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Application of Residual Correction Method on
non-Fourier Heat Transfer for Sphere with

Time-Dependent Boundary Condition

Po-Jen Su1, Cha’o-Kung Chen1

Abstract: The residual correction method is used to predict the temperature
distribution of non-Fourier heat transfer with time-dependent boundary condition.
The approximate solution of temperature field is obtained by the residual correction
method based on the maximum principle in combination with the finite difference
method, making it easier and faster to obtain upper and lower approximations of ex-
act solutions, and even can provide clear definitions of the maximum error bounds
of the approximate solutions. The proposed method is found to be an effective
numerical method with satisfactory accuracy.

Keywords: residual correction method, maximum principle, non-Fourier heat
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Nomenclature

k thermal conductivity (W/m ·K)

q heat flux (W/m2)

T distribution temperature of media (K)

Tr ratio of τT to τq

Greek symbols

α thermal diffusivity (m2/s)

τq phase lag of the heat flux vector (relaxation time) (s)

τT phase lag of the temperature gradient (relaxation time) (s)
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Superscripts

∼ approximate function

∩,∪ upper and lower approximate solutions

n value at previous grid point of time or value of the last iteration

Subscripts

i , j, k serial number of the calculation grid point

1 Introduction

With the progress of technology, modern film deposition and patterning techniques
can produce structures with dimensions in micrometers even to nanometers. This
has lead to a trend towards the miniaturization of high-tech industrial products, with
the precision or size of key components being reduced to the micron or nanometer
level. Although such a reduction of device size enhances the switching speed of the
device, but at a cost of high thermal loading. These developments have driven the
extreme miniaturization of electronic devices, (e.g., nano-scaled electronic struc-
tures), leading to increasing concerns about steady and transient thermal behaviors
which can lead to errors in the classical Fourier heat transfer analysis [Vermeer-
sch and Mey (2008), Xu and Guo (1995)]. In recent years, considerable research
has been devoted to non-Fourier heat transfer phenomena. Maxwell (1867) and
Nernst (1918) suggested through theoretical observations that, given low tempera-
tures with properly chosen conductors, heat may have sufficient inertia to result in
oscillatory discharge. Peshkov (1944) measured the propagation velocity of heat
flux in liquid helium at 1.4 K to be 19 m/s, contradicting Fourier’s (FO) law of heat
conduction. Taitel (1972) hypothesized that the transient temperature at the mid-
dle location of a slab with constant-temperature heat sources at both ends can be
higher than that of the sources, called Taitel’s paradox. Based on classical Fourier
heat conduction theory, the heat flux vector (q) has a linear relation with the tem-
perature gradient (∇T ) which implies the propagation speed of the thermal wave is
infinite. That is to say, any thermal disturbance exerted on a body is instantaneously
felt through the whole body. To eliminate the paradox of an infinite thermal wave
speed which contradicts Einstein’s theory of relativity and thus provide a theory
to explain the experimental data on “second sound” in liquid and solid helium at
low temperatures [Chester (1963), Brown, Chung and Matthews (1966)], Catta-
neo (1958) and Vernotee (1961) independently postulated a constitutive relation
between the heat flux vector (q) and temperature gradient (∇T ) in solids, so-called
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CV wave model, as

q+ τq
∂q
∂ t

=−k∇T (1)

where τq indicates the observed time-lag, the so-called relaxation time. Inserting
Eq. (1) into the energy conservation equation yields a hyperbolic heat transport
equation. More recently, Tzou (1997) proposed the dual-phase-lag model (DPL) to
interpret the precedence assumption of the temperature gradient (cause) to precede
the heat flux vector (effect) or the heat flux vector (cause) to precede the tempera-
ture gradient (effect) in the transient heat transfer process. Mathematically, this can
be represented by

q(r, t + τq) =−k∇T (r, t + τT ) (2)

Two relaxation times τT and τq are both regarded as the intrinsic thermal or struc-
tural properties of the material. The former is attributed to micro-structural interac-
tions such as phonon–electron interaction or phonon scattering, and is termed the
phase-lag of the temperature gradient. The latter is interpreted as the relaxation
time accounting for the fast-transient effects of thermal inertia, and is called the
phase-lag of the heat flux. For τq < τT the temperature gradient established across
the material volume is as a result of the heat flow, implying that the heat flux vector
is the cause and the temperature gradient is the effect. For τq > τT , heat flow is
induced by the earlier-established temperature gradient, implying that the temper-
ature gradient is the cause, while the heat flux vector is the effect. In the absence
of the phase lag of the temperature gradient τT = 0, Eq. (2) reduces to the CV
wave model. In addition to low temperature (i.e., temperatures near absolute zero)
applications, non-Fourier theories have attracted more attention in the engineering
sciences due to their application in the extreme miniaturization of devices, high heat
flux conduction, extreme thermal gradients, very short time behavior such as the an-
nealing of semiconductors and laser surgery in biomedical engineering. Moreover,
experimental and theoretical studies on these applications have been reported by
numerous investigators [Baeri et al. (1979), Kaminiski (1990), Mitra et al. (1995),
Xu and Guo (1995), Saedodin and Torabi (2010), Ni et al. (2011), Banerjee et al.
(2005), Hong et al. (2011)]. Comprehensive literature surveys of non-Fourier heat
transfer before 1980s can be found in reviews by Joseph and Preziosi (1989). It is
now accepted that in the above mentioned situations, Fourier’s heat diffusion the-
ory loses accuracy and the non-Fourier effect becomes more reliable in describing
the diffusion process and predicting the temperature distribution.

Various analytical and numerical solutions to the non-Fourier heat transfer equa-
tion regarding time-dependent boundary conditions can be found in the literature.
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Heidarinejad, Shirmohammadi and Maerefat (2008) analytically studied the hy-
perbolic heat conduction in a plane slab, an infinitely long solid cylinder and a
solid sphere with a time dependent boundary heat flux based on the separation of
variables method and Duhamel’s principle. Frankel, Vick and Ozisik (1985) have
demonstrated the hyperbolic heat conduction in the finite thickness slab to a pulsed
surface heat flux, resulting in a finite speed of propagation of the thermal waves.
Tang and Araki (1996) have analytically investigated the non-Fourier effects in a
finite medium subjected to a periodic boundary heat flux condition using the hyper-
bolic heat conduction model. Barletta and Zanchini (1996) studied the temperature
profile in a finite medium imposed on a boundary condition of the exponentially
time decaying heat flux. Liu and Chen (2004) presented a numerical solution for the
temperature distribution of hyperbolic heat conduction in a finite slab with pulsed
boundary conditions.

Flow and heat transfer frequently appear in various manifestations in engineering
and scientific research, including air-conditioning and electronic cooling, which
often entail various problems requiring exact solutions, i.e., the solution of the gov-
erning equation under the given boundary and initial conditions. Finding exact
solutions for these various governing equations was only possible in a very limited
number of cases. In other words, it is usually difficult to find exact solutions for
complex geometric shapes even with nonlinear equations and non-homogeneous
boundary conditions in engineering applications or scientific research under the
given initial and boundary conditions. Given this difficulty to obtain analytic solu-
tions for such complex geometric shapes with non-homogeneous boundary condi-
tions, it is only possible to find their approximate solutions through certain numer-
ical methods, including the Residual Correction Method. This study discusses the
time dependent boundary conditions, which cannot be used to solve the problem
directly.

Past studies have verified that the error margin between approximate solution and
exact solution usually decreases with the increase of grid points or the numbers
of approximate functions which require more memory space and calculation time.
However, it is still impossible to completely determine the accuracy of the approx-
imate solution. As early as 1967, Protter proposed the concept of the maximum
principle which explains the relationship between the solution and the residual of a
differential equation and can therefore be used to find the upper and lower approxi-
mate solutions of the exact solutions of some differential equations. However, until
recently this concept had not been broadly applied in numerical methods, as this ap-
proach includes a programming problem of mathematical inequalities that requires
time-consuming calculations. In recent years, some scholars have made attempts
to simplify the calculating procedure. Lee et al. (2002) successfully used genetic
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algorithms to apply simplified equations reliant on trial functions to handle pro-
gramming problems generated in the optimization process. Wang and Hu (2008)
proposed a method to determine monotonicity in individual differential equations.
Wang (2006; 2007; 2010) and Cheng et al. (2009) used the cubic spline approxi-
mation to discretize the differential equations into the programming problems. The
inequality-constraint programming problems can then be converted into simple it-
erative equations based on the residual correction concept, thus significantly im-
proving the efficiency of obtaining solutions. Tang et al. (2010) and Peng et al.
(2012) extended previous studies for separate applications to non-Fourier problems
for fins and the laser heating process. They applied the finite difference to discretize
the equation, converting the differential equation into a programming problem, and
then incorporated the residual correction method to obtain the upper and lower ap-
proximate solutions. Their study showed that incorporating the residual correction
method into the nonlinear iterative procedure of the finite difference can make it
easier and faster to obtain approximate solutions.

This paper studies the non-Fourier heat transfer problem for a micro-sphere with
a time-dependent heat flux boundary via the residual correction method based on
maximum principles in differential equations. The advantage of this method is
that the upper and lower approximate solutions obtained can restrict the exact so-
lution in a known region, thus it can be used to estimate the range of the maximum
possible error between the approximate solution and the exact solution, avoiding
a blind increase of calculation grid points to obtain more accurate approximate
solutions. The influences of time-dependent boundary, radiation boundary condi-
tions and short pulsed laser parameters are examined.

2 Mathematical Preliminaries

2.1 Maximum Principle for Differential Equations

The maximum principle for differential equations is a generalization of basic prob-
lems in calculus to describe a continuously differentiable function as having its
maximum value at one endpoint of an interval if it satisfies the inequality f ′′(x)> 0
on the interval. That is to say, if a function satisfies a differential inequality in a
domain and obtains its maximum value on the boundaries of the domain, we can
say that the differential equation satisfies the maximum principle for differential
equations with monotonicity. The approach is based on the concept of maximum
principle to build up the residual of differential equations and thus obtain the up-
per and lower approximate solutions. At first, assume a differential equation in the
form below:
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R
θ̃
(x) = F(x, ũ, ũx, ũxx)− f (x) in D (3)

Boundary conditions satisfy

R
θ̃
(x) = g(x)− θ̃(x) on ∂D (4)

where the function R
θ̃
(x) is known as the residual value function of the approximate

function θ̃(x) of the differential equation in the domain D or on the boundaries ∂D.
Assuming that the approximate solutions are defined in the calculation domain and
are continuous to second derivatives, if

∂R
∂θ
≤ 0 in D (5)

then, if and only if the following relationship between the residual relation and
approximate functions holds true

R^
θ
(x)≥ Rθ (x) = 0≥ R_

θ
(x) on D∪∂D (6)

the approximate solutions will have the following relation with the exact solution:

^

θ (x)≤ θ (x)≤
_

θ (x) on D∪∂D (7)

where
^

θ (x) and
_

θ (x) are respectively known as the lower and upper approximate
solutions of the exact solution θ (x). A differential equation with such relations is
considered monotonic.

2.2 Residual Correction Steps

Use the finite difference method to discretize and reformulate the residual relation
into the following expression:

Rr,i, j,k (t,x,y,z) =−
(

L [θ ]n+1
r,i, j,k +N [θ ]nr,i, j,k

)
+ fr,i, j,k (8)

where L is the linear operator and N is the nonlinear operator, the superscript n is
the iterative times, and the subscript r, i, j,k is the serial number of the grid points
after discretizing.
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Then, transfer the expression into an iterative equation with residual correction to
avoid complex calculations:

−
(

L [θ ]n+1
r,i, j,k +N [θ ]nr,i, j,k

)
+ fr,i, j,k =

max
min

(
∆Rn

r,i, j,k (t,x,y,z)
)

(9)

where ∆Rn
r,i, j,k (t,x,y,z) indicates the residual distribution function of the last calcu-

lation results on adjacent subintervals of grid points. It can be expanded as follows
by using the Taylor series at the grid points:

∆Rr,i, j,k (t,x,y,z) =
∞

∑
s=1

∞

∑
p=1

∞

∑
q=1

∞

∑
l=1

∂Rr,i, j,k(t,x,y,z)
∂ ts∂xp∂yq∂ zr

(t−tr)
s(x−xi)

p(y−y j)
q
(z−zk)

l

s!p!q!r! (10)

(tr−∆t)≤ t ≤ (tr) (xi−∆x)≤ x≤ (xi +∆x)

(y j−∆y)≤ y≤ (y j +∆y) , (zk−∆z)≤ z≤ (zk +∆z)

Then, the residual values on the adjacent subintervals of the grids can be ensured to
be all positive or all negative by the residual values at the calculation grids which
are corrected by indentifying the maximum and minimum of residual values on
these intervals.

The convergence criterion applied in the present study is the relative error conver-
gence as defined by the following equations:

Eθ =

∣∣∣∣ θ̃ n+1
i − θ̃ n

i

θ̃ n
i

∣∣∣∣≤ ε, i = 0,1, · · · ,Ni (11)

3 Model Description

Consider a radial one-dimensional non-Fourier heat conduction process in a hollow
sphere with inner and outer radii ri and ro, respectively as shown in Fig. 1, com-
posed of an isotropic heat conduction material with constant thermal properties.
From time t = 0 its inner surface is irradiated by a Q-switched laser source with
power Q(t) = Q0

4πr2
i

t
t2
p

exp
(
− t

tp

)
where tp is the characteristic time of the laser pulse

and Q0
4πr2

i
is the laser intensity defined as the total energy (Q0) carried by laser pulse

per unit inner spherical surface area. By modulating the value of tp, the laser pulse
with different time durations can be obtained as in Fig. 2.

The pulse energy is assumed to be absorbed at the inner surface of the sphere. The
thermal disturbance is caused by a sudden change in heat flux on the sphere’s inner
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Figure 1: Computation domain

Figure 2: Temporal profile of the heating laser with different pulse durations
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surface while the outer surface is considered with the radiation boundary condi-
tion. No heat source is involved and heat convection and radiation are disregarded.
Therefore, the non-Fourier heat conduction equation is formulated as follows

∂ 2T
∂ r2 +

2
r

∂T
∂ r

+ τT
∂

∂ t

(
∂ 2T
∂ r2 +

2
r

∂T
∂ r

)
=

1
α

∂T
∂ t

+
τq

α

∂ 2T
∂ t2 (12)

For the considered situation, the boundary conditions are introduced as

−k
∂T (r, t)

∂ r

∣∣∣∣
r=ri

= Q(t) =
Q0

4πr2
i

t
t2
p

exp
(
− t

tp

)
(13)

−k
∂T (r, t)

∂ r

∣∣∣∣
r=ro

= σ
(
T 4−T 4

∞

)
(14)

and initial conditions are assumed to be

T (r,0) = T0 ; ∂T (r,0)
∂ t = 0

The residual correction relation is established for the governing Eq. (12) in the
form of

R(r, t) = Trr +
2
r

Tr + τT

(
Ttrr +

2
r

Ttr

)
− 1

α
Tt −

τq

α
Ttt (15)

Before continuing the calculation steps, the maximum principle is applied to deter-
mine whether Eq. (15) is monotonic.

∂R
∂T

=
∂

∂T

(
Trr +

2
r

Tr + τT

(
Ttrr +

2
r

Ttr

)
− 1

α
Tt −

τq

α
Ttt

)
= 0 (16)

If the maximum principal is satisfied, the required condition is:

∂R
∂T
≤ 0 (17)

Thus Eq. (17) holds and the monotonicity exists.



144 Copyright © 2013 Tech Science Press CMES, vol.91, no.2, pp.135-151, 2013

The residual correction method is used in combination with the finite difference
method of implicit scheme to discretize Eq. (12), followed by the addition of a
residual correction at every grid point. An iterative relation will then be generated
in the form of

[
1

(∆r)2 − 1
ri∆r +

τT
2∆t(∆r)2 − τT

2ri∆t∆r

]
T n+1

i−1 +
[
− 2

(∆r)2 − τT
∆t(∆r)2 − 1

2α∆t −
τq

α(∆t)2

]
T n+1

i

+
[

1
(∆r)2 +

1
ri∆r +

τT
2∆t(∆r)2 +

τT
2ri∆t∆r

]
T n+1

i+1

=
[
− 2τq

α(∆t)2

]
T n

i +
[

τT
2(∆t)(∆r)2 − τT

2ri(∆t)(∆r)

]
T n−1

i−1 +
[
− τT

∆t(∆r)2 − 1
2∆t +

τq
α(∆t)2

]
T n−1

i

+
[

τT
2∆t(∆r)2 +

τT
2ri∆t∆r

]
T n−1

i+1 −Max
Min (0,−Rn

t ∆t)−Max
Min (Rn

r ∆r,−Rn
r ∆r)

(18)

The finite-difference method is used to discretize the initial and boundary condi-
tions,

T 0
i = 0 (19)

T 0
i = T 2

i (20)

T n+1
0 = T n+1

2 +
2∆r

k
Q0

4πr2
i

tn+1

t2
p

exp
[
− tn+1

tp

]
(21)

T n+1
Ni+1 = T n+1

Ni−1−
2σ∆r

k

{ [
T n+1

Ni

]4−T 4
∞

}
(22)

For the above expression, if two variables r and t of Eq. (15) are partially differen-
tiated, and the differential terms of a higher order, Trrr and Tttt are neglected, then
Rr and Rt can be expressed as

Rr =
(
−2r−2Tr +2r−1Trr

)
+ τT

(
−2r−2Ttr +2r−1Trtr

)
−α

−1Trt − τqα
−1Trtt (23)

Rt = Ttrr +2r−1Ttr + τT
(
Tttrr +2r−1Ttr

)
−α

−1Ttt (24)

4 Results and Discussion

To verify the applicability of residual correction method for spherical coordinates,
this paper refers to parameter settings selected by Pourmohamadian et al. (2007)
as a basis for comparison. Their work developed a heat transfer regime map for
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a transient symmetrical solid sphere without source terms, but with a prescribed
constant temperature at the surface. As seen in Fig. 3, using the method developed
by Pourmohamadian et al. (2007), the temperature profiles at the interior nodes are
placed between the upper and lower approximate solutions. The results are also in
good agreement with the analytical solution.

Figure 4 illustrates the temperature distributions of various numbers of grid points
for the case in Fig. 1 of the DPL model. The inner radius ri is 0.001 m. The
mean values of the upper and lower approximate solutions in all cases are close to
the analytical solution, although the range between the upper and lower solutions
narrows as the grid number increases. Therefore, fewer grid points can be adopted
for the efficiency calculation. But the subsequent simulation still uses N = 1600 to
prevent the intertwining of curves. Figure 5 shows the temperature profiles along
the radial direction for the different heat transfer models. As expected, the curve of
CV model drops sharply due to the nature of the equation. The CV model induces a
thermal wave and leads to a discontinuous temperature response. The temperature
profiles of the DPL model predicted similar behavior as an FO model but is reduced
due to its nature of the time lag. The ratio of τT to τq varies from 0.005 to 0.95 for
the DPL model is depicted in Fig. 6, which shows the temperature prediction with
increasing time. It shows that, following the Tr decrease, the nature of the time
lag was revealed. As the relaxation time of phase lag of the temperature gradient
approaches zero (0.005 in this case), the relation is reduced to the CV model. By
setting it close to one, (0.95 in this case), the solution obviously is reduced to the FO
model, and the time lag phenomena vanish. In the case of τT = τq, not necessarily
equal to zero, Eq. (12) can be rearranged into the following form

(
∂ 2T
∂ r2 +

2
r

∂T
∂ r
− 1

α

∂T
∂ t

)
+ τq

∂

∂ t

(
∂ 2T
∂ r2 +

2
r

∂T
∂ r
− 1

α

∂T
∂ t

)
= 0 (25)

For a homogeneous initial temperature, it has a general solution

∂ 2T
∂ r2 +

2
r

∂T
∂ r
− 1

α

∂T
∂ t

= 0 (26)

which is the classical diffusion equation, i.e., Fourier’s law.

Figure 7 shows the temperature distributions versus spatial coordinates for various
relaxation time ratios. It shows the temperature distribution decreases suddenly
near the inner surface, especially as the relaxation time ratio, Tr, approaches zero.
This is caused by the effects of heat transfer lag, which induces the so-called ther-
mal wave phenomena.
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Figure 3: Comparison between present and Pourmohamadian et al.’s results (2007)
for the FO, CV and DPL models

Figure 4: Upper and lower solutions of temperature distributions for various grid
number values for DPL model (t=1.0 sec; tp=0.01 sec)
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Figure 5: Comparison of temperature distributions for various models after 1 sec.

Figure 6: Comparison of upper and lower solutions for temperature distributions
versus time for various relaxation time ratios
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Figure 7: Upper and lower solutions for temperature distributions versus spatial
coordinates for various relaxation time ratios. (t=1sec)

5 Conclusion

Based on the validation by the non-Fourier heat transfer for hollow spheres with
a time-dependent boundary on the inner surface of a hollow sphere, the proposed
residual correction method is found to effectively identify upper and lower approx-
imate solutions. The residual correction values at every grid point can be handled
simultaneously in the solution process without requiring additional iterations.

A comparison of various relaxation time ratios for the DPL heat transfer model
in a symmetrical hollow sphere solved numerically with the residual correction
method produces the upper and lower approximate solutions and the error range.
The simulation shows the effect of the FO, CV and DPL models. CV is found to
predict higher temperatures than the FO model for the present heat flux boundary
condition, while the DPL predicts lower temperatures.

The results show that different heat transfer models or even different parameter val-
ues may change the error range of approximate solutions, even if the relevance of
these factors is complex. The method proposed is capable of properly identifying
the range within which exact solutions are expected to exist. In addition to produc-
ing mean approximate solutions with acceptable numerical accuracy, the method
allows us to estimate the range of maximum possible error between the approxi-
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mate and exact solutions and to avoid a blind increase of calculation grid points to
obtain more accurate approximate solutions.
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