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Model Predictive Control for High-speed Train with
Automatic Trajectory Configuration and Tractive Force

Optimization
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Abstract: High-speed train transportation is organized in a way of globally cen-
tralized planning and locally autonomous adjustment with the real-time known po-
sitions, speeds and other state information of trains. The hierarchical integration ar-
chitecture composed of top, middle and bottom levels is proposed based on model
predictive control (MPC) for the real-time scheduling and control. The middle-level
trajectory configuration and tractive force setpoints play a critical role in fulfilling
the top-level scheduling commands and guaranteeing the controllability of bottom-
level train operations. In the middle-level MPC-based train operation planning, the
continuous cellular automaton model of train movements is proposed to dynami-
cally configure the train operation positions and speeds at appointed time, which
synthetically considers the scheduling strategies from the top layer, and the tempo-
spatial constraints and operation statuses at the bottom level. The macroscopic
dynamic model of a train predicts the trajectories under the candidate control se-
quences. Through Levenberg-Marquardt optimization, the feasible tractive forces
and updated trajectories are attained under the power constraints of electric ma-
chines. Numerical results have demonstrated the effectiveness of proposed control
planning technique. This paper reveals the utilities of different-level models of train
movements for the accomplishment of railway network operation optimization and
the guaranty of individual train operation safety. It also provides a solution to auto-
matic trajectory configuration in the automatic train protection (ATP) and operation
(ATO) systems.

Keywords: train modeling, cellular automata, model predictive control, auto-
matic train protection, automatic train operation.

1 School of Electronic and Information Engineering, Beijing Jiaotong University.



416 Copyright © 2013 Tech Science Press CMES, vol.90, no.6, pp.415-437, 2013

1 Introduction

The construction of high-speed railway network has posed more rigorous require-
ments on train operation safety. One efficient measure to improve the train oper-
ation safety is to dynamically configure the proper train movement trajectories in
the future such that the safety constraints are satisfied and the moderate traction and
braking strategies will be implemented. The planned trajectories of a train should
be constantly updated with the displacements of its preceding adjacent one. In ad-
dition, they should be enforceable under the power constraints when the loads and
the resistances of the train vary. This paper attempts to address the problems of
automatic trajectory configuration utilizing the train movement high-level model
and of tractive force optimization through the principle of model predictive control
(MPC) [Camacho and Bordons (1995)].

The application of advanced control technology to the train can be traced back
to 1980s, at which time the optimal control [Gruber and Bayoumi (1982)] and
fuzzy control [Yasunobu, Miyamoto, and Ihara (1983)] were explored. Afterwards,
the energy-efficient train control was extensively investigated [Cheng and Howlett
(1992); Howlett and Pudney (1995); Khmelnitsky (2000); Liu and Golovitcher
(2003); Howlett, Pudney, and Vu (2009)]. The fuzzy optimal control [Jia and Zhang
(1993)] and H2/H∞ control [Yang and Sun (2001)] were developed to deal with the
multi-objective control of trains. The heavy-haul train control was also extensively
studied through linear quadratic regulator (LQR) [Chou and Xia (2007)], measured
output feedback control [Zhuan and Xia (2008)], fault-tolerant control [Zhuan and
Xia (2010)], etc. With the rapid development of wireless communication technol-
ogy, it has been attempted to be applied to the high-speed train control system.
There exists a little literature dealing with the high-speed train automatic operation
utilizing the methods such as parallel control and management [Ning, et al (2011)],
adaptive control [Song, et al (2011)], fuzzy control [Dong, et al (2013)], iterative
learning control [Wang, Hou, and Li (2008)], and model predictive control [Zhou
and Wang (2011)], etc.

The very important aspect of train control is to satisfy the power constraints dur-
ing the total train movement process. The general control law of driving electric
machines is that at the low speeds, the constant torque control is implemented, and
after a certain speed, the constant power control is enforced. When the train arrives
at a certain speed, the remained acceleration or driving force should be subject to
the power constraint. The bigger the speed is, the smaller the remained accelera-
tion is. If the train movement trajectories are implementable in view of the output
power, the train operation safety can be guaranteed. Or, the train can not stop at
a specified point and the accident of train crash might happen in the high-speed
railway network.
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The train movement model based on the principle of cellular automata [Nagel and
Schreckenberg (1992); Chowdhury, Santen, and Schadschneider (2000)] explicitly
describes the transition constraints and the relationships of speed updates with ac-
celerations and decelerations, which provides a simple measure to plan the train
movements at the macroscopic and mesoscopic levels. The cellular automaton
(CA) models for railway traffic were proposed to replicate the realistic train move-
ments [Li, Gao, and Ning (2005); Ning, Li, and Gao (2005)]. Several improved
models were developed to describe the moving- or moving-like block system [Xun,
Ning, and Li (2007); Zhou, Gao and Li (2006)], to capture the driver reaction [Tang
and Li (2007)], to consider the speed limits in the fixed-block systems [Fu, Gao,
and Li (2007)], and to describe the train movements at station [Xun, Ning, and Li
(2009)]. A generalized train movement model was explored to describe the train
movements under scheduling and control with various tempo-spatial constraints
[Zhou and Mi (2012)]. It models the feedback driving behavior [Zhou, Mi and
Yang (2012)], and establishes the connection between the top-level scheduling and
the bottom-level control.

The limitation of CA model is that the acceleration and deceleration should be in-
teger. However, in practice the acceleration and deceleration for the railway traffic
are generally less than 1. In order to utilize the train movement CA model, the com-
plex transformation will be involved to make the acceleration and deceleration be
integer through properly defining the length of a cell. The train movement model
with speed limits was presented for the railway network, which directly employs
the practical acceleration and deceleration [Lu, Dessouky and Leachman (2004)].
This paper will extend the generalized train movement model to the case directly
utilizing any variable acceleration and deceleration. We will apply the extended
model to configure the train movement trajectories with the feasible accelerations
and decelerations from practical data. The remained problem is to find the con-
trol sequences (decision variables) such that the predicted movement trajectories
approach the configured ones. It is actually a problem of nonlinear algebraic equa-
tion F(x)=0 [Liu and Atluri (2011); Liu, Dai, and Atluri (2011a, 2011b); Liu and
Atluri (2012)]. In this paper, we will employ the basic Levenberg-Marquardt op-
timization technique to solve this problem. The tractive force constraints will be
taken into account during the optimization process. The procedure is implemented
in the rolling horizon such that the planning of positions, speeds and tractive forces
can be adjusted according to the real-time feedback information. Consequently, the
bottom-level train movement control can be executed according to the middle-level
setpoints considering the requirements of top-level scheduling and the controllabil-
ity of bottom-level train operation.

The rest of this paper is organized as follows. In section 2, the hierarchical in-
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tegration architecture of real-time train scheduling and control based on MPC is
outlined. Section 3 develops the extended train movement model and the trajectory
configuration approach. Section 4 presents the planning approach of train move-
ments based on MPC with automatic trajectory configuration at the middle level.
The numerical results are demonstrated and elucidated in section 5. Finally, the
conclusions are drawn in section 6.

2 Integration architecture of train scheduling and control based on MPC

Train scheduling and control are the two mutually dependent elements for train op-
eration. Under the slow- and medium-speed railway transportation infrastructure,
scheduling and control are not so frequently integrated because the train operation
states can not be immediately transmitted to the ground commanding center. In
the high-speed railway network, the train positions, speeds and other state informa-
tion can be reported to the ground commanding center in a real-time manner, which
makes it possible to accomplish the timely scheduling. Consequently, the train con-
trol systems can obtain the real-time updated scheduling commands which facilitate
the operation safety and efficiency.

MPC is a feedback- and prediction-based optimization technique of control strate-
gies, which can play a significant role in improving the operation safety of high-
speed train because the potential danger can be predicted and prevented beforehand.
Based on the MPC technique, Fig. 1 outlines the hierarchical integration frame-
work of real-time train scheduling and control. It includes three levels, i.e. macro-
scopic (top), mesoscopic (middle) and microscopic layers. At the macroscopic
level, the optimized scheduling strategies are engendered in view of the operation
optimization of total railway network, which specify where the train should locate
at appointed time. They are generalized movement authority which describes both
how long and how fast the train can move. At the mesoscopic level, the detailed
individual train operation plan is produced, which fulfills the top-level scheduling
strategies and justifies the control feasibilities. At the microscopic level, each car of
a train is controlled such that the commands from the mesoscopic level are carried
out. There exist various control strategies for the car control, among which MPC
is an alternative way depicted with dotted lines in Fig. 1. The objective of the top
layer is accomplished at the ground commanding center including the equipment
such as radio block center (RBC) and centralized traffic control (CTC), and the one
of the bottom layer is implemented at the cars of the train. The goal of the meso-
scopic layer can be executed either at the ground commanding center or at the vital
computer mounted in the locomotive of the train.
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Figure 1: The hierarchical integration architecture of real-time train scheduling and
control
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3 Automatic trajectory configuration utilizing train movement model

3.1 Train movement high-level modeling

The high-level model is generally oriented towards the analysis and decision at the
macroscopic and mesoscopic layers of complex systems. In this subsection, we
will extend the train movement high-level model [Zhou and Mi (2012)] to the case
with any variable accelerations and decelerations. Set the proposed train movement
model in the moving-block system [Takeuchi, Goodman, and Sone (2003)] as an
example to illustrate the train movement planning process at the mesoscopic level.
For the fixed-block system, the planning process is similar. We first define the
following notations.

xk : the position of train on the railway line at instant kT where T is the period. T
is generally omitted when specifying an instant in the description of discrete-time
system.

vk : the speed of train at instant kT.

vmax : the maximum speed of train.

vlim(x) : the most restrictive speed profile related to the position x on the railway
line.

ak : the acceleration of train at instant kT.

bk : the deceleration of train at instant kT.

vt : the required speed of train at target point.

dt : the distance to the instantaneous target point where the speed of train is vt .

dm : the distance to the target point where the speed of train is 0.

db : the braking distance when the speed of train decelerates from vk to vt .

dr : the braking reference distance which is equal to db + vk.

The extended train movement model is described as follows.

(1) Speed update

if vk > vlim(xk), vk+1 = max(vk−bk, 0)
elseif vk = vlim(xk) AND dt ≥ dr, vk+1 = vk
else

if dt > dr, vk+1 = min(vk +ak, vk +dt −dr )
elseif dt = dr, vk+1 = vk
else

if vk = vt 6= 0, vk+1 = vk
else vk+1 = min(max(vk−bk,vk− (dr−dt), vt),dm)
end



Model Predictive Control for High-speed Train 421

end
end

(2) Position update

xk+1 = xk + vk+1

In the above model, we assume that the train runs towards the instantaneous target
point and all the variables are nonnegative. During the trajectory configuration pro-
cess, the case that the train runs away from the target point might happen. In this
case, the braking process is unconditionally initiated until the target point locates
in front of the train. The positive direction of position and speed is the one from the
departure station to the destination. The goal of trajectory configuration is to make
the train gradually transit onto the basic braking reference curve. With regard to
this purpose, the extra acceleration and deceleration constraints are complemented
into the above model, compared with the generalized train movement model [Zhou
and Mi (2012)]. Actually, it models the train movements with advanced ATP. If
vk > vlim(xk), according to the difference degree between vk and vlim(xk), the cor-
responding deceleration bk will be adopted for the related braking level such as the
service or emergency braking.

3.2 Train movement trajectory configuration

In this subsection, we will use the practical data of high-speed train CRH3 to il-
lustrate the trajectory configuration of train movements. Because of the power
limits, the available tractive and braking forces are related to the train speeds as
shown in Fig. 2 (a). The basic resistance generally monotonically ascends with
the increase of speed. Define Ft(vk) and Fb(vk), denoting the tractive and brak-
ing forces (in absolute value) at speed vk, respectively. f (vk) represents the ba-
sic resistance corresponding to vk. Given the train mass m, according to Fig. 2
(a), the available acceleration and deceleration at certain speed vk can be obtained
through ak = (Ft(vk)− f (vk))/m and bk = (Fb(vk)+ f (vk))/m, respectively, which
are depicted in Fig. 2 (b). Consequently, the acceleration and deceleration pro-
cesses can be attained through vk+1 = vk +akT and vk+1 = vk−bkT , respectively.
Fig. 2 (c) and (d) show the acceleration and deceleration limitation curves, re-
spectively. They can be fitted utilizing the exponential curves Avmax(1− e−αt) and
Bvmax(1− e−β (Tb−t)) where A, B, α and β are the positive coefficients to be iden-
tified, t is the continuous time here, and Tb is the time decelerating from vmax to
0. The feasible acceleration and deceleration processes can be acquired through
making α and β smaller. Fig. 2 (e) and (f) demonstrate the acceleration and decel-
eration distances, respectively. Fig. 2 (f) is a very critical curve for the trajectory
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configuration through which db corresponding to the speed vk is attained. Because
the mass and the resistances of a train may alter during the train operation process,
Fig. 2 (f) should be acquired on line. Fig. 2 (g) and (h) demonstrate the configured
trajectories when the target points with speed 0 are at the positions of 10km and
60km, respectively. In Fig. 2 (f), because the target point is near, the train can not
accelerate to the maximum speed vmax = 350km/h. In Fig. 2 (g), the target point is
far enough to allow the train to accelerate to vmax.

Figure 2: The curves required and engendered in automatic trajectory configura-
tion. (a) tractive and braking forces, and basic resistance, (b) speed update rate, (c)
acceleration process, (d) deceleration process, (e) acceleration distance, (f) decel-
eration distance, (g) configured trajectory 1, and (h) configured trajectory 2.
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4 MPC for train operation planning

4.1 Basic framework

Fig. 3 describes the basic framework of train operation planning. MPC is utilized
to further justify the control feasibility under the power constraints and update the
position and speed profiles in the rolling prediction horizon. The trajectory con-
figuration employs the proposed train movement model considering the scheduling
strategies and the real-time positions and speeds of trains [Zhou and Mi (2012)].
MPC engenders the adjusted position and speed trajectories in case of the variations
of the train mass and resistances under the control of optimized tractive forces.

Figure 3: Basic framework of train operation planning based on MPC with auto-
matic trajectory configuration

4.2 Optimization model

The individual train movement can be described by the following nonlinear state-
space equation:

ẋ = v (1)

v̇ = (u− rb(v)− re(x))/m (2)

where x is the position, v is the speed and m is the mass of train. u is the tractive
force. rb(v) is the resistance of running train, which is related to the speed and mass,
and synthetically denoted as rb(v) = m(av2 + bv+ c). re(x) is the extra resistance
caused by the position particularities such as the slope and curve of railway line.
For simplicity, re(x) is omitted in the following discussion.

We utilize the following discrete state-space equation as the prediction model in
MPC:

x(k+1) = x(k)+ v(k+1)T (3)
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v(k+1) = v(k)+
T
m

u(k)−T
(
av2(k)+bv(k)+ c

)
(4)

where the period T is generally omitted in the expression of discrete instant kT.

The objective function of MPC is

L(k) =
1
2

P

∑
i=1

[λx (xs(k+ i)− xp(k+ i))2 +λv (vs(k+ i)− vp(k+ i))2

+λu (u(k+ i−1))2]

(5)

where xs(k+ i) and xp(k+ i) are the setpoints and the predictions of positions in
the prediction horizon P (T is generally omitted in MPC) at instant kT, respectively.
Similarly, vs(k+ i) and vp(k+ i) are the setpoints and the predictions of speeds in
the prediction horizon P at instant kT. u(k+ i− 1) is the control sequences in the
prediction horizon P at instant kT. λx, λv and λu are the weighting coefficients. In
Eq. 5, the control horizon M in MPC is set to be equal to the prediction horizon P.

4.3 Levenberg-Marquardt optimization

Making a simple transformation on Eq. 5, we can obtain

L(k) =
1
2

eT(k)e(k) (6)

where

e(k) =

 e1(k)
e2(k)
e3(k)

=

 √λx (Xs(k)−Xp(k))√
λv (Vs(k)−Vp(k))√
λuu(k)

 (7)

Xs(k) = [xs(k+1)xs(k+2) · · ·xs(k+P)]T (8)

Xp(k) = [xp(k+1)xp(k+2) · · ·xp(k+P)]T (9)

Vs(k) = [vs(k+1)vs(k+2) · · ·vs(k+P)]T (10)

Vp(k) = [vp(k+1)vp(k+2) · · ·vp(k+P)]T (11)

u(k) = [u(k)u(k+1) · · ·u(k+P−1)]T . (12)

According to the Levenberg-Marquardt (L-M) optimization, the updating rate of
input u(k) is

∆u(k) =−(JTJ+µI)−1JTe (13)
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where µ is the adjustable parameter iteratively increased or decreased at the rate of
rµ , I is the identity matrix, and J is Jacobian matrix which is calculated by

J =
∂e

∂uT =

 ∂e1
∂uT
∂e2
∂uT
∂e3
∂uT

=

 J1
J2
J3

 . (14)

Substituting Eqs. 7-12 and 14 into Eq. 13 yields

∆u(k) =−
(
λxJT

1 J1 +λvJT
2 J2 +(λu +µ)I

)−1 (
λxJT

1 e1 +λvJT
2 e2 +λuu

)
. (15)

J1 and J2 are, respectively, calculated by

J1 =
∂e1

∂uT =−
∂Xp

∂uT =−(γi, j)P×P (16)

J2 =
∂e2

∂uT =−
∂Vp

∂uT =−(δi, j)P×P (17)

where

γi, j =


δi, jT i = j, i = 1, ...,P

γi−1, j +δi, jT i > j, i = 2, ...,P
0 otherwise

(18)

δi, j =


T/m i = j, i = 1, ...,P

(1−bT −2aT vp(k+ i−1))δi−1, j i > j, i = 2, ...,P
0 otherwise

. (19)

4.4 Optimization algorithm

1) Initialize. Set the initial values for the following variables:

µ : the adjustable parameter in Eq. 13,

µmax : the specified maximal value of µ ,

µmin : the specified minimal value of µ ,

rµ : the adjustment rate of µ ,

utemp(k): the temporary value of u(k),

Lmin: the specified minimal value of L(k),

Ll: the minimum value of L(k) obtained in the last iterative steps,

s: the iterative step,

cycle: the specified maximal number of iterative steps.
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2) Calculate setpoints Xs(k) and Vs(k) according to Section 3.

3) Set the initial input utemp(k). Suppose the optimized control inputs in the last
simulation period are u(k−1)=[u(k−1) u(k) . . . u(k+P−2)]T , and then utemp(k)=[u(k)
u(k+1) . . . u(k+P−2) u(k+P−2)]T .

4) Predict. Calculate Xp(k) and Vp(k) according to Eqs. 3 and 4 using utemp(k).

5) Calculate L(k) according to Eqs. 6-12 using utemp(k).

6) Check. If L(k)< Lmin, go to step 11).

7) Update µ and u(k). If L(k)< Ll , then u(k)=utemp(k), Ll = L(k), and µ = µ/rµ ,
and otherwise µ = rµ µ . Ifµ > µmax, µ = µmax. And ifµ < µmin, µ = µmin.

8) Calculate the Jacobian matrix according to Eqs. 16-19.

9) Calculate utemp(k). Calculate ∆u(k) according to Eq. 15, and then utemp(k) =
utemp(k)+∆u(k).
10) Check. s=s+1. If s <cycle, then go to step 2).

11) Output u(k) at the current instant. u(k)=[1 0 . . . 0]u(k).

5 Numerical results

5.1 Case I

In case I, the train departs from the position of 0km and stops at the position of
10km, in which case the train can not accelerate to the maximum speed vmax =
350km/h. The simulation period T is 1s, the prediction horizon P = 20, and the
simulation time is 1000s. λx = 0.5, λv = 0.5, and λu = 0 in the case studies.
Fig. 4 (a) demonstrates the configured trajectories in the total simulation process
utilizing the proposed high-level model of train movements and considering the
feedback information of train positions and speeds. They include the acceleration
and deceleration processes. Fig. 4 (b) represents the optimization process within
200 optimization cycles for each simulation period. At the first simulation pe-
riod, the initial values of the control sequences in the prediction horizon are set as
u(k+ i) = 0,k = 1, i = 1, ...,P−1. From Fig. 4 (b), we can learn that the objective
function value L(k) can be convergent to a small one within the 50 optimization
cycles. At the remained simulation periods, the control sequences will be set as de-
scribed in step 3 in Section 4.4. Hence, the initial objective function value is small
at the first optimization cycle, and the total objective function values are also small
for the remained 199 optimization cycles in each remained simulation period. Fig.
4 (c) is the control sequences in the prediction horizon obtained in the optimization
process within 200 cycles in each simulation period. The stable control sequences
can be observed in the steady-state control phase. The optimized tractive force set-
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Figure 4: Optimization process of tractive force. (a) configured trajectory, (b) opti-
mization process, and (c) tractive force.
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Figure 5: Updated trajectories. (a) position versus time, and (b) speed versus time.

points for the actual controllers are shown with dotted line in Fig. 4(c). Fig. 5
demonstrates the updated distance and speed curves related to time, which are the
setpoints for the actual controllers and corresponding to the feasible tractive force
setpoints. The speed profile is similar to the contour of Fig. 4 (a). The synthetic
curve of speed versus position from Fig. 5 is the part of most restrictive speed
profile vlim(x) for the vital computer in the ATP system.
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Figure 6: Configured trajectory.

5.2 Case II

In case II, the train departs from the position of 0km and stops at the position of
60km, in which case the train can accelerate to vmax = 350km/h. The speed holding
process can be observed in Fig. 6 and Fig. 7 (c) besides the acceleration and decel-
eration processes. Fig. 7 (a) demonstrates the optimized tractive forces satisfying
the power constraints as shown in Fig. 2 (a). Fig. 7 (b) represents the curve of
position and time. The speed profile in Fig. 7 (c) is consistent with the contour of
trajectories described in Fig. 6.

5.3 Case III

In case III, two trains depart from the positions of 0km and 15km, respectively, and
both run towards the position of 100km. The safe margin when two trains stop is
5km. The maximum speed of front train is vmax

1 = 250km/h, and the maximum
speed of back one is vmax

2 = 350km/h. The speed holding process for the front train
can be observed in Fig. 8 and Fig. 9(b). However, the speeds of the back train
are restrained by those of the front one, thus the back train can not accelerate to
vmax

2 , and it runs with the speed of vmax
1 during some periods as shown in Fig. 8 and

Fig. 9 (b). The distance between two trains is maintained greater than the sum of
braking distance corresponding to the speed and safe margin. In the final stopping
stage, the distance between two trains is the safe margin as shown in Fig. 9 (a).
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Figure 7: Optimized tractive force and updated trajectories. (a) tractive force, (b)
position versus time, and (c) speed versus time.
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Figure 8: Configured trajectory.

Fig. 9 (b) is the part of most restrictive speed profile vlim(x) for the vital computer
in the ATP system. The optimized tractive forces are shown in Fig. 9 (c).

5.4 Case IV

In case IV, two trains depart from the positions of 0km and 30km, respectively,
and both run towards the position of 100km. The safe margin is also 5km. In
this case, both trains have the chances to accelerate to the same maximum speed
vmax = 350km/h. The speed holding process for two trains can be observed in Fig.
10 and Fig. 11(b). Fig. 11 (a) utilizing the curve of position versus time depicts
the following behavior of the back train with the front one. Fig. 11 (b) displays
the curve of speed versus distance, a reference to produce the braking command
for the vital computer in the ATP system. The piecewise smooth and optimized
tractive forces are obtained as shown in Fig. 11 (c).

6 Conclusions

Automatic trajectory configuration is an important function of automatic train pro-
tection (ATP) and operation (ATO) systems. It provides a curve of speed versus
position for the braking reference in case of overspeed and the driving guidance
for the train operation. In this paper, we have demonstrated how the proposed train
movement high-level model, providing the interfaces for the top-level scheduling
commands and the dynamic target positions of the preceding adjacent train, can
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Figure 9: Train following process, updated trajectory and optimized tractive force.
(a) position versus time, (b) speed versus position, and (c) tractive force.
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Figure 10: Configured trajectory.

be a useful tool for the trajectory configuration. Besides, the setpoints of tractive
forces (proportional to the electric currents of driving machine) are also important
criteria for the bottom-level car control of a train. The principle of model predictive
control is employed to find out the proper tractive force sequences considering the
power constraints to make the predicted trajectories approach the configured ones,
during which the predicted trajectories are obtained through the macroscopic train
dynamic model. Consequently, the control inputs are optimized and the updated
trajectories are attained according to the real-time feedback information. Various
case studies have demonstrated the validity of proposed train operation planning
approach. The further work is on one hand to utilize the complex train movement
model as the prediction model in MPC considering the counterforce dynamics be-
tween the cascaded cars, and on the other hand to employ the advanced optimiza-
tion technique to solve the problem of nonlinear algebraic equation F(x)=0 [Liu
and Atluri (2011); Liu, Dai, and Atluri (2011a, 2011b); Liu and Atluri (2012)] so
that more accurate tractive forces can be attained.

Acknowledgement: This work is supported by the National Natural Science Foun-
dation of China (Grant No. 61074138) and the Fundamental Research Funds for
the Central Universities of China (Grant No. 2009JBM006).
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Figure 11: Train following process, updated trajectory and optimized tractive force.
(a) position versus time, (b) speed versus position, and (c) tractive force.
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