-objective tabu search
optimization algorithm for Fluid Structure Interaction (FSI) problems are presented.
The aim is to enhance the computational design process for real world applications
and to achieve higher performance of the whole system for the four considered ob-
jectives. The described system combines the optimizer with a well established FSI
solver which is based on the fully implicit, monolithic formuFlation of the prob-
lem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver
resolves the proposed fluid-structure interaction benchmark which describes the
self-induced elastic deformation of a beam attached to a cylinder in laminar chan-
nel flow. The optimized flow characteristics of the aforementioned geometrical
arrangement illustrate the performance of the system in two dimensions. Special
emphasis is given to the analysis of the simulation package, which is of high accu-
racy and is the core of application. The design process identifies the best combina-
tion of flow features for optimal system behavior and the most important objectives.
In addition, the presented methodology has the potential to run in parallel, which
will significantly speed-up the elapsed time.

Keywords: Finite Element Method (FEM), Fluid-Structure Interaction (FSI), Multi-
Ojective Tabu search (MOTS?2).

1 Multi-Objective Optimization in Fluid Structure Interaction

By definition, optimization seeks for the best possible performance of a model,
which is formulated in a mathematical way as the minimization of a function or
a set of functions at the same time. This denotes single- and multi-objective opti-
mization, respectively. The response of the design space to the objective space (set
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of problem variables and objectives, respectively) could be either linear or non-
linear, and continuous or discrete. Thus, exploring effectively the design space
and concentrating around the regions where there most optimal values reside is of
paramount importance and the whole optimization process was developed in order
to tackle this requirement.

Using native multi-objective optimization techniques is crucial for real world ap-
plications because of the multiplicity of principles involved. The vast majority of
real world applications depends on several variables of a given model. The han-
dling of participating variables appropriately is the key for successful optimization.
The optimization is applied on a model, which in turn approaches the real behav-
ior of various phenomena found in nature. Defining performance metric(s) is the
considered objective(s) and the goal of optimization is to discover the best combi-
nation of variables that yields the best performance. Since no global optimum exists
when many objectives are defined, focusing on the conflicting objectives is essen-
tial. The work presented in Jimenez-Octavio, Lopez-Garcia, Pilo, and Carnicero
(2008) highlights the importance of the multi-disciplinary design in electromechan-
ical design problems, where both variables and objectives illustrate various natu-
ral characteristics. Relating design parameters with objective functions enables
physics-based optimization Lian and Liou (2005). The intake of a real small-scale
turbojet engine was optimized by using a gradient-based progressive optimization
technique Amirante, Catalano, Dadone, and Daloiso (2007). Although the authors
improved the engine performance considering a single-objective optimiser and ex-
perimentally validated the results, the importance of multi-objective optimization
was highlighted. In fact, they suggested to extend their extend their method to a
multi-point optimization case by employing the auto-adjusting weighted formula-
tion of Zhu, Liu, Wang, and Yu (2004). Tailoring the computational tools to the
nature of the specific design process, can be particularly beneficial so as to get the
outmost of the computational engineering design technology, as was demonstrated
in the multi-disciplinary design of aircraft configurations Morino, Bernardini, and
Mastroddi (2006).

Computational tools for multi-objective and multi-disciplinary optimization are of
paramount importance throughout the design process of real-world applications
Deb (2001), Alexandrov (2005). Recently, the increase of computational power
favors implementations, which employ these principles. This can considerably
reduce the duration of the design cycle and deliver high quality products. The
functionality of a new optimizer and its application on a real world problem are
presented in this document. The concept of engineering design optimization was
conceived and implemented by Cranfield University and TU Dortmund provided
the FSI simulation code. The optimization process is applied on FSI Turek and
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Hron (2006) and the results are analyzed from a multi-objective optimization point
of view.
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Figure 1: Overview of the Integrated Optimization Process

The integration of the FSI solver into an optimization procedure for FSI problems
has been reported in Schifer, Sternel, Becker, and Pironkov (2010) and fluid struc-
ture interaction in the context of shape optimization and computational wind en-
gineering is contributed in Hojjat, Stavropoulou, Gallinger, Israel, Wuchner, and
Bletzinger (2010) and bird impacts on aircraft in Souli and Gabrys (2012).

The approach presented here treats the problem as a pipeline - a single continuum
with the coupling implemented as internal interface, which does not require any
special treatment, as depicted in Fig. 1. For further details of the underlying nu-
merical aspects of the discretization and solution algorithms for this monolithic
approach, see Hron and Turek (2006); Razzaq (2011); Turek, Hron, Madlik, Raz-
zaq, Wobker, and Acker (2010). The presented optimization process follows the
methodology of Multi-Objective Tabu Search (MOTS) Jaeggi, Parks, Kipouros,
and Clarkson (2008), which stems from the original tabu search Glover and La-
guna (1999), and was demonstrated in Kipouros, Jaeggi, Dawes, Parks, Savill, and
Clarkson (2008b). Furthermore, a new variant of the former, namely MOTS2 Tsot-
skas (2012), has been developed and used in this study. It can be considered as
combined extension of numerical analysis tools and artificial intelligence optimiza-
tion methods and techniques. In addition, MOTS?2 includes the improvements dis-
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cussed in Kipouros, Jaeggi, Dawes, Parks, Savill, and Clarkson (2008a) and, given
any parallel framework, it can operate in parallel mode saving elapsed time.

The remaining of this paper is structured as follows. First the mathematical back-
ground for the core simulation model, the FSI package, is described, followed by
the numerical techniques. The computational approach for FSI is illustrated in sec-
tion 4. The next part presents and discusses two optimization cases; one single- and
one multi- objective.

2 Governing equations for FSI

The governing equations for fluid and structure are described in the following sub-
sections. We denote by Q{ and Q] the domains occupied by the fluid and the
structure, resp., at the time ¢ > 0. Let IV = Qf N Q¢ be the part of the boundary
where the elastic structure interacts with the fluid.

2.1 Fluid

The fluid is considered to be Newtonian, incompressible and its state is described
by the velocity and pressure fields v/, p/. The balance equations are

pfaa‘;f +p/ (Vv)v/ = dive/ ino/. 0
divv/ =0

The material constitutive equation is

of = —p1+ p/ v/ (vl +vv/ ). )

The constant density of the fluid is p/ and the viscosity is denoted by v/.

2.2 Structure

The structure is assumed to be elastic and compressible. Its deformation is de-
scribed by the displacement u’®, with velocity field v° = %. The balance equations
are

psaaj P (VW)Y =div(e®)  in<Y. 3)

The material is specified by the Cauchy stress tensor ¢* or by the 2nd Piola-
Kirchhoff stress tensor S* = JF~'6*F~7 via the St. Venant-Kirchhoff constitutive
law

o' = %F (A (rE)I 4 2u°E) FT, 4)
S* = A*(trE)I 4 2u°E, )
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where E = 1(F'F —1) is the Green-St. Venant strain tensor.

The density of the structure in the undeformed configuration is p°. The elasticity
of the material is characterized by the Poisson ratio v* (v < 0.5 for a compress-
ible structure) and by the Young modulus E*. The alternative characterization is
described by the Lamé coefficients A* and u* (the shear modulus):

As W (BAS +2u°)
R — ES - 6
YT (i) ©
s ES s VSES
# T 2(14+v9) A= (1+vs)(1—2v¥) ™

2.3 Complete set of equations for Fluid Structure Interaction

In the case of fluid-structure interaction problems the Lagrangian description for the
deformation of the structure part still can be used. The fluid flow now takes place
in a domain with boundary given by the deformation of the structure which can
change in time and is influenced back by the fluid flow. The mixed ALE description
of the fluid has to be used in this case. The fundamental quantity describing the
motion of the fluid is still the velocity vector but the description is accompanied by
a certain displacement field which describes the change of the fluid domain. This
displacement field has no connection to the fluid velocity field and the purpose
of its introduction is to provide a transformation of the current fluid domain and
corresponding governing equations to some fixed reference domain. This method
is sometimes called a pseudo-solid mapping method Sackinger, Schunk, and Rao
(1996).

The complete set of the non-dimensionalized system with the described choice of
material relations reads:

du v in Q°
-— = ’ 8
ot {Au in Q7 ®)
I Div (—JpFT in Q°,
v P ( pfl ) Jdu
i —(Gradv)F ! (v—4!) 9
+Div (—Jp/F T +JuGradvF'FT) inQ/,
J—1 in Q°
0=< . . (10)
Div(JVF~T) inQ/

where f§ = p—; is the density ratio. The boundary conditions on the fluid-structure
interface are assumed to be
6/n=oc’n

an

vi=v
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where n is a unit normal vector to the interface. This implies the no-slip condition
for the flow, and that the forces on the interface are in balance.

3 FEM Discretization

The discretization in space is done by the standard Galerkin finite element method.
Let I = [0,T] denote the time interval of interest. The equations (8)-(10) are mul-
tiplied by the test functions {,&,y such that { = 0 on I'?> (external boundary of
structure), & = 0 on I'! (external boundary of fluid), and integrated over the space
domain € and the time interval /. Using integration by parts on some of the terms
and the boundary conditions leads to

T au T T
/ / 8 cavdr = / / v-Cdvd— / / Gradu-Grad {dVdt, (12)
0o Jo dt 0o Jos o Jor

T ov r ov
/0 /QfJg-édth—k/O /@B]E-édwit

——/T/ JGradvF—l(v—@)-ngdz

o Jor ot
T

+ / / JpFT .GradEdVds (13)

0 JQ
T [ oW

T
— / / fJ/.LGradvF_lF_T-Gradédth,
0 JQ

T T
0= / / (J—1)ydvdr+ / / fDiv(JvF’T)dedt. (14)
0 s 0 JO

The treatment of the problem as one monolithic system suggests to use the same
finite elements on both the structure part and the fluid region. A pair of finite
element spaces known to be stable for problems with incompressibility constraint is
chosen. The compatibility condition between the velocity space and pressure space
is satisfied by the so called inf-sup or LBB condition named after Ladyzhenskaya,
Babuska and Brezzi Girault (1986),

divug
SuPuew,,f‘TquQ > ?’HC]HO,Q Vg € Oy, (15)

where 7 is a mesh-independent constant. W, := Uy, x V;, C C() and Q), C L%(Q).

The LBB-stable conforming biquadratic, discontinuous linear finite element pair
(O, P, is invoked, which is most accurate and robust finite element pairs for highly
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Figure 2: Location of the degrees of freedom for the Q> P, element

viscous incompressible flow (see Arnold, Boffi, and Falk (2002), Hron and Turek
(2006), Razzaq (2011) ). This choice results in 39 degrees of freedom per element
for 2D, see Fig. 2 for the location of the degrees of freedom.

Then, the variational formulation of the fluid-structure interaction problem is to find
(ap, Vi, pr) € Uy X Vi, X Py such that the equations (12), (13) and (14) are satisfied
for all (&, &En, W) € Uy X Vi X By, including initial conditions.

The spaces Uy, Vi, P, on an interval [t",#""!] are defined in the case of the Q» Py pair
as follows

U, = {llh € [C(Qh)]z,llh‘r € [QZ(T)]Z VT € %,uh =0on 8Qh},

Vi = {vi € [C(Q))?, valr € [02(T)]* YT € Ty, v, =0 0n Q)

Py ={pn € L*(Q),pulr € P(T) VT € F}.

After discretization in space by the finite element method (i.e. Q>P;), derive the

system of nonlinear algebraic equations arising from the governing equations in
each time step

Suu Suv 0 uy rhsu
Svu Sw kB vy | = | rhsv |, (16)
cuBY chg 0 Dh rhsp

where S describes the reactive, diffusive and convective terms from the governing
equations, B is the discrete gradient operator and BT is the discrete divergence
operator.
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4 Solver

The above system of nonlinear saddle point type of the algebraic equations in (16)
is solved using the Newton method as basic iteration which can exhibit quadratic
convergence. The basic idea of the Newton iteration is to find a root

R(X) =0, 17
using the available known function value and its first derivative. One step of the
Newton iteration with damping results in iterations of the form

IR(X™

-1
Xn-H =X"+ " |: - ):| R(Xn) (18)

where X = (uy, vy, pr). The Jacobian matrix 813())((") can be computed by finite

differences from the residual vector R(X)

[3R(X“)] . [Ri(X" +oe)) — [RJ;(X" — aje;) 7 (19)

0X 2(1]'

where e; are the unit basis vectors in R" and the coefficients o; > 0 are increments
at each iteration step n of the iteration (18), which can be taken adaptively according
to the change in the solution in the previous time step or can be fixed. We set this
parameter to be fixed, i.e.,

o = —b*EM

where b, parameter to be assigned at start and &, = v/DBL_Machine, see Turek,
Hron, Razzaq, Wobker, and Schifer (2010); Kelley (1999).

The damping parameter ®" € (—1,0) is chosen such that
R(XnJrl) . Xn+l < R(Xn) X"

The damping greatly improves the robustness of the Newton iteration in the case
when the current approximation X" is not close enough to the final solution, see
Turek (1999); Turek, Hron, Razzaq, Wobker, and Schéfer (2010) for more details.

In this considered 2D problem a direct solver for sparse systems like UMFPACK
Davis and Duff (1999) is used. This choice provides very robust linear solvers
however its memory and CPU time requirements are too high for larger systems
(i.e. more than 20,000 unknowns). In that case the standard geometric multigrid
approach is utilized, for details see Razzaq, Damanik, Hron, Ouazzi, and Turek
(2011); Hron and Turek (2006). As the sparsity pattern of the Jacobian matrix is
known in advance, which is given by the used finite element method, this computa-
tion can be done in an efficient way so that the linear solver remains the dominant
part in terms of the CPU time (see Turek (1999) for more details).
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5 FSI Optimization Benchmarking

This FSI optimization benchmark is based on the 2D steady FSI problem from the
benchmark configuration of Turek and Hron Turek and Hron (2006) with additional
altered boundary control flows as shown in Fig. 4.

5.1 Defining the objective functions

The quantities of interest are with respect to the position of the point A ( Fig. 4):

1. The displacements u,(t) and u,(t) in x- and y-direction of the point A at the
end of the beam structure (see Fig. 4).

2. Forces exerted by the fluid on the whole submerged body, i.e. lift and drag
forces acting on the cylinder and the beam structure together

(FD,FL)T:/andS: o/nds+ [ o'nds,
N Si 8>

where S = S1US, (see Fig. 3) denotes the part of the circle being in contact
with the fluid and n is the outer unit normal vector to the integration path
with respect to the fluid domain.

S 52
\_/ '

Figure 3: Inte:gration path § = §; US, for the force calculation

Finally, numerical results for this problem involving optimization for a steady fluid-
structure interaction are given here to illustrate the capability of the approach con-
sidered.

5.2 Formulating the Optimization Problem

The idea is to integrate the FSI solver into an optimization procedure for FSI prob-
lems. Furthermore, these FSI configurations can be extended towards optimal con-
trol of body forces acting on and deformations of the elastic object in which case
additional outer in flow/out flow regions control the optimal result.

Two scenarios are presented below: one single and one multi-objective optimiza-
tion. As single-objective optimizer a derivative-free optimization method for this
unconstrained minimization problem is chosen, which is the SIMPLEX algorithm
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developed by Nelder and Mead Lagarias, Reeds, Wright, and Wright (1998); Nelder
and Mead (1965). The method is wide spread due to the fact that it makes no as-
sumptions about the objective function except that it is continuous and it is quite
numerically robust Becker, Siegmann, Michaelis, and Schéfer (2009); Mathews and
Fink (2004). Furthermore, MOTS2 will perform the multi-objective optimization
and its functionality is described in 5.3.

Definition The problem domain, which is based on the 2D version of the well-
known FSI benchmark in Turek and Hron (2006), is illustrated in Fig. 4. The
thickness of the beam is increased from 0.02m to 0.04m.

An objective function is the minimization of lift/drag forces on the deformable
structures through boundary flow control. Mathematically this optimization prob-
lem can be written as

migir‘r/lize (lift(Vl , V2)2 + OCVé) (20)
1,2

where o is the normalization parameter. The control velocity profile from the re-
gion a; and the region a, is prescribed in the following

Vi(x—0.45)(x—0.60),  a
fx0)=Veo—d !
ve(x,0) =Ve = {Vg(x— 0.45)(x — 0.60), a. e

Similarly, the multi-objective optimization problem is formulated as

mil‘}il‘l}ize lift(Vi,Va),drag(Vi,V2),uc(Vi,V2),uy(V1,V2) (22)
1,V2

where V] is the magnitude of the parabolic velocity from/to the region a; and the
region V, velocity from/to a,. Also, uy,u, denote the horizontal and vertical dis-
placement of point A respectively. The region a; and the region a, are specified
between the points (0.45,0) (0.60,0) and the points (0.45,0.41) (0.60,0.41), re-
spectively (see Fig. 4). A parabolic velocity profile is prescribed at the left channel
inflow

_y(H—y _ 4.0
v (0,y) = 1sgXH =) _ 1.50 e

H\2

(%)
where U = 0.2m/s denotes the mean inflow velocity in x-direction and H denotes
the channel height. The outflow condition is chosen as stress free. The outflow

condition effectively prescribes some reference value for the pressure variable p.
In this paper, the reference pressure at the outflow is set to have zero mean value.

0.41—y), (23)
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Figure 4: Geometry and computational domain of the configuration and details of

the structure part

The no-slip condition is prescribed for the fluid on the other boundary parts, i.e. top
and bottom wall, circle and fluid-structure interface.

The prototypical parameters for the fluid (glycerine) and rubber-like materials (poly
propylene) are: The density and kinematic viscosity of the fluid are p/ = 1000kg /m?,
v/ = 1073m? /s, respectively. Thus the Reynolds number is Re = 20 based on the
cylinder diameter. The density of the structure is p* = 1000kg /m?, the Young mod-
ulus is E = 178000kg /ms* and the Poisson ratio is u® = 0.4.

The domain has length L = 2.5m and height H = 0.41m, the circle center is po-
sitioned at C = (0.2,0.2) (measured from the left bottom corner of the channel)
and the radius is r = 0.05m, the elastic structure beam has length / = 0.35m and
height 2 = 0.02m, the right bottom corner is positioned at (0.6,0.19), and the left
end is fully attached to the fixed cylinder, the control point is A, attached to the
structure and moving in time with A(0) = (0.6,0.2). The setting is intentionally
non-symmetric (see Turek and Hron (2006)) to prevent the dependence of the onset
of any possible oscillation on the precision of the computation. The mesh used for
the computations is shown in the the Fig. 5.

5.2.1 SIMPLEX Results

The FSI-Opt computations are done on the same the mesh and its refinement lev-
els, as used for the FSI benchmark in Turek, Hron, Razzaq, Wobker, and Schifer
(2010). The reference value of lift coefficient in case of stationary FSI calculation
is 7.6e — 1 (see Turek, Hron, Madlik, Razzaq, Wobker, and Acker (2010); Turek,
Hron, Razzaq, Wobker, and Schifer (2010) for more details). When the flow is
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level #el #dof

0 62 | 1338
1 248 | 5032
2 992 | 19488

3 3968 | 76672
Figure 5: Coarse mesh with number of degrees of freedom for refined levels

introduced or injected with the constant velocity V, = 10m/s, from below the lift
on the beam obviously increases, see Fig. 6, which shows that it is the wrong di-
rection to inject flow. For the case of suction, the flow with same constant velocity
Vo, = 10m/s from below produces negative values of lift in increasing order, see
Fig. 7. If the flow is injected from top and extracted from bottom with the same
velocities V| = V, = 10m/s without considering the SIMPLEX method, then the
resulting lift coefficient on the beam seems to be quite smeared, irregular and hard
to predict or conclude what could be best coordinate/direction which can give min-
imum lift. The vector magnitude of the flow behavior is shown in Fig. 8.

From this it is clear that the V; =V, > 10m/s is not a good direction to select
coordinates of SIMPLEX. Hence it became clear that for the implementation of
SIMPLEX method the coordinates of the triangle should be between [0, 10]. For the
numerical simulation the coordinates (0,—3), (3,3) and (—3,3) for a two variable
Nelder-Mead algorithm are used. For this case, if the simplex method is in place lift
coefficient goes to almost zero, as shown in Fig. 9 and in result the beam became
almost static.

Optimal points are then the (Vi,V,) values which result in minimum lift on the
beam depending on the parameter . As o decreases the reduction of the lift on
the beam is visible and the optimal point (1.06e + 0, 1.08 + 1) is for mesh level 1,
(1.04¢+0,1.05¢+01) is for mesh level 2 and (1.04e+0,1.05¢+ 01) is for mesh
level 3. Results are shown in Fig. 10, for mesh levels 1, 2 and 3 in respective order,
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which show the optimal velocity values V| and V, providing the minimum lift on the
beam as compared with the FSI1 benchmark reference lift values which is 7.6e — 1.

In Fig. 10, it is easily seen that the beam is not displaced i.e. no lift on the beam
is observed due to the boundary control, and results are shown for three different
mesh refinement levels.The lift coefficient on the beam with changing o parameter
is given in the corresponding tables in the Fig. 10. Also, for higher mesh refinement
levels more iterations are required and the result (lift~ 0) is better compare to the
result for the level 1 and level 2.

5.3 MOTS2 description

Tabu Search belongs to the category of stochastic search optimizers and is based
in the original (Glover and Laguna (1999)) and the Multi-Objective (Jaeggi, Parks,
Kipouros, and Clarkson (2008)) version. The current implementation is based on
It searches throughout the design space in a stochastic way and it avoids recently
visited design points, so as to guarantee more exploitation of the unknown design
space. In fact, local search Hooke and Jeeves (1961) is combined with stochastic
elements. Three different hierarchical memories are used to assist critical decisions
during the optimization process. It also keeps track of certain statistics during
the process, which direct the search according to the discovered landscape of the
design space. In addition, the optimizer employs a mechanism for local and global
search. The statistics detect design points around the current search point, within
relatively short distance, whereas the search mechanisms attempt to discover good
design points in the entire design space. Consequently, the functionality of MOTS?2,
as depicted in Fig. 11, results in better performance throughout the optimization
process. The configuration settings are listed in Tab. 1.

The search is guided by the current base point and collective memory banks. Around
the base point, adjacent candidate design points are investigated and evaluated.
Then, the corresponding objective values are sorted according to domination crite-
ria of multi-objective optimization Geilen, Basten, Theelen, and Otten (2007) and
the following base point is resolved. The previous base point and all the recently
generated points are inserted into the appropriate memory banks. Aggregated in-
formation will be used in future steps, when certain conditions are triggered. This
procedure keeps repeating until stopping criteria are met. Depending on the nature
of the application these are usually the elapsed time, the number of evaluations, the
number of of consecutive failures to find a better point, number of iterations or a
combination of them. Herein, the core is the Update Memories, Hooke and Jeeves-,
Intensify- and Reduce-Move.

The following parts take place in every iteration as follows:
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Figure 9: SIMPLEX: Flow vector magnitude (Injection and suction) level 3
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Cells Vect Mag
I
—0.35
025
0.15
0.05

o

o levell, dof=5032

iter | optimal values(Vy,V5) lift
le+0 | 57| (3.74¢e—1,3.88¢—1) | 8.1904e—1
le—2 | 60| (1.04e+40,1.06e+0) | 2.2684¢ —2
le—4 | 73| (1.06e+0,1.08¢+1) | 2.3092¢ —4
le—6| 81| (1.06e+0,1.08¢+1) | 2.3096¢ — 6

a level2, dof=19488

iter | optimal values(V;,Vs) lift
le+0 | 59 | (3.66e—1,3.79¢—1) | 7.8497¢—1
le—2| 59| (1.02¢40,1.04e+0) | 2.1755¢ —2
le—4 | 71| (1.04¢+0,1.05¢+01) | 2.2147¢ —4
le—6 | 86 | (1.04¢+0,1.05¢+01) | 2.2151e—6

o level3, dof=76672

iter | optimal values(V},V») lift
le+0| 67| (3.66e—1,3.79 —1) | 7.87e—1
le—2 | 77| (1.02¢+0,1.06¢+0) 1.97e -2
le—4 | 100 | (1.04¢+0,1.06e+0) 2.03¢—4
le—6 | 100 | (1.04¢+40,1.06e+0) | 1.3372¢—6

Figure 10: No displacement is visible of the beam due to optimal boundary flow

control.
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Figure 11: MOTS2 flow diagram

Table 1: MOTS2 configuration

performing diversification move after # iterations 20
performing intensification move after # iterations 10
performing reduction move after # iterations 45
initial search step 0.1
search step retain factor 0.65
# of random samples 6
# of variables 2
# of objectives 4
max objective function evaluations 14000
# of regions in Long Term Memory 4
Short Term Memory size 20
maximum improvements 200
maximum duplicates 30
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* The Hooke and Jeeves Move is the most important as it occurs on every
iteration: Starting from the base point, a couple of valid and non-tabu points
are generated by combining the current base point and the current search
step. Some of the recently created points are evaluated (by sampling) and
added into the appropriate memory banks. These points are within the close
vicinity of the base point and this is the local search phase of the optimizer.

* Then comes the Pattern Move. This is just an enhancement of the Hooke and
Jeeves Move where the next base point will be quickly resolved. Whenever
Hooke and Jeeves Move takes place for second time, the following base point
is generated by combining information from the last two base points.

* Update Memories: At the end of every iteration the newly resolved base
point is inserted into the base memory bank, history bank and pareto front
bank (should it fulfil their corresponding conditions).

The aforementioned moves are performed several times until certain conditions are
met, which will trigger one of the following moves. During the execution of the
algorithm, the memory banks are enriched with information which will be exploited
later on. Hence, a zero-knowledge search starts and the optimizer learns through
information about the intrinsic features of the design space from the banks iteration-
by-iteration. According to the principles of artificial intelligence, this is the best
method of a heuristic search Russell (2010).

The following moves are carried out when specific numbers of iterations occur:

* Intensify Move: By definition, contrary to single-objective optimization, dur-
ing multi-objective optimization several points form the trade-off. However,
during every iteration, only one of them might be the base point. Therefore,
the rest of the points that dominate the current trade-off, but have not been
selected as base points, are stored into the intensification memory. When-
ever the search cannot discover any new nor non-tabu point, another point
from the back-up bank is selected randomly as the next base point. Hence,
the search returns back to the most promising points discovered so far and
picks-up the search thereafter. This is the most frequent performed move.

* Diversify Move: Instead of finding a better point, within a short range, a new
non-tabu point is randomly generated from least explored region of the de-
sign space. This is the global search phase of the optimizer and its frequency
depends on the problem.

* Restart Move: Whenever the search fails to discover a new good point with
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the current search step, a new base point is randomly resolved and the search
step is refined.

Regarding the FSI optimization, the combination of the range of V| and V; defines
the design, which belongs to the design space, R2. In an analogous way, the objec-
tives belong to a different space, namely objective space, R*. Every time a single
point of the design space maps to a point of the objective space. The aim of the
optimizer is to try different combinations of these two variables on the given sim-
ulation model and detect which areas express the best performance, defined by the
objectives. After successfully iterating through the optimization phase, the best
discovered trade-off is presented to the designer to choose the final design. This is
known as the decision phase. The time required in order to establish the variables-
to-objectives mapping is the evaluation time of the given variables via the sim-
ulation. This is the most critical part of the optimization process, as it affects the
overall execution time of the whole optimization. In fact, the overall execution time
can be expressed as the summation of multiples of the execution time required for a
single evaluation and the overhead of the optimizer, which is practically negligible.
In this case, each design evaluation can take up to 1 minute.

5.4 MOTS2 Results

Earlier studies, see 5.2.1, attempted to optimize the case described in Fig. 5.2 by
using one composite objective function - a weighted sum of two objectives - by
employing a genuine single-objective optimizer. Contrary, MOTS2 deals directly
with native multi-objective optimization problems. By including more objectives
the dimensionality (and hence the complexity) increases considerably, which ne-
cessitates the use of a totally new algorithm. MOTS2 has been verified and val-
idated Tsotskas (2012) and can handle both constrained and unconstrained cases.
By introducing more objective functions, the complexity of the system increases.
Therefore, a larger variable range will be required in order to explore the design
space sufficiently and not to induce any bias.

The main aim is to minimize the motion features of the beam by controlling the
top and bottom flow. In particular, this means to minimize lift, drag, horizontal and
vertical displacements of the point A at the tail of the beam, at the same time. The
application involves 2 control variables that correspond to 4 objectives. Various
combinations of these two variables are evaluated through the FSI simulation, as
explained above. Internally, the optimizer ranks these objectives for domination,
generates new designs and the results are presented below. The set of the 2 vari-
ables and 4 respective objectives is called a tuple. The objectives, in the order of
appearance in the following figures are drag, lift, horizontal displacement (i) and
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vertical displacement (u,) of the beam. The target is to minimize all of the afore-
mentioned objectives, as this brings stability to the system. Both of the variables
range between —50 and 50 of R. The optimization process generated and evaluated
14000 different design combinations. Among them, 3600 were feasible. Moreover,
1200 tuples dominate the objective space, with respect to the aforementioned ob-
jectives. This is indicative of the complexity of the system where the number of the
objectives is larger than the number of variables.

The optimum discovered tuples are depicted in Fig. 12 and Fig. 13. These are
the scatter plots and the parallel coordinates projections, respectively. The former
informs the user of the pairwise relations between each of the components of the
optimization process. The latter is an alternative way to represent multivariate data
in 2D. In fact, it is a transformation of an N-dimensional space into an assembly
of N mutually and individually scaled parallel axes. Any point of the original N-
dimensional space is represented by a set of lines connecting parallel axes and
intersecting them in the values of original coordinates. In this projection each line
that connects one point from each axis represents one tuple. The top of each axis
corresponds to the maximum value. Likewise the minimum value is at the bottom.
Both figures are particularly useful in order to identify relations and interactions
between the variables and objectives. The most interesting types or relations are the
correlations between objectives, and how variables’ variation affects one or more
objectives. Moreover, the results form 3 different clusters, which will be explained
below.

A scatter plot matrix is a compact way to represent all of the participating compo-
nents in a pairwise way of a NxN matrix. The user is informed about each com-
ponent individually and how each component interacts with the remaining ones.
It is important to notice that the matrix is symmetric. The matrix could be split
into 4 sub-matrices; a 2x2 on the top-left, a 2x4 top-right, a 4x2 bottom-left and
a 4x4 bottom-right. These represent the relations between variables vs variables,
variables vs objectives, objectives vs variables and objectives vs objectives, respec-
tively. The elements in the main diagonal represent the histogram of each variable
and objective. This information will be combined with the search for patterns in the
parallel coordinates plane. The two pictures for the top-left part depict the optimum
samples of the design space. By combining the histograms, the user is informed
about which areas the optimiser focused on. The remaining of the first two columns
and first two rows depict the relationship between each variable and the respective
objectives. The big sub-matrix bottom-right shows the relationship between the
objectives.

Therefore, the optimizer focuses the search on the regions of negative V| and posi-
tive V,, near the origin. In addition, there is a clear relationship between V, and lift
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objective. Obviously, this trend extends for the rest of the objectives. Each vari-
able forms 2 distinct sets between drag, lift and u,, whereas an additional smaller
set is formed for u,. Moreover, near the most sampled area there are two parts,
which extent towards the origin. It seems obvious that drag and lift are correlated
linearly. In addition u, is also linearly correlated with the aforementioned objective
in a reciprocal way. In terms of multi-objective optimization, these objectives live
in harmony and one of the can sufficiently describe the case. This is also proven
in parallel coordinates, below. Both between the variables and the remaining of the
objectives, u, has 3 distinct regions. Finally, lift and u, conflict each other.

The rest of the analysis is based on the parallel coordinates projection with some
references to the scatter plot matrix. For ease of analysis, the Full Data-Set, pre-
sented in Fig. 13, breaks down into Fig. 16-Fig. 19 by combining positive and
negative values of V| and V5, and excluding the designs for u, = 1.5¢ — 5. For com-
pleteness a snapshot of the optimal designs that include the middle values of u, are
depicted in Fig. 20, where V, is almost zero and V| takes almost the same value.
Fixing V, and searching the design space for V; will be part of the future work.
Since three objectives are linearly correlated and the last one takes 3 distinct val-
ues, the scatter plot between each variable and only one objective is present in these
figures. First of all, for the variables axes (first two axes), it is obvious that certain
vertices gather more edges, which means that these points are more important and
the optimization process discovered the best objectives around them. It is also use-
ful to know that the design space was searched equally well between the range of
—50 and 50, without any bias. The search step started from 0.1 and was subject to
successive step reductions up to 4.97745e — 06 step size. Starting from a big step
the search narrows down to the most promising areas, which present the best perfor-
mance and where the search is refined. The remaining 4 axes represent the values
of the 4 separate objectives.As shown in Fig. 12, even searching throughout the
design space does not achieve objective values close to zero. Clearly, u, presents
discrete clusters of values, which means that certain performance lies within cer-
tain regions of the design space. This means that there are 3 different operating
modes and the number of edges on each level of the axis indicates the preferable
areas; for the middle value only a few designs exist which means that under specific
settings the behavior of the FSI model changes. Drag, lift and u, present a wide
range with a few thicker areas, which present areas of high robustness. Thus, it is
more interesting to analyse the interactions of the wider objectives as the trade-off
changes.

Regarding the bottom velocity (V,), three clusters are formed, based on u, axis,
depicted in Fig. 13. The two big clusters split very close to 0.0 and they do not
mix. By observing the patterns of the sign of V», it it is positive, then u, = 1.6e — 5
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(Fig. 16 and Fig. 19). Similarly, when V, is positive the lower cluster of u, is
activated (Fig. 17 and Fig. 18). In conjunction with Fig. 12, V; acts like a switch
for the system, irrespectively of the values of V;. Moreover, Fig. 14 depicts a clear
relationship between V, and drag objective, which extends of course with the other
linearly correlated objectives. By selecting a small region while both variables are
positive ( Fig. 15 ), it seems like lift values overlap/mix with the corresponding
lift of negative V). In fact the value of V| does not have a great impact, while V,
remains constant. Therefore, V; is the most important variable, whereas V| could be
considered as a performance offset for controlling the exact values of the objectives.

49676339 4364701 158339 0563103 0000 0000851

499394 -43.343501 152685 266138 0000014
V1 V2 drag Lt ux
A9E76E9 agB4a70T

152685 44

[ ™
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Figure 14: Demonstrating linear correlation

The first two objectives concern drag and lift, respectively. Unlike aerodynamic
cases, the objectives of lift and drag increase and decrease at the same time. This
means that the objectives live in harmony. This is confirmed, for example, in Fig. 12
for the plot at the position 4, 3. In other words, this is an indication that one of them
could be omitted to reduce the complexity of the optimization. Analyzing drag is
equivalent to lift. The only difference is the range (length in the picture) of lift and
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drag. This is from 15.269 to 15.834 and —2.662 to 0.543, respectively. One could
reduce the dimensionality by excluding one of these objectives. The areas where
the lines are thicker are areas of more robust designs; The variation of the designs
that map to the objective space presents stable behavior. Ideally the variation should
be zero, but any quantity close to zero is satisfactory. Since lift has larger range,
this leaves more options for further improvement and gives better control.

The third objective, u,, has 3 distinct values 1.4e —35, 1.5¢ —5 and 1.6e — 5. On one
hand these could be treated as 3 different operating modes/levels for the physical
application. However, their relative difference is extremely low. The population of
edges for the middle range is significantly low, compared to the other two ends. The
latter means that the designs which achieve those specific objectives should not be
selected at the (final) decision making phase. Hence, it seems that this objective is
less significant and makes the optimization search more complex, for no particular
information gain. In other words, the complexity of adding a third objective for the
amount of information the user could exploit does not pay off. Therefore it could
also be excluded.

The last axis represents u,. Obviously, the designs gather around the extrema of
the axes and form three distinct sets. The middle region contains values which
correspond to specific designs and can be disregarded, as discussed above. The
remaining two clusters reveal the conflicting nature of the problem. It can be shown
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that increasing lift results in decrease of u, and vice-versa. Again, certain areas
contain more edges (higher line concentration) which are related to the robustness
of the simulated system.

By observing the element 1,3 of Fig. 12, it seems interesting to investigate further
the prominent points that direct towards zero. The linking with parallel coordinates
plane is depicted in Fig. 21. For a certain range of drag values V| and V, take
almost the same values forming a subset of size 155, which corresponds to 18%
of the whole trade-off. However, some of the designs correspond to u, = 1.5¢ — 5.
This lead to the discovery of the most dense region of the design space, depicted
in Fig. 22, which was initially pointed out by Fig. 12 in the elements 1,1 and 2,2.
These design configurations will be investigated in future studies.

In the end, it seems that the considered case could only involve lift and u,. The drag
objective is redundant for the optimization process as it directly follows the same
trends as lift, whereas u, is reciprocal to lift. Possibly, these could be used for future
secondary-deductions. This would also reduce the complexity and speed-up the
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design cycle. Coming up with more conflicting objectives will be part of the future
work. At any case, adding an extra objective in any optimization problem, might
result in totally different results compared to fewer or more objectives. Finally, for
the decision making phase, a design from the isolated regions in Fig. 23, seems very
promising because they present nearly similar performance within a close distance.

5.5 Selecting the Robust Design

The Multi-Objective Design optimization aims to assist the user to select the best
design(s) for the decision making phase. Following the principles of robustness
analysis, the performance of the best designs should lie within a close region. This
means that most of the designs should not deviate significantly from the target val-
ues. Furthermore, the performance should be as robust as possible. So, in this study,
the selected designs present no more than 5% variability for the defined objectives.
As identified earlier, only one objective is sufficient for assessing the performance.
Moreover, one of them (u,) has 3 distinct values, which expand in 3 wider sets of
the lift and u, axes. By examining the population of the PF of u, with respect to
lift and u,, the ratio of the range of the values of the objectives over the number
of individuals within that range indicates that it is highly probable to find several
designs within the target performance for u,=1.6¢ — 5. This holds both for lift and
uy and was also confirmed computationally. So, the search should focus on the
intervals of the objective space where the behavior is robust with respect to lift and
uy. This is the cluster which includes lower part of u, and is presented in Fig. 23b.

Since the target area of performance has been identified, the corresponding set
of designs should be resolved. Following the same procedure, designs whose per-
formance is nearly stable should be selected. Isolating 5% of the range of u,, the
highest concentration of designs was found between —0.83 and —0.34. Within that
range V; forms two small clusters [—24.0, —24.5],[—33.0, —33.3] and V5 spans over
[0.15,0.82]. Likewise, lift’s 5% most populated region is [—0.31, —0.14], where V,
spans over [—24.5,—24.0],[—33.27,—33.0]. By classifying the designs, the re-
gion where V, belongs to [0.16,0.85] includes 29% of the designs, as depicted in
Fig. 23b. This confirms that V; is the most important variable. However, there is
a second area of robust designs where the corresponding performance is slightly
different, as depicted in the lower part of Fig. 23. This cluster emerged by investi-
gating the 3rd picture of Fig. 12. More specifically, the search focused on the part of
the right cluster that extends towards the origin, which contains more than 10% of
the population of designs. These are proposed as robust designs and a compromise
for the application.

It is important to mention the inherent feature of line-to-point projection between
N-dimensional planes and parallel coordinates, which is presented in Fig. 24. The
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correlation of bottom robust designs against the objectives is a linear curve. How-
ever, this is not true for the top robust designs, which follow a parabolic trend.
In fact, the generated scatter plots between the most significant variable and the
objectives demonstrate that V;, behaves as a switch.

Ultimately, the comparison between the results of multi- and single-objective op-
timization is presented in Fig. 25. One design from the top robust designs, which
corresponds to (—33.1711,0.743855) design point, represents the performance of
MOTS2 against the optimum design described in 5.2.1. Level 2 comparisons seem
nearly identical. The only difference is at the front side of Sj, where the region of
the highest vector magnitude is larger and the produced wake expands along the
beam. However, by employing higher resolution at Level 3, the flow behavior is
similar to Fig. 6. This is expected and justifies the choice of employing MOTS2.

6 Conclusion

This study introduced a new methodology for tackling CFD problems of engi-
neering interest. More specifically, the integration and the application of a multi-
objective optimizer (MOTS2) along with a FSI package for 2D problems were de-
scribed. Further details for both parts were presented, followed by the results. Op-
timal and robust designs were identified for single and multi-objective optimization
cases, respectively. For the latter, the originally formulated 4-objectives problem
turns out to be a single-objective case. It was shown that the lift and drag ob-
jectives live in harmony, while u, is reciprocal to them. So, one of them should
only be considered so as to reduce the complexity of the problem. In addition, two
sets of compromise and robust designs were suggested with less than 5% variation
of the overall performance. Nonetheless, the performance of robust design is not
the same, compared to the optimal design identified by SIMPLEX. Since u, cor-
responds to near zero value for V, for the middle-range cluster, it is worthwhile to
further investigate this region of the design space. Finally, it seems promising to
explore the design space near the areas where the robust designs reside.

Future work will investigate the identified regions of interest. Also the simulation
model and the optimization process will be expanded in 3D and more search strate-
gies, respectively. The former necessitates the porting of the FSI package in 3D
and more performance metrics should be defined. More variables and objectives
should involved for the latter. This compilation has the potential to be applied on
several real world problems such as cardiovascular diseases (in health sciences) and
aero-elasticity (aerodynamics).
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(d) SIMPLEX Level 3
Figure 25: Comparing the flow between MOTS2 Robust Design and SIMPLEX

optimum design
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