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Abstract: By using the differential operator matrix and the product operation
matrix of the second kind Chebyshev wavelets, a class of nonlinear fractional
integral-differential equations is transformed into nonlinear algebraic equations,
which makes the solution process and calculation more simple. At the same time,
the maximum absolute error is obtained through error analysis. It also can be used
under the condition that no exact solution exists. Numerical examples verify the
validity of the proposed method.
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1 Introduction

Wavelet analysis is a new branch of science developed in the twentieth century. The
main research is how to structure a wavelet base function to approximate the given
function in a specific function space. Meanwhile, the wavelet operational matrix
has been sucessfully applied in optimal control [Hsiao and Wang (1999);Karimi,
Moshiri, Lohmann and Maralani (2005);Sadek, Abualrub and Abukhaled (2007)],
system identification [Karimi, Lohmann, Maralani and Moshiri (2004);Pawlak and
Hasiewicz (1998)], system analysis [Chen and Hsiao (1997);Bujurke, Salimath and
Shiralashetti (2008)], and numerical solution of integral and differential equations
[Bujurke, Shiralashetti and Salimath (2009);Babolian, Masouri and Hatamzadeh-
Varmazyar (2009);Kajani and Vencheh (2008);Reihani and Abadi (2007);Khellat
and Yousefi (2006);Razzaghi and Yousefi (2001)].

E.Babolian, F.Fattahzadeh used the first kind Chebyshev wavelet to solve the linear
integer order differential equation [Baholian and Fattahzadeh (2007)]. M.Razzaghi
[Razzaghi and Yousefi (2000)] adopted Legendre wavelets for variational prob-
lems. In Ref. [Maleknejad, Tavassoli Kajani and Mahmoudi (2003)], linear Fred-
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holm and Volterra integral equation of the second kind were solved by using Leg-
endre wavelet. Han Danfu [Han and Shang (2007)] applied CAS wavelet for the
integro-differential equation. Because the nonlinear fractional integral-differential
equation can be used to be better simulate the physical process of nature and the
dynamic system process, so it has been widely used in engineering mechanics,
physics, and other fields of science. However, a lot of engineering problems be-
ing solved by using differential equation in the past can be better solved by using
integral-differential equation. In the solution process, many ordinary differential
equations and the partial differential equation can be transformed into integral-
differential equations to solve.

In this paper, our study focuses on the following nonlinear integral-differential
equation which will be discussed by using the second kind Chebyshev wavelet
differential and integral operator matrix and product operator matrix. An error es-
timation expression will be given through error analysis. Numerical examples will
be conducted to prove that the proposed method has higher precision and efficiency.

N

∑
i=1

ai (x)Dαiy(x) = y j (x)+λ1

∫ x

0
k1 (x, t) [y(t)]

p dt

+λ2

∫ 1

0
k2 (x, t) [y(t)]

q dt +g(x) ,

y( j) (0) = b j, 0≤ x, t ≤ 1 , n−1 < αi ≤ n. (1)

2 The second kind Chebyshev wavelet

The second kind Chebyshev wavelet ψn,m (t) = ψ (k,n,m, t)involves four argu-
ments, k is assumed any positive integer, m is the degree of the second kind Cheby-
shev polynomials and t is the normalized time. They are defined on the interval
[0,1) as

ψn,m(t) =

{
2

k
2 T̃m(2kt−2n+1) , n−1

2k−1 ≤ t < n
2k−1 ,

0 , otherwise,
(2)

where

T̃m(t) =

√
2
π

Tm(t) (3)

and m = 0,1, · · ·M−1. In Eq. (3) the coefficients are used for orthogonality. Here
T̃m (t)are the second kind Chebyshev polynomials of degreemwhich respect to the
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weight function ω(t) =
√

1− t2on the interval[−1,1]and satisfy the following re-
cursive formula

T0 (t) = 1, T1 (t) = 2t, Tm+1 (t) = 2tTm (t)−Tm−1 (t) , m = 1,2, · · · .

We should note that in dealing with the second kind Chebyshev wavelet the weight
function ω̃(t) = ω(2t−1) have to be dilated and translated as

ωn(t) = ω

(
2kt−2n+1

)
.

It is easy to prove ψn,m (t) are the standard orthonormal wavelet basis inL2
ωn
[0,1],(

ψn,m (t) ,ψn′,m′ (t)
)
=

{
1, (m,n) = (m′,n′),
0, (m,n) 6= (m′,n′).

For function f (t) defined over [0,1) may be expanded as

f (t) =
∞

∑
n=1

∑
m∈Z

cnmφnm(t), (4)

where

cnm = ( f (t) ,φnm (t))
ωn

=
∫ 1

0
ωn (t)φnm (t) f (t)dt, (5)

in which (·, ·) denotes the inner product in L2
ωn
[0,1]. If the infinite series in Eq. (4)

is truncated, then it can be written as

f (t)'
2k−1

∑
n=1

M−1

∑
m=0

cnmφnm =CT
ψ (t) , (6)

where C and ψ(t)are2k−1M×1 matrices given by

C = [c10,c11, · · ·c1(M−1),c20,c21, · · ·c2(M−1), · · ·c2k−10 · · ·c2k−1(M−1)]
T (7)

and

ψ(t) =
[
φ10,φ11,φ12 · · ·φ1(M−1),φ20,φ21, · · ·φ2(M−1), · · ·φ2k−10, · · ·φ2k−1,(M−1)

]T
.

(8)

A functionk (x, t) ∈ L2
ω ([0,1]× [0,1])may be approximated as

k (x, t) = ψ
T (x)Kψ(t), (9)

where K = (Ki j) is a 2k−1M×2k−1M matrix with

Ki j = (φi (x) ,(k (x, t) ,φ j (t))) . (10)
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3 The second kind Chebyshev wavelet integral operational matrix

The integration of the vector ψ(t) defined in Eq. (8) can be obtained as

∫ t

0
ψ
(
t ′
)
dt ′ = Pψ(t), (11)

where P is the 2k−1M×2k−1M operational matrix for integration as [Babollane and
Fatfahzadehf (2007)]

P =
1
2k


L F F · · · F
0 L F · · · F
...

...
. . .

...
...

...
. . . F

0 0 · · · · · · L

 ,

where F and L are M×M matrices given by

F =


2 0 · · · · · · 0
0 0 · · · · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · · · · 0

 ,

L =



1 1
2 0 0 0 · · · 0

−3
4 0 1

4 0 0 · · · 0
1
3 −1

6 0 1
6 0 · · · 0

−1
4 0 −1

8 0 −1
8 · · · 0

...
...

...
...

...
...

...
(−1)M−2 1

M−1 0 0 0 − 1
2(M−1) 0 1

2(M−1)

(−1)M−1 1
M 0 0 0 0 − 1

2M 0


The integration of two second kind Chebyshev wavelet vector product is
I =

∫ 1
0 ψ (t)ψT (t)dt, where I is a unit matrix.

4 The second kind Chebyshev wavelet product operational matrix

Let

ψ (t)ψ
T (t)C ' C̃ψ (t) , (12)
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where C̃ is a 2k−1M×2k−1M product operational matrix. To expound the derivation
process of product operational matrix, we take k = 2,M = 3, then

C = [c10,c11,c12,c20,c21,c22]
T ,

ψ (t) = [φ10,φ11,φ12,φ20,φ21,φ22]
T .

We have

ψ (t)ψ
T (t) = 2

√
2
π



φ10 φ11 φ12 0 0 0
φ11 φ10 +φ12 φ11 0 0 0
φ12 φ11 φ10 +φ12 0 0 0
0 0 0 φ20 φ21 φ22
0 0 0 φ21 φ20 +φ22 φ21
0 0 0 φ22 φ21 φ20 +φ22

 , (13)

so the vector C̃ is

C̃ = 2

√
2
π

[
C̃1 0
0 C̃2

]
, (14)

where C̃i, i = 1,2 are 3×3 matrices as

C̃i =

 ci0 ci1 ci2
ci1 ci0 + ci2 ci1
ci2 ci1 ci0 + ci2

 . (15)

5 The second kind Chebyshev wavelet fractional integral and differential
operational matrix

In Eq. (8), taking the collocation points as following

ti =
2i−1
2kM

, i = 1,2, · · · ,2k−1M ,

we define the second kind Chebyshev wavelet matrix ψm×mas [Li (2010)]

ψm×m
∧
=

[
ψ

(
1

2m

)
,ψ

(
3

2m

)
, · · ·ψ

(
2m−1

2m

)]
, (16)

where, m = 2k−1M. For example, when M = 3 and k = 2, the second kind Cheby-
shev wavelet is express as

ψ6×6 =



1.5958 1.5958 1.5958 0 0 0
−2.1277 0 2.1277 0 0 0
1.2412 −1.5958 1.2412 0 0 0
0 0 0 1.5958 1.5958 1.5958
0 0 0 −2.1277 0 2.1277
0 0 0 1.2412 −1.5958 1.2412

 .
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Also, we define an m-set of Block Pulse Function (BPF) [Maleknejad and Mah-
moudi (2004)], the set of these functions over the interval[0,T )is defined as

ϕi (t) =
{

1, (i−1) T
m ≤ t < i T

m
0, otherwise,

(17)

where i = 1,2, · · · ,m, T
m = h .

The BPF have two useful properties which will be used further,

1. Disjointness

ϕi (t)ϕ j (t) =
{

0, i 6= j,
ϕi (t) , i = j.

t ∈ [0,T ) , i, j = 1,2, · · · ,m .

(18)

2. Orthogonality

∫ 1

0
ϕi (t)ϕ j (t)dt =

{
0, i 6= j,
h, i = j.

t ∈ [0,T ) , i, j = 1,2, · · · ,m .

(19)

Define ϕ (t) = [ϕ1(t),ϕ2(t), · · · ,ϕm(t)]
T , for the BPF properties, ϕ (t) satisfies the

relationship as follows

ϕ (t)ϕ
T (t) =


ϕ1 (t) 0 · · · 0
0 ϕ2 (t) · · · 0
...

...
. . .

...
0 0 · · · ϕm (t)

 . (20)

For
m
∑

i=1
(ϕi (t))

2 =
m
∑

i=1
ϕi (t) = 1, then

ϕ
T (t)ϕ (t) = 1. (21)

Now, we derive the second kind Chebyshev wavelet operational matrix of the frac-
tional integration. Let

Iα
ψm (t)≈ Pα

m×mψm (t) , n−1 < α ≤ n , (22)

where matrix Pα
m×m is called the second kind Chebyshev wavelet operational matrix

of the fractional integration.
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The second kind Chebyshev wavelet may be expanded into an m-term BPF as

ψm (t) = ψm×mϕ (t) , (23)

for the second kind Chebyshev wavelet, we have

Iα
ψm (t)≈ Iα

ψm×mϕ (t) . (24)

Kilicman and Al Zhour in Ref. [Kilicman and Al Zhour (2007)] have given the
Block Pulse operational matrix of the fractional integration Fα as following

Iα
ϕ (t)≈ Fαϕ (t) , (25)

where

Fα =

(
1
m

)α 1
Γ(α +2)


1 ξ1 ξ2 · · · ξm−1
0 1 ξ1 · · · ξm−2
0 0 1 · · · ξm−3
· · · · · · · · · · · · · · ·
0 0 0 0 1

 , (26)

with ξk = (k+1)α+1− 2kα+1 + (k−1)α+1. As for the second kind Chebyshev
wavelet operational matrix of the fractional differential Dα as

Dα = mα
Γ(α +2)


1 ξ1 ξ2 · · · ξm−1
0 1 ξ1 · · · ξm−2
0 0 1 · · · ξm−3
· · · · · · · · · · · · · · ·
0 0 0 0 1


−1

. (27)

Using Eq. (25) and Eq. (24), we have

Iα
ψm (t)≈ Iα

ψm×mϕ (t) = ψm×mIα
ϕ (t) = ψm×mFαϕ (t) . (28)

From Eq. (22) and Eq. (24), we get

Iα
ψm (t) = Pα

m×mψm (t) = Pα
m×mψm×mϕm (t) = ψm×mFαϕm (t) . (29)

Then, the second kind Chebysev wavelet operational matrix of the fractional inte-
gration Pα

m×m is given by

Pα
m×m = ψm×mFαψ

−1
m×m. (30)
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Let Dα
m×m is the second kind Chebyshev wavelet operational matrix of the fractional

differential, according to the properties of the fractional integration and differential

DαPα = I,

where I is the unit matrix, we can receive Dα by the inverse of Pα ,

Dα
m×m =

(
Pα

m×m
)−1

= ψm×mDαψ
−1
m×m. (31)

In particular, for k = 2,M = 3,α = 0.5 the second kind Chebyshev wavelet opera-
tional matrix of fractional order integration Pα

m×m is given by

P0.5
6×6 =



0.1513 −0.2077 −0.1558 −3.7364 −1.5403 −0.0746
0.2077 0.5841 0.2077 1.8244 0.1826 0.0033
−0.1212 −0.1615 0.1860 −0.7450 −0.2871 −0.0096
0 0 0 0.1513 −0.2077 −0.1558
0 0 0 0.2077 0.5841 0.2077
0 0 0 −0.1212 −0.1615 0.1860

 ,

and the operational matrix of fractional order differential Dα
m×m is

D0.5
6×6 =



4.9090 2.2029 1.6529 60.0271 37.3483 10.6012
−2.2023 0.3196 −2.2023 −42.5606 −24.6517 −9.1326
1.2853 1.7130 4.5414 18.4721 12.3276 2.4296
0 0 0 4.9090 2.2029 1.6529
0 0 0 −2.2023 0.3196 −2.2023
0 0 0 1.2853 1.7130 4.5414

 .

To verity the exactness of Pα and Dα further, take the function u(t) = t, then the
fractional integration of function u(t) = t is Iα

∗ u(t) = Γ(2)
Γ(α+2) t

α+1, the fractional

differential is Dα
∗ u(t) = Γ(2)

Γ(2−α) t
1−α .

When k = 5,M = 2,α = 0.5, image of the approximate solutions for the fractional
integration and the fractional differential are shown in Fig.1 and Fig.2, respectively.

6 Numerical Algorithms

The second kind Chebyshev wavelet operational matrix has been given, we con-
sider a class of nonlinear fractional integral-differential equations as follows

N
∑

i=1
ai (x)Dαiy(x) = y j (x)+λ1

∫ x
0 k1 (x, t) [y(t)]

p dt +λ2
∫ 1

0 k2 (x, t) [y(t)]
q dt +g(x)

y( j) (0) = b j 0≤ x, t ≤ 1 n−1 < αi ≤ n
,
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Figure 1: The integration of u(t) = t of α = 0.5

Figure 2: The differential of u(t) = t of α = 0.5

where N, j ∈ Z+,λ1,λ2 are arbitrary parameters, p,q are nonnegative integers, g(x)
is a known function, k1 (x, t) ,k2 (x, t)∈L2 ([0,1]× [0,1]),ai (x)> 0andai (x)∈C [0,1].
Let

y(x)≈CT ψ (x) = ψT (x)C, g(x)≈ GT ψ (x) = ψT (x)G ,
k1 (x, t) = ψT (x)K1ψ (t) , k2 (x, t) = ψT (x)K2ψ (t) ,
y j (x)≈C∗Tj ψ (x) = ψT (x)C∗j
[y(t)]p ≈C∗Tp ψ (t) = ψT (t)C∗p, [y(t)]q ≈C∗Tq ψ (t) = ψT (t)C∗q ,
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the variable coefficients ai (x) can be dispersed, let

Ai =


ai (x0) 0 0 0 0
0 ai (x1) 0 0 0
0 0 ai (x2) 0 0

0 0 0
. . . 0

0 0 0 0 ai (x2k−1M−1)

 .
Substituting the above expanded forms into Eq. (1), we have
N

∑
i=1

ai (x)Dαiy(x)≈
N

∑
i=1

AiDαiCT
ψ (x)≈CT

N

∑
i=1

AiDαiψ (x),

y j (x)+λ1
∫ x

0 k1 (x, t) [y(t)]
p dt +λ2

∫ 1
0 k2 (x, t) [y(t)]

q dt +g(x)
≈ ψT (x)C∗j +λ1

∫ x
0 ψT (x)K1ψ (t)ψT (t)C∗pdt

+λ2
∫ 1

0 ψT (x)K2ψ (t)ψT (t)C∗qdt +GT ψ (x)
≈ ψT (x)C∗j +λ1ψT (x)K1

∫ x
0 ψ (t)ψT (t)C∗pdt

+λ2ψT (x)K2
∫ 1

0 ψ (t)ψT (t)C∗qdt +GT ψ (x)
≈ ψT (x)C∗j +λ1ψT (x)K1

∫ x
0 C̃∗pψ (t)dt +λ2ψT (x)K2IC∗q +GT ψ (x)

≈ ψT (x)C∗j +λ1ψT (x)K1C̃∗pPψ (x)+λ2ψT (x)K2C∗q +GT ψ (x) ,

then

CT
N

∑
i=1

AiDαiψ (x) = ψ
T (x)C∗j +λ1ψ

T (x)K1C̃∗pPψ (x)+λ2ψ
T (x)K2C∗q +GT

ψ (x) ,

(32)

where C̃∗p is product operation matrix for C∗p, P is wavelet integral operational ma-
trix, C∗j ,C

∗
p,C
∗
q are column vectors, linear combination of the element of C,they can

be received by the product operational matrix of wavelet. The Dαi can be obtained
from the differential operational matrix.

We can see, when j, p,q are taken as different value k,k≥ 2, then C∗k =
[(

C̃
)k−1

]T

C.

Let us put the collocation points {xn}2(k−1)M
n=1 in the interval [0,1]into Eq. (32), the

equation will be transformed as following

CT
N

∑
i=1

AiDαiψ (xn) = ψ
T (xn)C∗j +λ1ψ

T (xn)K1C̃∗pPψ (xn)

+λ2ψ
T (xn)K2C∗q +GT

ψ (xn)

Solving the nonlinear algebraic equations by using the Newton iteration method, we
get the matrix ofC, and then we obtain the approximate solutiony(x) =CT ψ (x).
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7 Error analysis

Theorem 1. Suppose that the function u : [0,1]→ R is m times continuously differ-
entiable and u ∈Cm [0,1]. Then ũ(x) approximates u(x) with mean error bounded
as follows [Wang and Fan (2012)]

‖u(x)− ũ(x)‖ ≤ 2
2m(k−1)4mm!

sup
x∈[0,1]

∣∣∣u(m) (x)
∣∣∣ .

Proof. We divided the interval [0,1] into subintervals Ik,n =
[ n−1

2k−1 ,
n

2k−1

]
,n = 1, · · · ,

2k−1 with the restriction that ũ(x) is a polynomial of degree less than m that approx-
imates u with minimum mean error. The approximate solution approaches the exact
solution as k approaches ∞. Use the maximum error estimate for the polynomial
which interpolates u at Chebyshev notes of order m on Ik,n. Then we have

‖u(x)− ũ(x)‖2 =
∫ 1

0 [u(x)− ũ(x)]2dx =

∑
n

∫
Ik,n

[u(x)− ũ(x)]2dx≤ ∑
n

∫
Ik,n

[u(x)− û(x)]2dx

≤ ∑
n

∫
Ik,n

[
2

2m(k−1)4mm! sup
x∈Ik,n

|um (x)|
]2

dx≤

[
2

2m(k−1)4mm! sup
x∈[0,1]

|um (x)|
]2

.

(33)

It gives the upper bound of the square roots. In Eq. (31), û(x) denotes the inter-
polating polynomial of degree m which agrees with u(x) at the Chebyshev nodes
of orderm on Ik,n. Here, we use the well-known maximum error bound for Cheby-
shev interpolation. Therefore, the error between the approximation ũ(x) and u(x)
decays at speed of 2−m(k−1). Meanwhile, we notice that the number of wavelet is
m′ = 2k−1M, where M presents the degree of the second kind Chebyshev polyno-
mials, usually being taken as a small value in computation. When M is fixed, the
larger the value of k is, the more accurate the approximation solution is.

Also, we present error estimation for the second kind Chebyshev wavelet series
solution with the residual error function. We can get a theorem as follows.

Theorem 2. For the problem in Eq. (1), the maximum absolute error can be esti-
mated approximately

Ek,M,α = max
{∣∣e′k,M,α (x)

∣∣ ,0≤ x≤ 1
}
,

where e′k,M,α =
2k−1
∑

n=1

M−1
∑

m=0
c∗n,mφn,m (x). Here, the coefficients c∗n,m are determined by

solving the error problem.



370 Copyright © 2013 Tech Science Press CMES, vol.90, no.5, pp.359-378, 2013

Proof. Firstly, we named the error function as

ek,M,α (x) = y(x)− yk,M,α (x) , (34)

wherey(x)is the exact solution of the Eq. (1).

Therefore, yk,M,α (x)satisfies the following problem

N
∑

i=1
ai (x)Dαiyk,M,α (x) = y j

k,M,α (x)+λ1
∫ x

0 k1 (x, t) [yk,M,α (t)]p dt

+λ2
∫ 1

0 k2 (x, t) [yk,M,α (t)]q dt +g(x)+Rk,M (x) ,

0≤ x, t ≤ 1, n−1 < αi ≤ n.

(35)

Here, Rk,M (x) is the residual function and the Eq. (33) is obtained by substituting
the approximate solution yk,M,α (x) into Eq. (1).

Also, we note that kα − thorder fractional derivative of the approximate solution
yk,M,α (x) is computed by using the Caputo fractional derivative.

Now, let us subtract Eq. (33) from Eq. (1). Hence, we obtain the error problem

N
∑

i=1
ai (x)Dαiek,M,α (x) =

(
y j (x)− y j

k,M,α (x)
)
+λ1

∫ x
0 k1 (x, t)

[
yp (t)− yp

k,M,α (t)
]

dt

+λ2
∫ 1

0 k2 (x, t)
[
yq (t)− yq

k,M,α (t)
]

dt−Rk,M (x) .

(36)

For example, j = p = q = 2, Eq. (34) can be transformed as

N
∑

i=1
ai (x)Dαiek,M,α (x) =

(
2ek,M,α (x)yk,M,α (x)+ e2

k,M,α (x)
)

+λ1
∫ x

0 k1 (x, t)
[
2ek,M,α (t)yk,M,α (t)+ e2

k,M,α (t)
]

dt

+λ2
∫ 1

0 k2 (x, t)
[
2ek,M,α (t)yk,M,α (t)+ e2

k,M,α (t)
]

dt−Rk,M (x) .

(37)

By solving the above error problem in the same way as that in Section 5, we get the
approximation

e′k,M,α (x) =
2k−1

∑
n=1

M−1

∑
m=0

c∗n,mφn,m (x),

where, the coefficients c∗n,m are determined by solving the error Eq. (35). Hence,
the maximum absolute error can be estimated as

Ek,M,α = max
{∣∣e′k,M,α (x)

∣∣ ,0≤ x≤ 1
}
.
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We can see that if the exact solution unknown, this error estimation can be used to
test the reliability of the results.

8 Numerical examples

Example1. Consider the following nonlinear fractional integral-differential equa-
tion

x2D1.5y(x)+ xD0.5y(x) = y4 (x)+
∫ x

0 (x− t)y2 (t)dt +
∫ 1

0 (1+ t)y3 (t)dt

+
(
−2539

280 −
√

x√
π
+30x2 + 20x5/2

3
√

π
− 71x4

3 + 239x6

30 − x8
)

the exact solution is y(x) = x2−2, 0 < x < 1.

From the above derivation, we can see the equation can be transformed into the
matrix from as follows

CT A1D1.5
ψ (xn)+CT A2D0.5

ψ (xn) = ψ
T (xn)C∗4 +ψ

T (xn)K1C̃∗2Pψ (xn)

+ψ
T (xn)K2C∗3 +GT

ψ (xn) .

For example k = 2,M = 3,

where CT = [c10,c11,c12,c20,c21,c22], take point {xn}6
n=1 =

{ 1
12 ,

3
12 ,

5
12 ,

7
12 ,

9
12 ,

11
12

}
,

we have

A1 = diag
[ 1

144
9

144
25
144

49
144

81
144

121
144

]
A2 = diag

[ 1
12

3
12

5
12

7
12

9
12

11
12

] ,

D1.5
6×6=



73.6229 33.0401 24.7792 900.2823 560.1802 158.9866
−33.0379 4.7916 −33.0379 −638.5036 −369.8640 −137.0056
19.2729 25.6981 68.1166 277.0901 184.9339 36.4373
0 0 0 73.6229 33.0401 24.7792
0 0 0 −33.0379 4.7916 −33.0379
0 0 0 19.2729 25.6981 68.1166

 ,

D0.5
6×6 =



4.9090 2.2029 1.6529 60.0271 37.3483 10.6012
−2.2023 0.3196 −2.2023 −42.5606 −24.6517 −9.1326
1.2853 1.7130 4.5414 18.4721 12.3276 2.4296
0 0 0 4.9090 2.2029 1.6529
0 0 0 −2.2023 0.3196 −2.2023
0 0 0 1.2853 1.7130 4.5414

 ,

C∗4 =

[(
C̃
)3
]T

C, C∗3 =

[(
C̃
)2
]T

C, C∗2 =
(

C̃
)T

C,
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P = 1/4



1 1/2 0 2 0 0
−3/4 0 1/4 0 0 0
1/3 −1/6 0 0 0 0
0 0 0 1 1/2 0
0 0 0 −3/4 0 1/4
0 0 0 1/3 −1/6 0

 G =



−0.5246
−1.2080
−3.9058
0.8386
−4.0813
4.0827

 ,

K1 =



0 0.0123 0 −0.0069 0.0169 −0.0345
−0.0123 0 −0.0613 −0.0077 −0.0031 −0.0383
0 0.0613 0 −0.0345 0.0843 −0.1725
0.0069 0.0077 0.0345 0 0.0123 0
−0.0169 0.0031 −0.0843 −0.0123 0 −0.0613
0.0345 0.0383 0.1725 0 0.0613 0

 ,

K2 =



0.0172 −0.0238 0.0862 0.0241 −0.0284 0.1207
−0.0115 0.0158 −0.0575 −0.0161 0.0189 −0.0805
0.0862 −0.1188 0.4312 0.1207 −0.1418 0.6037
0.0172 −0.0238 0.0862 0.0241 −0.0284 0.1207
−0.0115 0.0158 −0.0575 −0.0161 0.0189 −0.0805
0.0862 −0.1188 0.4312 0.1207 −0.1418 0.6037

 .

Using the above known conditions, absolute error for M = 3 and different values of
k is given in Tab.1. Using error estimation according the error analysis in Section
6, the maximum absolution error is given in Tab.2.

Table 1: Absolute error for M = 3 and different values of k

x k = 2 k = 3 k = 4 k = 5 k = 6
0.1 3.5026e-003 3.0723e-003 2.1658e-004 1.0023e-004 5.7362e-005
0.2 1.0539e-003 5.4603e-004 2.3718e-004 8.7216e-005 2.9271e-005
0.3 5.2937e-003 4.7523e-004 1.7362e-004 7.6937e-005 2.0325e-005
0.4 2.2549e-003 2.9357e-004 8.7342e-005 4.5981e-005 6.9725e-006
0.5 4.7608e-003 1.9306e-004 7.6247e-005 3.2716e-005 4.8163e-006
0.6 5.6092e-004 2.1708e-004 8.7062e-005 2.5937e-005 3.0718e-006
0.7 4.9183e-003 3.7243e-004 1.0358e-004 7.9347e-005 1.8572e-005
0.8 3.5127e-003 4.0762e-004 1.2371e-004 6.8192e-005 9.3528e-006
0.9 2.7017e-004 1.9873e-004 7.6981e-005 3.6971e-005 6.0541e-006
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Table 2: Maximum absolution error for M = 3 and different values of k

x k = 2 k = 3 k = 4 k = 5 k = 6
0.1 3.8715e-003 3.4872e-003 2.8402e-004 1.6827e-004 6.2508e-005
0.2 1.6217e-003 6.3781e-004 3.0125e-004 9.5718e-005 4.0021e-005
0.3 6.1753e-003 5.1671e-004 2.5761e-004 8.2601e-005 3.2109e-005
0.4 3.0506e-003 3.8762e-004 9.5603e-005 5.2702e-005 7.6305e-006
0.5 5.2179e-003 2.7705e-004 8.5706e-005 4.6339e-005 5.6218e-006
0.6 6.2871e-004 3.1587e-004 9.1655e-005 4.0208e-005 5.3369e-006
0.7 5.5621e-003 4.3365e-004 1.9802e-004 9.1125e-005 3.2614e-005
0.8 4.6284e-003 5.1306e-004 2.6415e-004 7.5134e-005 1.9246e-005
0.9 3.5514e-004 2.4676e-004 8.3362e-005 4.7759e-005 8.1306e-006

Example2. Consider the following equation(
x2−1

)
D1.5y(x)+2xD0.75y(x)+(x+2)D0.25y(x)

= y3 (x)+ 1
4
∫ x

0 (x− t)y2 (t)dt+
∫ 1

0 (1+ t)y4 (t)dt +g(x) ,

where

g(x) = −88
15
− 2√

π
√

x
+

2x3/2
√

π
−8x3− x4

12
+

16x5/4

Γ(1/4)

+
16x3/4

3Γ(3/4)
+

8x7/4

3Γ(3/4)
,0 < x < 1,

the exact solution is y(x) = 2x. When M = 2,k = 3,4,5,6, the comparison of
numerical solutions and the exact solution is shown in Fig.3, Fig.4, Fig.5 and Fig.6,
respectively.

Example3. Consider the following equation

xD1.25y(x)+(x+1)D0.5y(x)= y2(x)+
∫ x

0
(x+ t)y3(t)dt− 1

2

∫ 1

0
(x− t)y2(t)dt+g(x),

where

g(x) =−0.2679x8 +0.9286x7−1.1000x6 +0.4500x5− x4 +2x3 +1.5045x2.5

− x2 +2.1761x1.75 +0.3761x1.5 +0.0167x−1.1284x0.5−0.0083
0 < x < 1,

the exact solution is y(x) = x2− x. When M = 2,k = 4,5,6, the comparison of
numerical solutions and the exact solution is shown in Fig.7.
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Figure 3: Exact solution and Numerical
solution of k = 3,M = 2

Figure 4: Exact solution and Numerical
solution of k = 4,M = 2

Figure 5: Exact solution and Numerical
solution ofk = 5,M = 2

Figure 6: Exact solution and Numerical
solution ofk = 6,M = 2

Example4. Consider the following equation

x2D0.8y(x)+(x+1)D0.2y(x) = y4 (x)

−
∫ x

0
(1+ t)y2 (t)dt +

3
4

∫ 1

0
(x+ t)y3 (t)dt +g(x) ,

where
g(x) =−x8 +0.1665x6 +0.1998x5 +1.8152x3.2 +1.193x2.8

+1.1930x1.8−0.1071x−0.0938 0 < x < 1,
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(a) (b) (c)
Figure 7: The comparison between exact solution and approximate for M = 2,k =
4,5,6

the exact solution is y(x) = x2. When M = 3 and k is taken as different values,
the absolute error is given in Tab.3. When M = 2,k = 4,5,6, the comparison of
numerical solutions and the exact solution is shown in Fig.8.

Table 3: Absolute error for M = 3 and different values of k
x k = 2 k = 3 k = 4 k = 5 k = 6
0.1 2.7354e-004 1.5426e-005 3.2891e-006 5.4641e-007 6.0781e-008
0.2 5.0371e-005 3.8072e-006 5.7631e-007 2.0301e-007 3.5409e-008
0.3 4.8716e-005 8.5348e-006 2.0368e-006 7.6345e-007 1.2937e-007
0.4 3.7931e-004 6.2108e-005 1.2031e-005 6.0349e-006 4.9632e-007
0.5 6.7681e-005 3.0718e-006 5.3419e-007 1.1038e-007 5.7603e-008
0.6 2.3703e-004 4.1926e-005 8.2907e-006 2.4091e-006 6.4309e-007
0.7 7.0325e-005 2.4315e-005 4.0723e-006 8.4236e-007 2.3109e-007
0.8 3.0829e-004 6.0321e-005 1.1243e-005 5.2308e-006 8.5471e-007
0.9 4.5371e-005 1.3452e-005 5.0789e-006 6.5021e-007 7.4917e-008
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(a) (b) (c)
Figure 8: The comparison between exact solution and approximate for M = 2,k =
4,5,6

Calculations results show that the second kind Chebyshev wavelet can be used to
well solve the nonlinear fractional integral-differential equations with high preci-
sion. The larger the value of k is, the more accurate the approximation solution is.
At the same time, with the increase of k, the error decreases gradually. And the
absolute error between numerical solutions and the exact solution is slightly less
than the maximum absolute error obtained by according the error estimation. So
the method has the higher feasibility and effectiveness.

9 Conclusion

Using the second kind Chebyshev wavelet, a class of nonlinear fractional integral-
differential equations is studied. The fractional differential operational matrix of
the second kind Chebyshev wavelet and numerical algorithm are given. Through
the numerical examples, it shows that the second kind Chebyshev wavelet has a
very good approximation effect and high accuracy. It is an effective and simple
algorithm. An expression of maximum absolute error is derived, which is slightly
higher than the absolute error between numerical solution and exact solution. The
presented method can also be used to solve the two-dimensional nonlinear frac-
tional partial differential equations.
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