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A Two-Side Equilibration Method to Reduce the
Condition Number of an Ill-Posed Linear System

Chein-Shan Liu1

Abstract: In the present paper, we propose a novel two-side equilibration method
to properly reduce the condition number of a given non-singular matrix only through
a few operations. Then, two different conditioners together with the conjugate gra-
dient method (CGM) are developed, which can overcome the defect of CGM, being
not vulnerable to noisy disturbance exerted on an ill-posed linear system. The two-
side CGM (TSCGM) and the pre-conditioning CGM (PrCGM) are convergent fast
and accurate in solving linear inverse problems and the linear Hilbert problem un-
der a large random noise.
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1 Introduction

In this paper we propose two equilibrated conditioning conjugate gradient methods
to solve an ill-posed linear equations system:

Bx = b0, (1)

where det(B) 6= 0 and B ∈ Rn×n might be an ill-conditioned, and generally un-
symmetric coefficient matrix. The solution of such an ill-posed system of linear
equations is an important issue for many engineering applications. In practice, in
the linear equations which arise in engineering problems, the data b0 are usually not
given exactly; instead of, the noises in b0 are unavoidable due to the measurement
error. Therefore, we may encounter the problem that the numerical solution of an
ill-posed linear equations system will deviate from the exact one to a great extent,
when b0 is polluted by noise, whose measurement error will be largely amplified
by the small singular values of B.

1 Department of Civil Engineering, National Taiwan University, Taipei, Taiwan.
E-mail: liucs@ntu.edu.tw



18 Copyright © 2013 Tech Science Press CMES, vol.91, no.1, pp.17-42, 2013

We can use the condition number to judge whether a given non-singular matrix B
is ill-conditioned or not, which is defined as

Cond(B) = ‖B‖‖B−1‖, (2)

where the matrix norm is the Frobenius norm. At the same time the value of
Cond(B) measures the sensitivity of the solution x in Eq. (1) to a small variation
of the given data B and b0. We have Cond(B) ≥ 1 and Cond(αB) = Cond(B) for
every scalar α 6= 0. The last property shows that it is impossible to reduce Cond(B)
by multiplying all equations in Eq. (1) by a scalar. However, it is possible to di-
minish Cond(B) by multiplying every row and every column of the matrix B by a
suitable set of scaling numbers.

The scaling of linear algebraic equations is an important topic that has a long history
of development. A matrix is equilibrated if all its rows or columns have the same
norm, and under this condition the matrix is better conditioned. Theoretically, some
optimal scalings have been proposed by Bauer (1963, 1969), van der Sluis (1969),
Watson (1991), and Gautschi (2011). The problem is the search of some suitable
diagonal matrices Q and P, such that the condition number of QBP is reduced as
much as possible [Vajargah (2012)]. In this paper we propose a simple procedure
to find P and Q only through a few operations, which are derived explicitly.

The approaches to ill-posed linear problems can be categorized into three main
classes: (a) regularizations of Eq. (1), (b) regularized algorithms to solve Eq. (1),
and (c) a better pre-conditioning and/or post-conditioning to Eq. (1).

One of the matrix preconditioning techniques is based on an approximation of the
inverse of the coefficient matrix. In the splitting method we assume that B =M−N
and associate it with an iterative method:

xk+1 = xk +M−1(b0−Bxk). (3)

Here M−1 plays the role of a preconditioner. The more M resembles B, the faster
the iterative method will converge. A natural and simplest way for the choice of
the preconditioner is a diagonal matrix taken from the coefficient matrix, like as
the Jacobi method. However, it usually does not have a remarkable reduction of the
iteration number.

According to the idea of "equilibrated matrix", Liu (2012a) has developed a gen-
eral purpose optimally scaled vector regularization method to treat ill-conditioned
linear problems. The author and his coworkers have developed several methods
fallen into the above three classes to solve the ill-posed linear problems: using the
fictitious time integration method as a filter for ill-posed linear equations system
[Liu and Atluri (2009a)], a modified polynomial expansion method [Liu and Atluri
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(2009b)], the non-standard group-preserving scheme [Liu and Chang (2009)], a
vector regularization method [Liu, Hong and Atluri (2010)], the preconditioners
and postconditioners generated from a transformation matrix, obtained by Liu, Yeih
and Atluri (2009) for solving the Laplace equation with a multiple-scale Trefftz ba-
sis functions, the relaxed steepest descent method [Liu (2011a)], optimal iterative
algorithm [Liu and Atluri (2011)], an optimally scaled vector regularization method
[Liu (2012a)], a generalized Tikhonov regularization method [Liu (2012b)], the
best vector iterative algorithms [Liu (2012c, 2012d)], an adaptive Tikhonov reg-
ularization method [Liu (2013a)], an optimal tri-vector iterative algorithm [Liu
(2013b)], an optimal preconditioner with an alternate relaxation parameter iterative
algorithm [Liu (2013c)], as well as an optimal Krylov subspace iterative algorithm
[Liu (2013d)].

This paper is a continuation of these efforts, which is organized as follows. The
conjugate gradient method (CGM) and a preconditioned conjugate gradient method
for solving linear equations system are reviewed in Section 2. In Section 3 we pro-
pose a simple two-side equilibration method to reduce the condition number of a
given non-singular matrix only through a few sequential operations. Then, in Sec-
tion 4 we describe two simple and direct two-side equilibrated conditioner methods
for the solution of an ill-posed linear equations system. Section 5 is devoted to use
the two-side CGM (TSCGM), and the pre-conditioning CGM (PrCGM) proposed
in Section 4 together with method of fundamental solutions (MFS) and the Trefftz
method to solve the Cauchy problems of Laplace equation, backward heat conduc-
tion problem, as well as an incomplete Cauchy problem of biharmonic equation.
Finally, the conclusions are drawn in Section 6.

2 A preconditioned conjugate gradient method

Instead of Eq. (1), we can solve the normal equation:

Cx = b, (4)

where

C := BTB, (5)

b := BTb0. (6)

The conjugate gradient method (CGM), which is used to solve Eq. (4), is summa-
rized as follows:
(i) Give an initial x0.
(ii) Calculate r0 = b−Cx0 and p1 = r0.
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(iii) For k = 1,2, . . ., we repeat the following iterations:

αk =
‖rk−1‖2

pT
k Cpk

,

xk = xk−1 +αkpk,

rk = b−Cxk,

βk =
‖rk‖2

‖rk−1‖2 ,

pk+1 = rk +βkpk. (7)

If xk converges according to a given stopping criterion, such that,

‖rk‖< ε, (8)

then stop; otherwise, go to step (iii).

It is well known that the convergence speed of CGM depends on the distribution of
the eigenvalues of the coefficient matrix C. When the coefficient matrix is typically
extremely ill-conditioned, the convergence of CGM can be unacceptably slow. In
this case, the CGM is not competitive without using a good preconditioner. That
is, the preconditioning technique is a key ingredient for the success of CGM in
applications. The idea of preconditioning technique is based on the consideration
of the linear system with the same solution as the original equation. The problem is
that each preconditioning technique is suited for a different type of problem. Until
now no a robust preconditioning technique appears for all or at least much types of
problems. Finding a good preconditioner to solve a given large scale linear system
is often viewed as a combination of art and science.

To improve the convergence speed of iterative methods, an appropriate precondi-
tioner can be incorporated. Based on the survey by Benzi (2002), a good precon-
ditioner should satisfy the following requirements: (1) the preconditioned system
should be easy to solve, and (2) the preconditioner should be cheap to construct and
apply. In order to increase the convergence speed of CGM, we require to reduce the
condition number of C. For the purpose of comparison the preconditioned CGM
with a preconditioning matrix M is written as follows:
(i) Give an initial x0.
(ii) Calculate r0 = b−Cx0, z0 = Mr0 and p1 = z0.
(iii) For k = 1,2, . . ., we repeat the following iterations:
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αk =
rk−1 · zk−1

pT
k Cpk

,

xk = xk−1 +αkpk,

rk = b−Cxk,

zk = Mrk,

βk =
rk · zk

rk−1 · zk−1
,

pk+1 = zk +βkpk. (9)

If xk converges according to a given stopping criterion, such that, ‖rk‖ < ε , then
stop; otherwise, go to step (iii).

3 Two sequential operations to reduce the condition number

Here we rewrite Eq. (1) as

QBPy = Qb0, (10)

where

x = Py. (11)

It follows a new system for y:

Ay = b := Qb0, (12)

where

A = QBP. (13)

Our purpose is first to find a two-side diagonal conditioiners P and Q, such that the
condition number of the new coefficient matrix A can be reduced much than that of
B.

Let us begin with the following diagonal post-conditioning matrix:

P =


1 0 0 . . . 0
0 P2 0 . . . 0
...

...
...

...
...

0 . . . 0 Pn−1 0
0 . . . 0 0 Pn

 . (14)
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The problem is to search for some suitable values of Pk in Eq. (14), such that the
condition number of

A = BP (15)

is reduced as much as possible. Due to the property of Cond(αB) = Cond(B)
for every scalar α 6= 0, we have normalized the first diagonal element of P to one
without lost any generality.

A matrix is equilibrated if all its rows or columns have the same norm, and under
this condition the matrix is better conditioned. According to the idea of equilibrated
matrix [Liu (2012e)], we can choose Pk, such that each column of the coefficient
matrix A has the same Euclidean norm, i.e.,

n

∑
j=1

A2
j1 =

n

∑
j=1

A2
j2 = . . .=

n

∑
j=1

A2
jn, (16)

where Ai j denotes the i j-th component of A. The square norm of the first column
of A is

n

∑
j=1

A2
j1 =

n

∑
j=1

B2
j1, (17)

which is a fixed positive value for the matrix B being given. Hence, from Eqs. (16)
and (17) we can solve Pk by

Pk =

(
∑

n
j=1 B2

j1

∑
n
j=1 B2

jk

) 1
2

, k = 2, . . . ,n. (18)

Now we investigate the effect by using the above scaling technique to reduce the
condition number of the following matrix:

B =

 1 1 1
1 2 3
1 3 6

 . (19)

We obtain the value of Cond(B) = 63. When we apply the above scaling technique
we can obtain Cond(BP) = 50.9411. However, we can apply the following scales
to further reduce the condition number:

Pk = γ

(
∑

n
j=1 B2

j1

∑
n
j=1 B2

jk

) 1
2

, k = 2, . . . ,n, (20)
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Figure 1: For a given matrix, plotting the condition number with respect to the
amplification factor.

where γ is an amplification factor. In Fig. 1 we plot the condition number vs. γ in a
range of γ ∈ [0.5,3.5]. We can observe that when γ = 1.625 the condition number
reduces to the smallest one with 47.7495.

Similarly, we can consider a left-conditioner Q to be

Q =


1 0 0 . . . 0
0 Q2 0 . . . 0
...

...
...

...
...

0 . . . 0 Qn−1 0
0 . . . 0 0 Qn

 , (21)

and apply it to a given matrix B by the following scales:

Qk = γ

(
∑

n
j=1 B2

1 j

∑
n
j=1 B2

k j

) 1
2

, k = 2, . . . ,n. (22)

When γ = 1, the resultant matrix QB has the same norm of each row.
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Let us denote the operations in Eqs. (20) and (22), respectively, by

P = P(B), Q = Q(B). (23)

Now we can construct a sequence of right-conditioners Pk, k = 1, . . . ,M and left-
conditioners Qk, k = 1, . . . ,M by

P1 = P(B), Q1 = Q(B1),

P2 = P(B2), Q2 = Q(B3),

...

PM = P(B2M−2), QM = Q(B2M−1), (24)

where

B1 = BP1, B2 = Q1B1,

B3 = B2P2, B4 = Q2B3,
...

B2M−1 = B2M−2PM, B2M = QMB2M−1. (25)

Then, the final right-conditioner P and left-conditioner Q can be obtained by

P = P1P2 . . .PM, Q = QMQM−1 . . .Q1. (26)

The above process to obtain P and Q is first applying Pi to the resultant matrix and
then applying Qi to the resultant matrix, which is called the PQ process. We can
also reverse the order by first applying Qi to the resultant matrix and then applying
Pi to the resultant matrix, which is called the QP process to distinct from the above
PQ process. For a given symmetric matrix the PQ process and the QP process lead
to the same result. However, for a given unsymmetric matrix the PQ process and
the QP process may lead to the different results.

Besides the symmetric matrix given in Eq. (19) we consider another symmetric
matrix:

Bi j =
1

i+ j−1
, i, j = 1, . . . ,n, (27)

which is the Hilbert matrix, where we fix n = 5. Here we take M = 5.

In Fig. 2 we plot the condition numbers of these matrices with respect to k =
0,1,2, . . . ,2M. When k = 0, the condition number is that of the original matrix.
For these two matrices we use γ = 1.5 and γ = 1,2, respectively. It can be seen that
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Figure 2: For two given symmetric matrices, plotting the condition number with
respect to the number of operations.

the condition numbers for the first matrix given by Eq. (19) can be reduced quickly
after a few operations with the number being k = 2 as shown in Fig. 2(a). For the
Hilbert matrix, the PQ process leads to a fast reduction of the condition number by
two operations, and the value of γ = 2 leads to a smaller condition number than that
using γ = 1 as shown in Fig. 2(b).

Then we consider an unsymmetric matrix:

B =


0.0926612 17.0784926 0.3127063 12.7526810
1.7811361 54.0213314 1.4953060 14.7655003
0.3460217 0.0680433 0.2626770 0.0227214
1.3745248 45.1500312 0.0505958 1.4314422

 . (28)

Vajargah and Moradi (2012) have applied a genetic algorithm to solve a minimum
problem of the condition number under the assumption of D1 and D2 being diago-
nal:

min{Cond(D1BD2)},

and they found



26 Copyright © 2013 Tech Science Press CMES, vol.91, no.1, pp.17-42, 2013

D1 =


−1022.446636286579 0 0 0

0 495.973718177785 0 0
0 0 2743.200397567089 0
0 0 0 545.478809477854

 ,

D2 =


2335.779656989865 0 0 0

0 74.778044753772 0 0
0 0 −2923.322157077509 0
0 0 0 −209.320088460085

 .

By using the above data, we apply the matrix inversion method developed by Liu,
Hong and Atluri (2000) to find the inversion of (D1BD2) and check the accuracy
of the invesrsion which is in the order of 10−15. Then we calculate the minimum
condition number to be 17.414806133, which is larger than that 14.4854765 given
by Vajargah and Moradi (2012).

Under γ = 0.9, the condition number Cond(B) = 474.8583 for the matrix given
by Eq. (28) can be reduced by the PQ process quickly after a few operations with
the number of operations being k = 2 to Cond(B2) = 19.3652, and the PQ process
is faster than the QP process; however, after ten operations they lead to the same
result as shown in Fig. 3(a). The condition number is about 18.9837, which is close
to the minimum value 17.414806133 as reported in the above, not 14.4854765 as
obtained by Vajargah and Moradi (2012). However, the present method is simpler
than the genetic algorithm used by Vajargah and Moradi (2012). For the purpose
of comparison, Q and P are written as follows:

Q =


1 0 0 0
0 0.339130167084 0 0
0 0 2.356851662291 0
0 0 0 0.584688010010

 , (29)

P =


1 0 0 0
0 0.032205073516 0 0
0 0 1.361403106503 0
0 0 0 0.086106431746

 . (30)

This example shows that the proposed sequential PQ and QP methods to find Q
and P are effective and simple.
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Figure 3: For two given unsymmetric matrices, plotting the condition number with
respect to the number of operations and comparing the PQ process and the QP
process.

The last case is an unsymmetric Vandermonde matrix:

B =



1 1 . . . 1 1
x1 x2 . . . xn−1 xn

x2
1 x2

2 . . . x2
n−1 x2

n
...

... . . .
...

...
xn−2

1 xn−2
2 . . . xn−2

n−1 xn−2
n

xn−1
1 xn−1

2 . . . xn−1
n−1 xn−1

n


, (31)

where the nodes are generated from xi = (i− 1)/(n− 1), which are equidistant
nodes in the unit interval xi ∈ [0,1]. For the Vandermonde matrix given by Eq. (31)
we fix n = 10 and γ = 1, and the PQ process and the QP process lead to the similar
results as shown in Fig. 3(b). It is remarkable that the condition number can be
reduced from the original 1.69285× 107 to 1.34912× 106 by using the proposed
PQ and QP processes. Below we only use the PQ process to reduce the condition
number.
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4 A two-side equilibrated conditioning method

4.1 A two-side CGM

Now we can apply the following CGM to solve y and then x = Py:
(i) Give M and γ and calculate P and Q by the PQ process.
(ii) Calculate A = QBP, b = ATQb0 and C = ATA.
(iii) Give an initial y0.
(iv) Calculate r0 = b−Cy0 and p1 = r0.
(v) For k = 1,2, . . ., we repeat the following iterations:

αk =
‖rk−1‖2

pT
k Cpk

,

yk = yk−1 +αkpk,

rk = b−Cyk,

βk =
‖rk‖2

‖rk−1‖2 ,

pk+1 = rk +βkpk. (32)

If yk converges according to a given stopping criterion ‖rk‖ < ε , then stop; other-
wise, go to step (v). The above iterative algorithm will be abbreviated as a two-side
CGM (TSCGM).

4.2 A pre-conditioning CGM

We can also apply the following pre-conditioning CGM (PrCGM) to solve y and
then x = Py:
(i) Give M and γ and calculate P and Q by the PQ process.
(ii) Calculate A = BP, b = ATb0 and C = ATA.
(iii) Give an initial y0.
(iv) Calculate r0 = b−Cy0, z0 = Qr0 and p1 = z0.
(v) For k = 1,2, . . ., we repeat the following iterations:

αk =
rk−1 · zk−1

pT
k Cpk

,

yk = yk−1 +αkpk,

rk = b−Cyk,

zk = Qrk,

βk =
rk · zk

rk−1 · zk−1
,

pk+1 = zk +βkpk. (33)
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If xk converges according to a given stopping criterion, such that, ‖rk‖ < ε , then
stop; otherwise, go to step (v).

5 Numerical examples

5.1 Example 1

Let us consider the inverse Cauchy problem for the Laplace equation:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, (34)

u(ρ,θ) = h(θ), 0≤ θ ≤ βπ, (35)

un(ρ,θ) = g(θ), 0≤ θ ≤ βπ, (36)

where h(θ) and g(θ) are given functions and β ≤ 1. The inverse Cauchy problem
is given as follows: To seek an unknown boundary function f (θ) on the part Γ2 :=
{(r,θ)|r = ρ(θ), βπ < θ < 2π} of the boundary under Eqs. (34)-(36) with the
overspecified data on Γ1 := {(r,θ)|r = ρ(θ), 0≤ θ ≤ βπ}.
It is well known that the method of fundamental solutions (MFS) can be used to
solve the Laplace equation when a fundamental solution is known [Kupradze and
Aleksidze (1964)]. In the MFS the solution of u at the field point z=(r cosθ ,r sinθ)
can be expressed as a linear combination of fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j ∈Ω
c. (37)

For the Laplace equation (34) we have the fundamental solutions:

U(z,s j) = lnr j, r j = ‖z− s j‖. (38)

Previously, Liu (2008a) has proposed a new preconditioner to reduce the ill-condition
of the MFS. In the practical application of MFS, by imposing the boundary condi-
tions (35) and (36) on Eq. (37) we can obtain a linear equations system:

Bx = b0, (39)
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where

zi = (z1
i ,z

2
i ) = (ρ(θi)cosθi,ρ(θi)sinθi),

s j = (s1
j ,s

2
j) = (R(θ j)cosθ j,R(θ j)sinθ j),

Bi j = ln‖zi− s j‖, if i is odd,

Bi j =
η(θi)

‖zi− s j‖2

(
ρ(θi)− s1

j cosθi− s2
j sinθi

− ρ ′(θi)

ρ(θi)
[s1

j sinθi− s2
j cosθi]

)
, if i is even,

x = (c1, . . . ,cn)
T, b0 = (h(θ1),g(θ1), . . . ,h(θm),g(θm))

T, (40)

in which n = 2m, and

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (41)

The above R(θ) = ρ(θ) +D with an offset D can be used to locate the source
points along a contour with the radius R(θ). When the linear equations system (39)
is available, we can apply the TSCGM and PrCGM to solve it.

For the purpose of comparison we consider the following exact solution:

u(r,θ) = r2 cos(2θ),

defined in a domain with the boundary ρ(θ) =
√

10−6cos(2θ), 0≤ θ < 2π .

We add a random noise with an intensity s = 1% on the boundary data, and the
numerical solutions on the whole boundary are computed by the CGM, TSCGM
and PrCGM with D = 100. Here we use the relative residual ‖yk+1 − yk‖ < ε

as a convergence criterion. When the CGM under ε = 10−10 is convergent with
51 iterations, the TSCGM with γ = 0.9, M = 1 and n = 80 is convergent with
9 iterations under ε = 10−2, and the PrCGM with γ = 2, M = 5 and n = 80 is
convergent with 6 iterations under ε = 10−5. It can be seen that the conditioning
effects on TSCGM and PrCGM make them convergence faster than the original
CGM without conditioning.

We compare the numerical solutions with the exact one in Fig. 4(a), and the nu-
merical errors are shown in Fig. 4(b). When the CGM is with the maximum error
being 0.0336, the TSCGM is with the maximum error being 9.037×10−3, and the
PrCGM is with the maximum error being 2.847×10−3. The TSCGM and PrCGM
are much accurate than the CGM.
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Figure 4: For an inverse Cauchy problem: (a) comparing the numerical solutions of
CGM, PrCGM and TSCGM with the exact one, and (b) displaying the numerical
errors.

5.2 Example 2

For this example we apply the following Trefftz method [Liu (2007a, 2007b)] to
solve the inverse Cauchy problem of Laplace equation:

u(r,θ) = a0 +
m

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]
, (42)

where

R0 ≥ ρmax = max
θ∈[0,2π]

ρ(θ) (43)
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is a constant which is greater than the maximum length of the problem domain
Ω. Besides, m is a positive integer chosen by the user, and a0,ak,bk, k = 1, . . . ,m
are unknown coefficients to be determined. Liu and Atluri (2013) have proposed
a modification of the above expansion method by using a set of optimal multiple-
scales Rk, which are obtained by using the concept of equilibrated matrix.

We consider an example with the exact solution:

u = ex cosy = er cosθ cos(r sinθ), (44)

where the contour is described by an epitrochoid boundary shape:

ρ(θ) =
√

10−6cos(2θ). (45)

Figure 5: For an inverse Cauchy problem, comparing the numerical solutions of
PrCGM and that of Liu and Atluri (2013) with the exact one.

Under the following parameters R0 = 5, m = 30, β = 1, γ = 0.9, M = 2 and s =
0.001 we apply the method of PrCGM to solve this Cauchy problem, of which the
result is compared with the exact solution in Fig. 5. Although under a stringent
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Table 1: The comparisons of Liu and Atluri (2013) and the PrCGM used to solve
Example 2

θ = π + k∆θ Liu and Atluri (2013) PrCGM
k = 20 0.013317 0.005314
k = 30 0.441388 0.067176
k = 40 0.049667 0.114839
k = 50 1.557880 0.364920
k = 60 0.096412 0.259237
k = 70 0.601039 0.164740
k = 80 0.011124 0.043562

convergence criterion with ε = 10−9, the PrCGM is convergent with 287 iterations.
The result obtained by the PrCGM with the maximum error being 0.566 is more
accurate than that obtained by Liu and Atluri (2013), of which the comparisons at
some points are made in Table 1, where ∆θ = π/100.

5.3 Example 3

In this example we consider an inverse Cauchy problem of the following bihar-
monic equation:

∆
2u = 0, (x,y) ∈Ω, (46)

where Ω is an interior domain in the plane. This inverse Cauchy problem of bihar-
monic equation is under an incomplete set of data given by

u(ρ,θ) = h(θ), un(ρ,θ) = g(θ), 0≤ θ ≤ 2βπ. (47)

When β = 1 we recover to the direct problem. Here we let β < 1 and do not use
the overspecified data, such that the present problem is a Cauchy problem with an
incomplete set of given data.

For the purpose of comparison we suppose that the exact solution is

u(x,y) = x3 + y3,

and the domain is defined by

ρ(θ) =
√

26−10cos(4θ). (48)
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For this example we apply the following Trefftz method [Liu (2008b)] to solve the
inverse Cauchy problem of biharmonic equation:

u(r,θ) = a0 +
m

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]

+ c0r2 +
m

∑
k=1

[
ck

(
r

R0

)k+2

coskθ +dk

(
r

R0

)k+2

sinkθ

]
. (49)

Figure 6: For inverse Cauchy problem of biharmonic equation, comparing the nu-
merical solutions of PrCGM and TSCGM with the exact ones.

We fix the noise to be s = 0.01 and β = 0.8. Under the following parameters
R0 = 10, m = 5, γ = 1 and M = 5, we apply the TSCGM to solve this Cauchy
problem, which is convergent with 30 iterations under ε = 10−3. Under the follow-
ing parameters R0 = 10, m = 5, γ = 1 and M = 5, we apply the PrCGM to solve
this Cauchy problem, which is convergent with 38 iterations under ε = 10−4. The
numerical results are compared with the exact solutions in Fig. 6, where v = ∆u.
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The results obtained by the TSCGM and PrCGM are very accurate. The maximum
errors of un, v and vn for the TSCGM are, respectively, 0.56, 0.46 and 0.28, while
that for the PrCGM are, respectively, 1.19, 0.78 and 0.36.

5.4 Example 4

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = αuxx(x, t), 0 < t < T, 0 < x < `, (50)

u(0, t) = u0(t), u(`, t) = u`(t), (51)

we solve u under a final time condition:

u(x,T ) = uT (x). (52)

The fundamental solution of Eq. (50) is given as follows:

K(x, t) =
H(t)

2
√

απt
exp
(
−x2

4αt

)
, (53)

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a broad application in engineering
computations. However, the MFS has a serious drawback in that the resulting lin-
ear equations system is always highly ill-conditioned, when the number of source
points is increased [Golberg and Chen (1996)], or when the distances of source
points are increased [Chen, Cho and Golberg (2006)].

In the MFS the solution of u at the field point z = (x, t) can be expressed as a linear
combination of the fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j = (η j,τ j) ∈Ω
c, (54)

where n is the number of source points, c j are unknown coefficients, and s j are
source points being located in the complement Ωc of Ω = [0, `]× [0,T ]. For the
heat conduction equation we have the basis functions

U(z,s j) = K(x−η j, t− τ j). (55)

It is known that the location of source points in the MFS has a great influence on
the accuracy and stability. In a practical application of MFS to solve the BHCP,
the source points are uniformly located on two vertical straight lines parallel to
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the t-axis not over the final time, which was adopted by Hon and Li (2009) and
Liu (2011b), showing a large improvement than the line location of source points
below the initial time. After imposing the boundary conditions and the final time
condition to Eq. (54) we can obtain a linear equations system:

Bx = b0, (56)

where

Bi j =U(zi,s j), x = (c1, · · · ,cn)
T,

b0 = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T, (57)

and n = 2m1 +m2.

Here we compare the numerical solution with an exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final time data is in the order of 10−4, which
is quite small in a comparison with the value of the initial temperature u0(x) =
cos(πx) to be retrieved, which is in the order of O(1). We add a relative random
noise with an intensity s = 10% in the final time data. The convergence criterion is
fixed to be ε = 10−8 and n = 2m1 +m2 = 40. We first solve this problem by using
the TSCGM with M = 1 and γ = 1, which is convergent with 65 iterations and the
maximum error of initial condition obtained is 3.816×10−3, of which the residual
error and the error of solution are shown in Fig. 7. The residual error and the
error of solution obtained by the PrCGM with M = 2 and γ = 1 are shown in Fig. 7,
which is convergent with 65 iterations and the maximum error is 3.758×10−3. The
present results are much better than that calculated by Liu (2011a) which using the
relaxed steepest descent method.

5.5 Linear Hilbert problem

Finding an n-order polynomial function p(x) = a0 +a1x+ . . .+anxn to best match
a continuous function f (x) in the interval of x ∈ [0,1]:

min
deg(p)≤n

∫ 1

0
[ f (x)− p(x)]2dx, (58)

leads to a problem governed by Eq. (1), where B is the (n+ 1)× (n+ 1) Hilbert
matrix defined by

Bi j =
1

i+ j−1
, (59)
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Figure 7: For BHCP solved by the TSCGM and PrCGM, showing (a) the residual
errors, and (b) the numerical errors.

x is composed of the n+1 coefficients a0,a1, . . . ,an appeared in p(x), and

b0 =


∫ 1

0 f (x)dx∫ 1
0 x f (x)dx

...∫ 1
0 xn f (x)dx

 (60)

is uniquely determined by the function f (x).

The Hilbert matrix is a notorious example of highly ill-conditioned matrices. Eq. (1)
with the matrix B having a large condition number usually displays that an arbitrary
small perturbation of data on the right-hand side may lead to an arbitrary large per-
turbation to the solution on the left-hand side.

In this example we consider a highly ill-conditioned linear system (1) with B given
by Eq. (59). The ill-posedness of Eq. (1) increases fast with n. We consider an
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exact solution with x j = 1 and bi is given by

bi
0 =

n

∑
j=1

1
i+ j−1

+ sR(i), (61)

with n = 300 and R(i) are random numbers between [−1,1].

When the noise is in the level of s = 10−4, we let CGM run under the convergence
criterion ε = 10−9. The CGM converges very fast with 55 iterations; however, the
maximum error of CGM is large up to 1.5.

For this highly ill-posed noised problem the TSCGM with γ = 1 and M = 3 is
applicable and convergent with 10 iterations, and the maximum error is 8.67×10−3

as shown in Fig. 8. Then the PrCGM with γ = 0.99 and M = 2 is convergent with
15 iterations under ε = 10−8, and the maximum error is 6.893×10−3 as shown in
Fig. 8. These results are much better than that obtained by Liu (2012d). To our best
knowledge, in the open literature there exists no method which can perform better
than the TSCGM and PrCGM for this problem with n = 300.

Figure 8: For a linear Hilbert problem with n = 300: (a) the residual errors, and (b)
the numerical errors.
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6 Conclusions

The present paper has proposed novel processes which can fast and significantly
reduce the condition number of a given non-singular matrix only through a few
operations. Thus we can solve the new system quite effectively and accurately by
using the conjugate gradient method and the pre-conditioning conjugate gradient
method to an ill-posed linear system. The numerical examples of the Hilbert linear
equations system, backward heat conduction problem, and inverse Cauchy prob-
lems were addressed in this paper by using two different conditioners together with
the CGM; they are, respectively, the two-side CGM and the pre-conditioning CGM
based on the idea of equilibrated norm for the conditioned matrices. It is important
that the efficiency and accuracy of the proposed novel algorithms are superior than
the previous results computed by other algorithms developed by the author and his
co-workers.
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