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Iterative Coupling Between the TBEM and the MFS Part I
- Acoustic Wave Propagation

António Tadeu1,2, Julieta António1, Patrícia Ferreira3

Abstract: This paper presents an iterative coupling between a formulation based
on the normal derivative of the integral equation (TBEM) and the method of fun-
damental solutions (MFS) for the transient analysis of acoustic wave propagation
problems in the presence of multiple inclusions. The proposed formulation over-
comes the individual limitations of each method, requires less computer memory
and may use less CPU time than a full direct coupling formulation scheme.
In the proposed formulation each inclusion is solved individually, successively, us-
ing the TBEM or the MFS and scatters a field that it is seen as an incident field at
each of the other inclusions. The iterative process is stopped when the field scat-
tered by each individual inclusion is negligible. The final solution is the sum of
all the scattered field contributions. The inclusions are coupled by imposing the
required boundary conditions.
The accuracy of the proposed algorithms, using different numbers of inclusions, is
verified by comparing the solutions against reference solutions established by solv-
ing a full coupling system. The applicability of the proposed method is shown by
simulating the acoustic behavior of a set of rigid acoustic screens in the vicinity of
a dome.

Keywords: acoustic wave propagation, iterative TBEM/MFS coupling, thin acous-
tic barriers

1 Introduction

Solving wave propagation problems in the presence of multiple inclusions of dif-
ferent sizes, types and shapes embedded in unbounded acoustic or elastic media is

1 Corresponding author. E-mail address: tadeu@itecons.uc.pt Tel. + 351 239 798 921 Fax: + 351
239 798 939

2 CICC, Department of Civil Engineering, Faculty of Sciences and Technology, University of Coim-
bra, Rua Luís Reis Santos - Pólo II da Universidade, 3030-788 Coimbra, Portugal

3 ITeCons, Rua Pedro Hispano and Pólo II da Universidade, 3030-289 Coimbra, Portugal



154 Copyright © 2013 Tech Science Press CMES, vol.91, no.3, pp.153-176, 2013

a challenge for areas of engineering such as acoustics, underwater acoustics, seis-
mology, and electromagnetism. A problem of this nature may give rise to an in-
tricate wave field caused by the interaction between the incident field and multiple
reflections between the inclusions.

Analytical approaches are only known for regular geometries such as circular cylin-
drical cylinders and spheres [Defos du Rau et al. (1996); Huang and Lu (2006);
Antoine et al. (2008); Gabrielli and Mercier-Finidori (2001)]. The presence of
inclusions of irregular and complex geometries often leads to the implementation
of numerical methods such as the boundary element method (BEM), the finite dif-
ference method (FDM) or the finite element method (FEM).

The FEM and the FDM are better suited to deal with bounded domains since they
require the full discretization of the domain. However, when there are multiple
inclusions the space between them also needs to be discretized and special treat-
ments are required. If the domain is unbounded it becomes unfeasible for a very
large number of inclusions.

But some advances have been made in simplifying the computation in regions con-
taining complex scatter configurations, such as those applied by Grote and Kirsch
(2004). They use several smaller, separate, artificial boundaries, each enclosing a
different obstacle. They handle the unboundedness of the physical domain by intro-
ducing an extended version of an exact non-reflecting boundary condition known
as a Dirichlet-to-Neumann (DtN) condition. The applicability of the DtN technique
coupled with finite difference methods is enhanced by extending it to multiple scat-
tering from obstacles of arbitrary shape [Acosta and Villamizar (2010)].

The BEM is one of the most suitable techniques for modeling homogeneous un-
bounded systems containing irregular interfaces and inclusions since the far field
conditions are automatically satisfied and only the boundaries of the interfaces and
inclusions need to be discretized. Thus, the numerical errors are attenuated com-
pared with those obtained with full domain discretization methods.

However, the BEM has some drawbacks. The knowledge of appropriate Green’s
functions is required, which implies the correct evaluation of singular or hypersin-
gular integrals when solving the boundary integral equations and generates com-
plex and fully populated linear systems. Moreover, the classical formulation of
the BEM degenerates to lead to ill-conditioned systems in the modeling of thin
bodies or open boundary problems (zero thickness structures). In such cases the
dual boundary element method or the normal derivative integral equation (named
here TBEM) must be used, which causes additional hitches in solving the resulting
equations.

The meshfree methods that require neither domain nor boundary discretization have



Iterative Coupling Between the TBEM and the MFS 155

been subjects of recent research in many areas of computational science and ap-
proximation theory [Fairweather et al. (2003); Godinho et al. (2009)]. The MFS
belongs to the class of boundary methods and it may be seen as an indirect bound-
ary element method [Jawson and Symm (1977)] with a concentrated source instead
of a distributed one. Like the boundary element method, it requires the knowledge
of fundamental solutions [Greenberg (1971)].

The MFS seems to be particularly effective for studying wave propagation since it
overcomes some of the mathematical complexity of the BEM and provides accept-
able solutions at substantially lower computational cost [Godinho et al. (2006)].
The MFS solution is computed by using a linear combination of fundamental so-
lutions (Green’s functions [Tadeu et al. (2009)]), generated by a set of virtual
sources that use a domain decomposition technique to simulate the scattered and
refracted field produced by the heterogeneities. To avoid singularities, these ficti-
tious sources are placed at some distance from the inclusion’s boundary. The use
of fundamental solutions allows the final solution to verify the unbounded bound-
ary conditions automatically. Still, the use of the MFS has its own limitations when
thin inclusions such as cracks and inclusions with twisting (sinuous) boundaries are
present [Alves and Leitão (2006)]. Coupling different methods to benefit from the
advantages of each is one strategy researchers have adopted to improve the results
with a view to speeding up analysis and ensuring efficiency, stability, accuracy and
flexibility.

Examples of this are the BEM/FEM [Soares and Mansur (2005); Warszawski et
al. (2008); He et al. (2011); Rüberg and Schanz (2008); Lie et al. (2001); Zheng
et al. (2011)], BEM/ray tracing [Hampel et al. (2008)] or the BEM/MFS [?]
coupling where each technique is applied to distinct sub-domains.

In previous works the authors coupled the Traction BEM with the MFS to demon-
strate the hybrid method’s ability to tackle thin fluid-filled inclusions [Tadeu et al.
(2010a)], to model the transient analysis of conduction heat transfer in the presence
of inclusions [Tadeu et al. (2010b)], to simulate wave propagation in an elastic
medium containing elastic, fluid, rigid, and empty heterogeneities, which may be
thin [Tadeu and Castro (2011); Castro and Tadeu (2012)].

Even if the flexibility of the model is improved, the conventional (direct) coupling
methods require the equations for all subdomains to be assembled into a single,
global, equation system. The solution of problems with multiple inclusions, partic-
ularly when modeling high excitation frequencies, thus leads to very large systems
whose coefficient matrix not banded and not sparse requiring high computational
times and high computer memory.

Iterative solvers have been proposed to solve high dimension systems, even when
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coupling strategies are not used. Examples of this are the works to solve linear
systems resulting from BEM formulations. Valente and Pina [Valente and Pina
(2001)] explore conjugate gradient type methods as an alternative to the direct solu-
tion techniques for three-dimensional problems. The performance of different iter-
ative solvers has been assessed by Marburg and Schneider [Marburg and Schneider
(2003)] in acoustic problems to be analyzed by boundary element methods. The
generalized minimal residual method has been used by Ylä-Oijala and Järvenpää
[Ylä-Oijala and Järvenpää (2006)] to solve the matrix resulting from using a high
order boundary element method to solve time harmonic acoustic scattering prob-
lems. Alia et al. [Aliaa et al. (2012)] applied a changing minimal residual method
based on the Hessenberg process (CMRH) for solving linear systems yielded by
the variational boundary element method applied to acoustic problems.

Researchers have proposed a number of iterative methods to avoid having to as-
semble and solve a global, coupled equation system. Smaller and better condi-
tioned systems of equations can be obtained by analyzing the subdomains sepa-
rately, where independent discretizations may be considered for each subdomain
and suitable solvers can be used for the system of equations of each subdomain.
Several works have been published on the time domain analysis of wave propaga-
tion problems that makes use of iterative coupling formulations.

A sequential Dirichlet–Neumann method with single relaxation for the iterative
coupling of one FEM and BEM domain to be applied to two-dimensional linear
elastostatics has been developed by Lin et al. [Lin et al. (1996)] and Feng and
Owen [Feng and Owen (1996)]. Soares et al. [Soares et al. (2004)] modified this
algorithm to a sequential Neumann–Dirichlet method with single relaxation and
extended it for use in 2D transient electrodynamics problems. More recently, Es-
torff and Hagen [von Estorff and Hagen (2006)] extended this algorithm to obtain
a sequential Neumann–Dirichlet method to solve FEM and BEM subdomains in
3D transient elastodynamic analyses. This method has also been applied to other
problems such as analysis of fluid-soil-structure interaction [Soares and Mansur
(2006)] and acoustic modeling [Soares (2009)].

Other works developed in the frequency domain have made use of iterative meth-
ods. Some of them are not related to the coupling technique [Farhat et al. (2000)].
Farhat et al. [Farhat et al. (2000)] presented two two-level domain decomposi-
tion (DD) methods for solving iteratively large-scale systems of equations arising
from the finite element discretization of high-frequency exterior Helmholtz prob-
lems. The first method employs a single Lagrange multiplier field to glue the local
solutions at the subdomain interface boundaries. The second method used two La-
grange multiplier fields for the same purpose.

Benamou and Desprès [Benamou and Desprès (1997)] used the domain decom-
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position method in conjunction with the PML technique as a coupling iterative
technique. The domain is split into smaller sub-domains and a sequence of similar
sub-problems is solved. The boundary conditions are adjusted iteratively by ad hoc
transmission conditions between adjacent sub-domains.

Soares et al. [Soares et al. (2012)] coupled two meshless methods, the method
of fundamental solutions (MFS) and the Kansa’s method (KM) to model acoustic
wave propagation in heterogeneous media. The MFS is employed to simulate the
infinite part of the fluid domain and the KM is applied to discretize the hetero-
geneities of the model. The KM–MFS coupling requires a successive renewal of
the variables at the common interfaces (iterative procedure). A relaxation parame-
ter is introduced to ensure and/or to speed up convergence.

In the present work the transient analysis of acoustic wave propagation problems
in the presence of multi-inclusions is undertaken by coupling the TBEM and the
MFS. The problem is solved iteratively. The TBEM is implemented to model the
thin inclusions, while the MFS is used to solve the inclusions whose geometry is
regular. At each step, only one inclusion is individually solved, that leads to small
system of equations and thus to reduced matrix storage requirements. During the
first iteration, each inclusion is solved using its prescribed boundary conditions.
The rest of the inclusions are not taken into account; only the incident field and
the scattered field generated by the other inclusions (previously modeled) are con-
sidered. After the first iteration, each inclusion is subjected to the new scattered
field generated by the other inclusions, and this acts as the incident field, which has
not yet been taken into account. As the coefficient matrixes remain the same, the
systems of equations are only solved once during the first iteration. The iterative
process is stopped when the new scattered field elicited by each inclusion is small.
This is accomplished by defining a convergence criterion that can be established by
following, at each iteration, the computed response to a set of referenced receivers.
To illustrate the applicability of the proposed formulation, acoustic physical sys-
tems with different numbers of inclusions are solved and the results and the CPU
time required are compared with those obtained using a full coupling technique.

The iterative coupling formulation that is applied to multiple inclusions embedded
in an unbounded acoustic medium is described in the next section. The iterative
coupling formulation is verified against solutions obtained using a full BEM/MFS
coupling formulation, which are taken as reference solutions. The number of iter-
ations and the CPU time taken to compute the numerical responses when varying
numbers of inclusions, subjected to different steady state acoustic sources, are used
to evaluate the computational efficiency of the proposed iterative coupling formu-
lation.

Finally, the applicability of the proposed iterative method is demonstrated by means
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of a numerical example that simulates the propagation of acoustic waves generated
by a line pressure source when a set of barriers is placed in the vicinity of a dome.
Time signatures are computed to illustrate the main propagation features.

2 Iterative TBEM/MFS coupling formulation

Consider two two-dimensional irregular cylindrical inclusions, one thin rigid acous-
tic screen and a rigid inclusion, submerged in a spatially uniform fluid medium of
density ρ (Figure 1).

This system is subjected to a harmonic point pressure source at O, placed at xs(xs,ys),
which oscillates with a frequency ω , and originates an incident pressure at x(x,y),

pinc (x,ω) = AH0 (kαr1) (1)

where the subscript inc represents the incident field, r1 =

√
(x− xs)

2 +(y− ys)
2, A

the wave amplitude, kα = ω

α
, α the pressure wave velocity of the fluid medium, and

Hn (. . .) corresponds to second Hankel functions of order n.

Iteration 0 - Step 1: The incident field only illuminates the thin screen and the
second inclusion is assumed to be absent (see Figure 2a)

The pressure (p) at any point x of the spatial domain can be calculated using the
Helmholtz equation,

∇
2 p(x,ω)+(kα)

2 p(x,ω) = 0 (2)

As the barrier is thin, the classical boundary element method degenerates. The use
of the normal derivative integral equation is one way to overcome this limitation.
The normal derivative integral equation can be derived by applying the gradient
operator to the boundary integral equation,

c p(0)(x,ω) = −
∫
S1

H(x,nn1,x0,ω) p(0)(x,ω)ds+ pinc(x0,xs,ω) (3)

In these equations, nn1 is the unit outward normal along the boundary of the in-
clusion S1; H are the fundamental solutions (Green’s functions) for the pressure
gradient at x due to a virtual point pressure load at x0. pinc is the pressure incident
field at x0, when the point pressure source is located at xs. The factor c is a con-
stant defined by the shape of the boundary, taking the value 1/2 if x0 ∈ S1 and S1 is
smooth. The superscript used in p(iter) indicates the number of the iteration.

The Green’s functions for pressure gradients in an unbounded medium, in Cartesian
coordinates, can be given by:

H(x,nn1,x0,ω) =
i
4

kαH1 (kα r)
∂ r

∂nn1
(4)
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with r =
√
(x− x0)

2 +(y− y0)
2.

The application of the gradient operator to equation (3), which can be seen as as-
suming the existence of dipole pressure sources (dynamic doublets), leads to

a p(0)(x0,ω) = −
∫
S1

H(x,nn1,nn2,x0,ω) p(0)(x,ω)ds+ pinc(x0,nn2,xs,ω) (5)

The Green’s functions H are defined by applying the traction operator to H, which
can be seen as the derivatives of these former Green’s functions, to obtain pressure
gradients. In these equations, nn2 is the unit outward normal to the boundary S1 at
the collocation points x0. In this equation, the factor a is null for piecewise planar
boundary elements.

The required two-dimensional Green’s functions for an unbounded space are now
defined as:

H̄ (x,nn1,nn2,x0,ω) =

i
4

kα

{
−kαH2 (kα r)

[(
∂ r
∂x

)2
∂x

∂nn1
+

∂ r
∂x

∂ r
∂y

∂y
∂nn1

]
+

H1 (kα r)
r

[
∂x

∂nn1

]}
∂x

∂nn2
+

i
4

kα

{
−kαH2 (kα r)

[
∂ r
∂x

∂ r
∂y

∂x
∂nn1

+

(
∂ r
∂y

)2
∂y

∂nn1

]
+

H1 (kα r)
r

[
∂y

∂nn1

]}
∂y

∂nn2

(6)

In Equation (5) the incident field is computed as

pinc(x,nn2,xs,ω) =
iA
2

kαH1 (kαr1)

(
x− xs

r1

∂x
∂nn2

+
y− ys

r1

∂y
∂nn2

)
(7)

The solution of equation (5) requires the discretization of the interface S1 (see Fig-
ure 2b). In this analysis the interface is discretized with N straight boundary ele-
ments, with one nodal point in the centre of each element. This leads to a system
of [N ×N] equations (Bp(0) = p(0)inc).[
−H̄kl

][
p(0)l

]
=
[
−p̄(0)kinc

]
(8)

where k, l = 1,N, H̄kl =
∫
Cl

H̄(xl,nn1,nn2,xk,ω)dCl and Cl is the length of each

boundary element.

The integrations in equation (8) are performed through a Gaussian quadrature scheme
when the element being integrated is not the loaded one. When the element being
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Figure 1: Sketch of the geometry of the problem

integrated (Cl) is the loaded one, the following integral becomes hypersingular,∫
Cl

H̄ (x,nl,nl,x0,ω) dCl =

∫
Cl

i
4 kα

[
−kαH2 (kα r)

(
∂ r
∂x

∂x
∂nl

+ ∂ r
∂y

∂y
∂nl

)2
+ H1(kα r)

r

]
dCl

(9)

This integral can be evaluated analytically, considering the dynamic equilibrium of
a semi-cylinder bounded by the boundary element, leading to:

∫
Cl

H̄ (x,nl,nl,x0,ω) dCl =
i
2
(kα)

2

 L/2∫
0

H0 (kα r)dr− 1
kα

H1

(
kα

L
2

) (10)

where L stands for the length of the boundary element. The integral
L/2∫
0

H0 (kα r)dr

is evaluated, following the expressions in Tadeu et al. [Tadeu et al. (1999)]

L/2∫
0

H0 (kα r)dr =
L
2

H0

(
kα

L
2

)

+π
L
4

[
H1

(
kα

L
2

)
S0

(
kα

L
2

)
−H0

(
kα

L
2

)
S1

(
kα

L
2

)]
(11)

where Sns (. . .) are Struve functions of order ns.
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The solution of this system of equations gives the nodal pressures p(0) along the
boundary S1, which allows the scattered pressure field to be defined anywhere in
the field xrec,

p01(xrec,ω) =−
∫
S1

H(x,nn1,xrec,ω) p(0)(x,ω)ds (12)

In this equation, the subscripts of p01(xrec,ω) define the iteration order (0) and
identify the structure that produces it (1).

Iteration 0 - Step 2: The rigid inclusion is illuminated by the incident field and
by the scattered field generated at the acoustic screen after being submitted to the
incident field (Step 1) (see Figure 3a).

The second inclusion, a rigid body, is modeled using the MFS. The MFS assumes
that the response of this inclusion is found as a linear combination of fundamental
solutions that simulate the pressure field generated by one set of NS virtual sources.
These virtual loads are distributed along the inclusion interface at distance δ from
that boundary, towards the interior of the inclusion (line Ĉ(1) in Figure 3b), in order
to prevent singularities. Sources inside the inclusion have unknown amplitudes
a(iter)

n_ext (the superscript (iter) indicates the number of the iteration). In the acoustic
medium, the scattered pressure fields are given by

p(0)(x,ω) =
NS

∑
n=1

[
a(0)n_extG(x,xn_ext ,ω)

]
(13)

where G(x,xn_ext ,ω) are the fundamental solutions which represent the pressures
at points x, generated by pressure loads acting at positions xn_ext . n_ext are the
subscripts that denote the load order number placed along the line Ĉ(1).

To determine the amplitudes of the unknown virtual pressure loads a(iter)
n_ext , null nor-

mal pressure gradients must be imposed at interface S2, along NS collocation points
xcol . This must be done taking into account the scattered field generated at inclu-
sion 1, the rigid screen. The pressure gradient field generated by the first inclusion
defined in Step 1, can be viewed as an incident field that strikes the rigid inclusion
∂ p(0)12
∂nn2

(xcol,nn2,ω) =−
∫
S1

∂H
∂nn2

(x,nn1,nn2,xcol,ω) p(0)(x,ω)ds,

∂ p(0)12
∂nn2

(xcol,nn2,ω) +
∂ pinc

∂nn2
(xcol,nn2,xs,ω)

+
NS

∑
n=1

[
a(0)n_ext

∂G
∂nn2

(xcol,nn2,xn_ext ,ω)

]
= 0 (14)
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Figure 2: Iteration 0, step 1: a) geometry of the problem; b) discretization of the
rigid acoustic screen: nodal points and boundary elements

In these equations, nn2 is the unit outward normal to the boundary S2.

This leads to a system of [NS×NS] equations (Ca(0) =
∂ p(0)inc
∂nn2

), which allows the

unknown amplitudes a(0)n_ext to be defined.[
∂Gnn

p

∂nn2

][
a(0)n_ext

]
=

[
−

∂ p(0)inc
∂nn2

]
(15)

where n = 1,NS, ∂ p(0)inc
∂nn2

(xcol,nn2,ω) =
∂ p(0)12
∂nn2

(xcol,nn2,ω) + ∂ pinc
∂nn2

(xcol,nn2,xs,ω).

The scattered field at xreccan then be obtained as

p02(xrec,ω) =
NS

∑
n=1

[
a(0)n_extG(xrec,xn_ext ,ω)

]
(16)

At the end of this iteration the total pressure at the receiver would be

p(xrec,ω) = pinc(xrec,xs,ω)+
M

∑
m=1

p0 m(xrec,ω) (17)

In this case M = 2 (the number of inclusions).



Iterative Coupling Between the TBEM and the MFS 163

Iteration k - Step 1: The first inclusion is only illuminated by the field scattered
by the second inclusion in the conditions defined in the iteration k-1 at Step 2 (see
Figure 4a).

At this step the incident field is the scattered field generated by the second inclusion
in the previous iteration

p(k−1)
21 (x0,nn2,xn_ext ,ω) =

NS

∑
n=1

[
a(k−1)

n_ext Ḡ(x0,nn2,xn_ext ,ω)
]

(18)

which leads to

a p(k)(x0,ω) = −
∫
S1

H(x,nn1,nn2,x0,ω) p(k)(x,ω)ds+ p(k−1)
21 (x0,nn2,xn_ext ,ω)

(19)

The solution of this equation leads to a system of [N ×N] equations, similar to the
previous one, where only the constant matrix needs to be modified (Bp(k) = p̄(k)inc).
Thus, if during iteration 0 the system has been solved by defining its inverse matrix
B−1, the new solution does not require the system to be solved, p(k) = B−1 p̄(k)inc.

The scattered pressure field at receiver xrec can then be computed as

pk1(xrec,ω) =−
∫
S1

H(x,nn1,xrec,ω) p(k)(x,ω)ds (20)

Iteration k - Step 2: The second inclusion is now only illuminated by the field
scattered by the first inclusion at Step 1 (see Figure 4b).

The pressure gradient field generated by the first inclusion at the Step 1, is seen as
the only incident field that strikes the rigid inclusion

∂ p(k)12
∂nn2

(xcol,nn2,ω) =−
∫
S1

∂H
∂nn2

(x,nn1,nn2,xcol,ω) p(k)(x,ω)ds,

which leads to

∂ p(k)12
∂nn2

(xcol,nn2,ω) +
NS

∑
n=1

[
a(k)n_ext

∂G
∂nn2

(xcol,nn2,xn_ext ,ω)

]
= 0 (21)

This leads to the system of [NS×NS] equations (Ca(k) =
∂ p(k)inc
∂nn2

), similar to the one
defined above in equation (15) where only the constant matrix needs to be replaced
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by ∂ p(k)inc
∂nn2

(xcol,nn2,ω) =
∂ p(k)12
∂nn2

(xcol,nn2,ω) . The values a(k)n_ext can thus be obtained

as a(k) =C−1 ∂ p(k)inc
∂nn2

.

The new scattered field produced by this inclusion at xrec is then

pk2(xrec,ω) =
NS

∑
n=1

[
a(k)n_extG(xrec,xn_ext ,ω)

]
(22)

At the end of the iteration k the total pressure at the receiver would be

p(xrec,ω) = pinc(xrec,xs,ω)+
k

∑
iter=0

M

∑
m=1

piter m(xrec,ω) (23)

The iterative process then continues until the contribution of the last scattered field
to the pressure at a certain receiver reaches a predefined threshold.

The proposed iterative coupling requires only the solution of the individual inclu-
sions’ linear system of equations. Given the example used to illustrate the algo-
rithm procedure, two individual systems of [N×N] and [NS×NS] equations would
only be need to be solved once. The full coupling would requires a system of
[(N +NS)× (N +NS)] equations to be solved. This process would more relevant
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in the presence of a large number of inclusions, when the size of the system of
equations used by the full coupling would be very large when compared with the
systems associated with each inclusion, as used in the proposed iterative coupling.

3 Pressure in time-space

Given that the computations are performed in the frequency domain, time responses
in the space domain are computed by applying an inverse (fast) Fourier transform
in ω , using a Ricker pulse as the dynamic excitation source, with temporal variation
given by:

u(τ) = D(1−2τ
2)e−τ2

(24)

where D represents the amplitude; and τ = (t − ts)/t0, with t being the time, ts
the time when the wavelet takes its maximum value, and πt0 the characteristic
(dominant) period of the Ricker wavelet.

The application of a Fourier transformation to this function, leads to:

U(ω) = D
[
2t0
√

π e−iωts
]

Ω
2e−Ω2

(25)

with Ω = ωt0/2.

The Fourier transformation is computed by adding together a finite number of
terms. This process corresponds to adding together equally spaced sources with
time intervals of T = 2π/∆ω . In these expressions the frequency increment is de-
fined by ∆ω . It is essential that ∆ω is small enough to avoid contaminating the
response in the time domain (aliasing phenomena). This is almost eliminated by
the introduction of complex frequencies with a small imaginary part of the form
ωc = ω− iη (with η = 0.7∆ω). Note, that η = 0.7∆ω will lead to an attenuation
of about 1

81 at the end of the time window given by 2π

∆ω
. This procedure is later

taken into account by rescaling the responses in the time domain with an exponen-
tial factor eηt [Kausel and Roesset (1992)].

4 Performance of the proposed iterative coupling formulation

The performance of the proposed iterative coupling formulations is illustrated by
computing the acoustic behavior of a set of rigid acoustic screens in the vicinity of
a dome, placed in a half-space. Different number of acoustics screens are modeled
and subjected to steady state acoustic noise excited by a source emitting different
frequencies of excitation.

The CPU times are computed and compared with those given by a full coupling
formulation. The responses are calculated assuming a complex frequency with a
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small imaginary part of the form ωc = ω− iη (with η = 0.7∆ω). ∆ω is defined so
as to obtain a desired period of simulation T = 2π/∆ω in the time domain. Thus,
a small ∆ω corresponds to lower values of damping and to longer time window.

The wave velocity allowed in the host medium and its density are kept constant at
340 m/s and 1.22 kg/m3, respectively.

Rigid acoustic screens placed in the vicinity of a dome are used to illustrate the
capabilities of the proposed iterative TBEM/MFS formulation. The pressure source
is placed at (3.0,0.5) m, as Figure 5 shows. The barriers, 3.0 m tall, are placed at
x = 10.0 m (Case 1), x = 0.0 m (Case 2) and x = 12.0 m (Case 3) in the vicinity of
a semi-circular dome with a radius of 7.0 m, centered at (25.0,0.0) m.

a) b) 

 

p

p
21

k2

(k)

p
12

(k)

p
k1

Figure 4: Iteration k: a) step 1; b) step 2

The pressure response is obtained over a two-dimensional grid of 18269 receivers
arranged along the x and y directions at equal intervals and placed in the vicinity of
the acoustic barriers and dome from x = −5.0m to x = 40.0m and from y = 0.0m
to y = 10.0m.

Each acoustic barrier is modeled as a rigid screen using the TBEM. It has null-
thickness and is discretized using 100 boundary elements. The dome is assumed
to be rigid and simulated by the MFS, using 200 virtual loads/collocation points.
In the present example, the virtual loads are placed 0.7 m from its boundary. The
problem uses Green’s functions appropriate for a half-space, assuming a rigid floor.
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The real and imaginary responses computed using the full coupling are displayed
for each case and the associated CPU time is recorded. For this, the CPU time is
computed individually for each grid’s receiver. In addition, the number of iterations
and the CPU time are registered when each problem is solved using the iterative
coupling. The iteration loop is stopped and the number of iterations registered
when the pressure at each individual receiver does not change in relation to the
prior iteration by more than a predefined threshold that has been set to∣∣∣∣∣ k

∑
iter=0

M

∑
m=1

piter m(xrec,ω)−
k−1

∑
iter=0

M

∑
m=1

piter m(xrec,ω)

∣∣∣∣∣/
∣∣∣∣∣ k

∑
iter=0

M

∑
m=1

piter m(xrec,ω)

∣∣∣∣∣
≤ 1E− 05. (26)

Two different excitation frequencies have been selected to illustrate the main find-
ings, f = 2.0 Hz and f = 100.0 Hz.

Analysis of the responses shows that the number of iterations changes from receiver
to receiver. More iterations are required for a greater number of scattered reflec-
tions in the wave field, while fewer iterations are necessary in shadow zones of the
acoustic field (e. g. see Figure 6, behind the dome). The influence of reflections is
very evident for the greater number of screens in Case 2 and Case 3 (see Figures 7
and 8). As the excitation frequency increases (from 2.0 Hz to 100.0 Hz) the number
of iterations required also increases.

The performance of the iterative coupling formulation relative to the full coupling
formulation is enhanced when the number of screens present in the simulation in-
creases. It can be seen that the difference in CPU times between the two formu-
lations is greater for Case 3 than for Case 2 or Case 1. This shows that in terms
of CPU, the iterative coupling is competitive when modeling a large number of
inclusions.

An additional simulation has been performed for the same geometry as in Case 3,
but changing the value of ∆ f from ∆ f = 2Hz to a lower value, ∆ f = 0.5Hz, and to
a higher, ∆ f = 4Hz value. Figure 9 shows the results obtained when the excitation
frequency is 100.0 Hz. Comparing Figure 9 with Figure 8 it is clear that when the
∆ f is reduced (the damping decreases) the CPU time and the number of iterations
increase. On the other hand, the increase of ∆ f (from ∆ f = 2Hz to ∆ f = 4Hz)
leads to a fall in the CPU time and the number of iterations required.

5 Time responses using the proposed iterative coupling formulation

The Case 3 scenario has been used to compute time responses (see Figure 5). The
computations are performed in the frequency domain, for frequencies ranging from
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Figure 5: Geometry of the problem
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Figure 6: Acoustic problem – one barrier

2 Hz to 1024 Hz, with a frequency increment of 2 Hz, which determines a total time
window for the analysis of 0.5 s.

The pressure response is obtained over the two-dimensional grid of receivers de-
scribed above.

Each acoustic barrier is modeled as a rigid screen using the TBEM. It has null
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Figure 7: Acoustic problem – two barriers

thickness and is discretized using a number of boundary elements that changes
from frequency to frequency. A ratio of 8 between the wavelength and the length
of the boundary element was used. In any case a minimum number of 50 boundary
elements was set.

The dome is assumed to be rigid and simulated by MFS, using virtual loads/collocation
points that changed from frequency to frequency according to the ratio between the
wavelength and the distance between collocation points, which was set at 8. A min-
imum of 200 virtual loads/collocation points were used. In the present example,
the virtual loads are placed 0.7 m from its boundary. This distance was determined
based on the calculation of errors at additional receivers placed along the boundary.
The problem uses Green’s functions appropriate for a half-space, assuming a rigid
floor.

Time domain responses are obtained by applying an inverse Fourier transform to
the frequency domain pressure wave field. The source is assumed to be a Ricker
wavelet with a characteristic frequency of 300 Hz. Time domain responses are
depicted in a set of graphs presented in Figures 10a) to 10f) where red represents
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Figure 8: Acoustic problem – three barriers

the higher pressure amplitudes and blue the lower ones.

Figure 10a) shows the response at t = 6.10 ms when the incident pulse has already
been reflected from the ground. At t = 12.21 ms (Figure 10b)) the incident and
reflected pulses have reached the screen placed at y=0. 0 m, from which they are
reflected. The wave diffraction at the top of the screen can also be seen. Then
the diffracted pulse propagates towards the ground where it is reflected back (see
Figure 10c), t = 23.19 ms). At this instant, the wave front propagating towards
the dome has impacted the screen placed at y=10. 0 m, from where it is reflected
back and diffracted at the top of the screen. Figure 10d) illustrates the pressure
wave field at t = 31.74 ms where the pulses diffracted at the second screen have
reached the screen placed at y=12.0, where they are also diffracted. Meanwhile the
first diffracted pulse propagates forward and the second diffracted pulse propagates
backward. At t = 48.83 ms (Figure 10e)) additional reflections and diffractions can
be seen at the screens and the wave front impinged the dome’s surface, from where
it is reflected. As the time passes, additional reflections occur at the dome’s surface
and waves are trapped between screens due to multireflections (see Figure 10f))
t = 65.92 ms ).
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Figure 9: Acoustic problem – three barriers f = 100.0 Hz

6 Conclusions

An iterative coupling between the formulation based on the normal derivative of
the integral equation (TBEM) and the method of fundamental solutions (MFS) has
been proposed for the transient analysis of acoustic wave propagation problems in
the presence of multi-inclusions.

At each step, only one inclusion is solved at a time, which leads to small system
of equations and thus to reduced matrix storage requirements. As the coefficient
matrixes remain the same, the system of equations is only solved once during the
first iteration. The proposed iterative coupling formulation has been compared with
a full coupling formulation. For a particular frequency, the number of iterations and
CPU time varies from receiver to receiver depending on the scattered reflections in
the wavefield. The number of iterations and CPU time increase for high frequencies
and for low frequency steps.

It is concluded that in terms of CPU time the iterative coupling is competitive when
modeling a large number of inclusions, when compared with a full coupling for-
mulation.



172 Copyright © 2013 Tech Science Press CMES, vol.91, no.3, pp.153-176, 2013

a) 

b) 

c) 

d) 

e) 

f) 
 Figure 10: Pressure amplitude in time domain for Case 3 for a characteristic fre-

quency of 300 Hz a) t = 6.10 ms; b) t = 12.21 ms; c) t = 23.19 ms; d) t = 31.74
ms; e) t = 48.83 ms; f) t = 65.92 ms.
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The capabilities of the proposed technique have been illustrated by computing a
numerical example that simulates the pressure wave propagation in the vicinity of
a circular dome and three straight screens.
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