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Non-Singular Method of Fundamental Solutions for
Two-Dimensional Isotropic Elasticity Problems

Q. G. Liu1, and B. Šarler1 2 3 4

Abstract: The purpose of the present paper is development of a Non-singular
Method of Fundamental Solutions (NMFS) for two-dimensional isotropic linear
elasticity problems. The NMFS is based on the classical Method of Fundamen-
tal Solutions (MFS) with regularization of the singularities. This is achieved by
replacement of the concentrated point sources by distributed sources over circular
discs around the singularity, as originally suggested by [Liu (2010)] for poten-
tial problems. The Kelvin’s fundamental solution is employed in collocation of
the governing plane strain force balance equations. In case of the displacement
boundary conditions, the values of distributed sources are calculated directly and
analytically. In case of traction boundary conditions, the respective desingularized
values of the derivatives of the fundamental solution in the coordinate directions,
as required in the calculations, are calculated indirectly from the considerations of
two reference solutions of the linearly varying simple displacement fields. The de-
velopments represent a first use of NMFS for solid mechanics problems. With this,
the main drawback of MFS for these types of problems is removed, since the artifi-
cial boundary is not present. In order to demonstrate the feasibility and accuracy of
the newly developed method, is the NMFS solution compared to the MFS solution
and analytical solutions for a spectra of plane strain elasticity problems, including
bi-material problems. NMFS turns out to give similar results than the MFS in all
spectra of performed tests. The lack of artificial boundary is particularly advanta-
geous for using NMFS in multi-body problems.
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1 Introduction

The main idea of MFS [Chen; Karageorghis and Smyrlis (2008)] consists of ap-
proximating the solution of the partial differential equation by a linear combination
of fundamental solutions, defined in source points. The expansion coefficients are
calculated by collocation or least squares fit of the boundary conditions. The fun-
damental solution is for certain PDE’s singular in the source points and this is the
reason why the source points have to be located outside the domain in the classi-
cal MFS for such situations. Then, the original problem is reduced to determining
the unknown coefficients of the fundamental solutions and the coordinates of the
source points by requiring the approximation to satisfy the boundary conditions
and hence solving a non-linear problem. If the source points are a priori fixed (on
a fictitious boundary) then the coefficients of the approximation are determined by
solving a linear problem.

The MFS has become very popular in recent years because of its simplicity. Clearly,
it is applicable when the fundamental solution of the partial differential operator of
the governing equation (or of the system of governing equations) of the problem un-
der consideration is known. Probably, the most important advantage of the method
over other boundary methods, such as the boundary element method (BEM), is
the ease with which it can be implemented, since it does not involve numerical
integration. The MFS has been successfully applied to a large variety of physical
problems. A review of such applications as well as the assessment of advantages
of the method over other methods can be found in [Fairweather and Karageorghis
(1998); Golberg and Chen (1997; 1999); Kolodziej (1987; 2001)]. The method
has been widely used for the solution of problems in linear elasticity. The first ap-
plication of the MFS for elasticity problems can be found in the paper [Kupradze
and Aleksidze (1964)], whereas a theoretical analysis and density results for prob-
lems of linear elasticity may be found in the papers [Kupradze (1964); Smyrlis
(2009)]. The solution of anisotropic elasticity problems was considered in the pa-
per [Berger and Karageorghis (2001); Maharejin (1985)]. In the paper [Marin and
Lesnic (2004)], inverse problems in planar elasticity were considered whereas ax-
isymmetric elastic problems were studied in the papers [Redekop and Thompson
(1983); Karageorghis and Fairweather (2000)]. The MFS has been applied to the
computation of stress intensity factors in linear elastic fracture mechanics [Berger,
Karageorghis and Martin (2007); Karageorghis, Poullikkas and Berger (2006)] as
well. The MFS was applied to thermo-elasticity problems in [Aleksidze (1991);
Kupradze, Gegelia, Basheleshvili and Burchuladze (1976)]. Further applications of
the MFS to elasticity problems can be found in [Patterson and Sheikh (1982); Re-
dekop (1982); Burgess and Maharejin (1984); Redekop and Cheung (1987); Raa-
machandran and Rajamohan (1996); Fenner (2001); Poullikkas and Karageorghis
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(2002); Tsai (2007); Marin (2011)]. Multi-domain (multi-zone) formulations play
an important part in numerical analysis when dealing with problems involving in-
terfaces or dissimilar materials, such as composite materials, etc. Berger and Kara-
georghis (2001) present the MFS for multi-domain anisotropic elasticity problems.

In the traditional MFS, the fictitious boundary, positioned outside the problem do-
main, is required to place the source points. This avoids the singularity of the solu-
tion at the boundary which would prevent the proper compliance with the bound-
ary conditions. The determination of the distance between the real boundary and
the fictitious boundary is based on experience and therefore troublesome. In recent
years, various efforts have been made, aiming to remove this drawback of the MFS,
so that the source points can be placed on the real boundary directly. Young, Chen
and Lee (2005); Young, Chen, Chen and Kao (2007); Chen, Kao, Chen, Young
and Lu (2006) proposed to place the source points on the boundary in the MFS.
They introduce novel ways to determine the diagonal collocation matrix coeffi-
cients. The diagonal coefficients were determined directly for simple geometries or
by using the results from the BEM, based on the fact that the MFS and the indirect
boundary integral formulation are similar in nature. In their approach, information
of the neighboring points before and after each source point is needed, in order to
form line segments for integrating the kernels to obtain the diagonal coefficients.
This is essentially the same information of the element connectivity as in a BEM
mesh. Šarler (2009) proposed a similar modified MFS, where the diagonal terms
are determined by the integration of the fundamental solution on the line segments
formed by using neighboring points, and the use of a constant solution to determine
the diagonal coefficients of the derivatives of the fundamental solution in different
coordinate directions. This approach is very stable, but it amounts to solve the
problem twice. Chen and Wang (2010) proposed a similar method for determining
the diagonal coefficients in the modified MFS by applying a known solution inside
the domain, so that the diagonal coefficients from both the fundamental solution
and its derivative can be determined indirectly, without using any element or inte-
gration concept. Again, this approach is appealing, stable, and accurate but it is
costly for solving large-scale problems due to the need to solve the problem twice.
The solution also depends on the choice of the reference points. Gu, Chen and
Zhang (2011) applied the singular boundary method to two-dimensional (2D) elas-
ticity problems, in which they use an inverse interpolation technique to regularize
the singularity of the fundamental solution of the equation governing the prob-
lem of interest. Chen, Lin and Wang (2011) developed the regularized meshless
method also for the nonhomogeneous problems in conjunction with the dual reci-
procity technique in the evaluation of the particular solution. Liu (2010) recently
presented a new boundary meshfree approach based on the modified MFS that has
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no fictitious boundaries and singularities. In the new approach, the concentrated
point sources are replaced with area-distributed sources covering the source points
for 2D problems. These area-distributed sources represent analytical integration of
the original singular fundamental solution, so that they preserve the advantage of
diagonal dominance for the system of equations, while they have no troublesome
singularity issues. Liu (2010) called the method boundary distributed source (BDS)
method. Liu (2010) used the approach of Šarler (2009) to determine the diagonal
coefficients of the derivatives of the fundamental solution. Liu’s approach has been
recently extended to solve porous media problems with moving boundaries [Perne,
Šarler and Gabrovšek (2012)]. In the present paper, we use a Non-singular MFS,
based on Liu (2010), to deal with the 2D isotropic elasticity problems. We re-
spectively use area-distributed sources covering the source points to replace the
concentrated point sources. This NMFS approach also does not require a detailed
information about the neighboring points for each source point, thus it is a truly
meshfree boundary method. The derivatives of the fundamental solution in the dis-
tributed source points are calculated by adopting the methodology by Šarler (2009)
from the Laplace to Kelvin fundamental solution. The rest of the paper is structured
as follows. Solution procedure is elaborated for MFS and NMFS in a uniform way.
Numerical examples of different type of deformations with analytical solutions are
presented to demonstrate the feasibility and accuracy of the NMFS, followed by
bi-material examples. At the end, the conclusions and further research directions
are given.

2 Governing Equations

Consider a two-dimensional solid in domain Ω with boundary Γ. The solid behaves
ideally isotropic elastic. Let us introduce a two-dimensional Cartesian coordinate
system with orthonormal base vectors ix and iy and coordinates px and py of point
P with position vector p = pxix + pyiy. The solid is governed by Navier’s equations
for plane strain problems, which are the conditions for equilibrium, expressed with
the displacement u

2(1−ν)

1−2ν

∂ 2ux(p)
∂ p2

x
+

∂ 2ux(p)
∂ p2

y
+

1
1−2ν

∂ 2uy(p)
∂ px∂ py

= 0, (1)

2(1−ν)

1−2ν

∂ 2uy(p)
∂ p2

y
+

∂ 2uy(p)
∂ p2

x
+

1
1−2ν

∂ 2ux(p)
∂ px∂ py

= 0, p ∈Ω∪Γ, (2)

where ν is Poisson’s ratio. The boundary is divided into two not necessarily con-
nected parts Γ = ΓD +ΓT . On the part ΓD the displacement (Dirichlet) boundary
conditions are given, and on the part ΓT the traction (Neumann) boundary condi-
tions are given. (see Fig. 1)
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Figure 1: Problem domain Ω with displacement (Dirichlet) ΓDand traction (Neu-
mann) ΓT parts of the boundary.

uς (p) = ūς (p); ς = x,y, p ∈ ΓD , (3)

tς (p) = t̄ς (p); ς = x,y, p ∈ ΓT , (4)

where ūς and t̄ς represent known functions. The strains εςξ ; ς ,ξ = x,y are related
to the displacement gradients by

εςξ =
1
2

(
∂uς

∂ pξ

+
∂uξ

∂ pς

)
. (5)

The stress components σςξ ; ς ,ξ = x,y are for the plane strain cases related to the
strains through Hooke’s low

σςξ = λδςξ (εxx + εyy)+2µεςξ , (6)

where µ = E/2(1+ν) is the shear modulus of elasticity, E is modulus of elasticity,
or Young’s modulus, λ = 2νµ/(1−2ν) is Lamé constant, and δςξ is the Kronecker
delta

δςξ =

{
1, ς = ξ

0, ς 6= ξ
. (7)
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The formulation for plan stress can be obtained by introducing the modified Pois-
son’s coefficient ν ′ and modified Young’s modulus E ′, defined as

ν
′ =

ν

1+ν
, E ′ = E

[
1−
(

ν

1+ν

)2
]
. (8)

The tractions tx and ty are defined in terms of the stresses as

tς = σςxnx +σςyny, ς = x,y, (9)

where nx and ny denote the coordinates of the outward normal n at the boundary
point p.

3 Solution procedure

3.1 Fundamental solution

Kelvin’s fundamental solution of elasticity is given (see [Beskos (1987)]) in two
dimensional plane strain situation by

Uςξ (p,s) =
1

8πµ(1−ν)

{
(3−4ν) log

(
1
r

)
δςξ +

(pς − sς )(pξ − sξ )

r2

}
,

ς ,ξ = x,y,
(10)

where Uςξ (p,s) represents the displacement in the direction ς at point p due to a
unit point force acting in the direction ξ at point s. r =

√
(px− sx)2 +(py− sy)2

is the distance between the point p and the source point s. The solution (10) is
expanded as follows

Uxx(p,s) =
1

8πµ(1−ν)

{
(3−4ν) log

(
1
r

)
+

(px− sx)
2

r2

}
, (11)

Uxy(p,s) =Uyx(p,s) =
1

8πµ(1−ν)

(px− sx)(py− sy)

r2 , (12)

Uyy(p,s) =
1

8πµ(1−ν)

{
(3−4ν) log

(
1
r

)
+

(py− sy)
2

r2

}
. (13)

It can be shown that the following ux and uy satisfy the governing Eqs. (1,2)

ux(p) =Uxx(p,s)α +Uxy(p,s)β , (14)

uy(p) =Uyx(p,s)α +Uyy(p,s)β , (15)



Non-Singular Method of Fundamental Solutions 241

Figure 2: Distributed source on a circle A(s,R) with radius R.

where α and β represent arbitrary constants. The fundamental solution Uςξ (p,s)
is singular when p = s. We use the desingularization technique, proposed by Liu
(2010), for evaluating the singular values. We modify his approach in the sense
of preserving the original fundamental solution in all points except near the sin-
gularity, and by scaling the singularity with the area of the circle over which the
desingularization integration is performed. This allows us to treat the MFS and the
NMFS in a formally same way. The desingularization (transformation of Uςξ (p,s)
into Ũςξ (p,s)) is performed in two steps:

U ′
ςξ
(p,s) =


Uςξ (p,s); r > R

1
πR2

∫
A(s,R)

Uςξ (p,s)dA; r ≤ R
, (16)

where A(s,R) represents a circle with radius R, centered around s. The involved
integrals can be calculated as follows (by using the integration in polar coordinates
px− sx = r cosθ , py− sy = r sinθ)

1
πR2

∫
A(s,R)

Uςξ (p,s)dA =
1

πR2

2π∫
0

R∫
0

Uςξ (p,s)rdθdr, (17)
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1
πR2

∫
A(s,R)

Uxx(p,s)dA =
1

πR2

∫
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Uyy(p,s)dA

=
1

8πµ(1−ν)

(
(3−4ν) log
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1
R

)
+2(1−ν)

)
,

(18)

1
πR2

∫
A(s,R)

Uxy(p,s)dA =
1

πR2

∫
A(s,R)

Uyx(p,s)dA = 0. (19)

In order to impose smoothness of the desingularized value of the fundamental so-
lution and its derivatives at point r = R, Liu (2010) used an additional term −r2/4
inside the circular disc, with a remark in the discussion, that the desingularized
fundamental solution inside the disc does not satisfy the governing equation. This
is acceptable, since the dimension of R is usually much smaller than a typical dis-
tance between the boundary nodes. However, the values inside the disc, except at
r = 0 have never been used in his calculations. In a similar way, in order to match
Uςξ (p,s) =U ′

ςξ
(p,s) and ∂

∂ pς
Uςξ (p,s) = ∂

∂ pς
U ′

ςξ
(p,s), when r = R, we modify

Ũςξ (p,s) =
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, (20)

where

U˜ xx(p,s) =
1

8πµ(1−ν)

(
(3−4ν) log

(
1
R

)
+2(1−ν)

R2− r2

R2 +
(px− sx)

2r2

R4

+

[
3(px− sx)

2− (py− sy)
2
][
(R2− r2)r2

]
2R6

)
,

(21)
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1
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]
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U˜ xy(p,s) =U˜ yx(p,s) =
1

8πµ(1−ν)

[
(px− sx)(py− sy)r2

R4

+
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[
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]
R6

]
.

(23)
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This forms than give smoothness of the desingularized and singular fundamental
solution and their derivatives at r = R and at the same time preserve the desingu-
larized value at r = 0. It can also be shown that the following ux and uy satisfy the
governing Eqs. (1, 2)

ux(p) = Ũxx(p,s)α +Ũxy(p,s)β , (24)

uy(p) = Ũyx(p,s)α +Ũyy(p,s)β , p /∈ A(s,R) (25)

3.2 Discretisation

The solution of the problem is sought in the form

ux(p) =
N

∑
n=1

Uxx(p,pn)αn +
N

∑
n=1

Uxy(p,pn)βn, (26)

uy(p) =
N

∑
n=1

Uyx(p,pn)αn +
N

∑
n=1

Uyy(p,pn)βn p /∈
N⋃

n=1

A(pn,R). (27)

Because of Eqs. (5, 6, 9), the traction can be expressed as

tx(p) =
N

∑
n=1

Txx(p,pn)αn +
N

∑
n=1

Txy(p,pn)βn, (28)

ty(p) =
N

∑
n=1

Tyx(p,pn)αn +
N

∑
n=1

Tyy(p,pn)βn, p /∈
N⋃

n=1

A(pn,R) (29)

where

Txx(p,pn) =

[
2µ(1−ν)

1−2ν

∂Uxx(p,pn)

∂ px
+

2µν

1−2ν

∂Uyx(p,pn)

∂ py

]
nnx

+

[
µ

∂Uxx(p,pn)

∂ py
+µ

∂Uyx(p,pn)

∂ px

]
nny,

(30)

Txy(p,pn) =

[
2µ(1−ν)

1−2ν

∂Uxy(p,pn)

∂ px
+

2µν

1−2ν

∂Uyy(p,pn)

∂ py

]
nnx

+

[
µ

∂Uxy(p,pn)

∂ py
+µ

∂Uyy(p,pn)

∂ px

]
nny,

(31)

Tyx(p,pn) =

[
µ

∂Uyx(p,pn)

∂ px
+µ

∂Uxx(p,pn)

∂ py

]
nnx

+

[
2µ(1−ν)

1−2ν

∂Uyx(p,pn)

∂ py
+

2µν

1−2ν

∂Uxx(p,pn)

∂ px

]
nny,

(32)
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Tyy(p,pn) =

[
µ

∂Uyy(p,pn)

∂ px
+µ

∂Uxy(p,pn)

∂ py

]
nnx

+

[
2µ(1−ν)

1−2ν

∂Uyy(p,pn)

∂ py
+

2µν

1−2ν

∂Uxy(p,pn)

∂ px

]
nny,

(33)

where pn represent N points, placed on artificial boundary, in case of MFS. The
forms (30-33) with Uςξ (p,pn) and Tςξ (p,pn) replaced by Ũςξ (p,pn) and T̃ςξ (p,pn)
stand for NMFS formulation, where in this case pn represent N points, placed on
the physical boundary. The explicit expressions, used in calculation of the traction
boundary conditions, are

∂Uxx(p,s)
∂ px

=
1

8πµ(1−ν)

[
(4ν−3)

px− sx

r2 +
2(px− sx)(py− sy)

2

r4

]
, (34)

∂Uxx(p,s)
∂ py

=
1

8πµ(1−ν)

[
(4ν−3)

py− sy

r2 −
2(py− sy)(px− sx)

2

r4

]
, (35)

∂Uxy(p,s)
∂ px

=
∂Uyx(p,s)

∂ px
=

1
8πµ(1−ν)

(py− sy)[(py− sy)
2− (px− sx)

2]

r4 , (36)

∂Uyy(p,s)
∂ px

=
1

8πµ(1−ν)

[
(4ν−3)

(px− sx)

r2 −
2(px− sx)(py− sy)

2

r4

]
, (37)

∂Uyy(p,s)
∂ py

=
1

8πµ(1−ν)

[
(4ν−3)

(py− sy)

r2 +
2(py− sy)(px− sx)

2

r4

]
, (38)

∂Uxy(p,s)
∂ py

=
∂Uyx(p,s)

∂ py
=

1
8πµ(1−ν)

(px− sx)[(px− sx)
2− (py− sy)

2]

r4 . (39)

except at p = s, where the derivatives are calculated in an indirect way. The coeffi-
cients αn and βn are calculated from a system of 2N algebraic equations

Ax = b, (40)

where A stands for a 2N×2N matrix with the entries Ai j, x is a 2N×1 vector with
the entries xi, and b is a 2N×1 vector with entries bi,

Ai j = χ
D
x (pi)Ũxx(pi,p j)+χ

T
x (pi)T̃xx(pi,p j),

Ai(N+ j) = χ
D
x (pi)Ũxy(pi,p j)+χ

T
x (pi)T̃xy(pi,p j),

A(N+i) j = χ
D
y (pi)Ũyx(pi,p j)+χ

T
y (pi)T̃yx(pi,p j),

(41)

A(N+i)(N+ j) = χ
D
y (pi)Ũyy(pi,p j)+χ

T
y (pi)T̃yy(pi,p j), i, j = 1,2, · · · ,N. (42)
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bi = χ
D(pi)ux(pi)+χ

T (pi)tx(pi),b(N+i)

= χ
D(pi) uy(pi)+χ

T (pi)ty(pi), i = 1,2, · · · ,N.
(43)

where the displacement χD
ς ,ς = x,y and the traction χT

ς ,ς = x,y type of boundary
conditions indicators are

χ
D
ς (p) =

{
1; p ∈ ΓD in iς direction
0; p /∈ ΓD in iς direction

,

χ
T
ς (p) =

{
1; p ∈ ΓT in iς direction
0; p /∈ ΓT in iς direction

.

(44)

The diagonal terms T̃ςξ (pm,pm), ς ,ξ = x,y, m= 1, ...,N in Eqs. (28, 29) are in case
of NMFS determined indirectly for collocation points on ΓT . For this purpose, the
method proposed by Šarler (2009) for potential problems, is applied to determine
the diagonal terms in these equations. We assume two simple solutions in this
approach, modified to cope with elasticity problems. The first simple solution is
ūx(p) = px + cx, ūy(p) = 0, everywhere, and cx denotes a constant. It follows from
the first solution

∂ux(p)
∂ px

= 1,
∂ux(p)

∂ py
=

∂uy(p)
∂ px

=
∂uy(p)

∂ py
= 0. (45)

It follows from Eq. (26) for the first solution

∂ ūx(p)
∂ px

=
N

∑
n=1

∂Ũxx(p,pn)

∂ px
α

1
n +

N

∑
n=1

∂Ũxy(p,pn)

∂ px
β

1
n = 1, (46)

∂ ūx(p)
∂ py

=
N

∑
n=1

∂Ũxx(p,pn)

∂ py
α

1
n +

N

∑
n=1

∂Ũxy(p,pn)

∂ py
β

1
n = 0. (47)

It follows from Eq. (27) for the first solution

∂ ūy(p)
∂ px

=
N

∑
n=1

∂Ũyx(p,pn)

∂ px
α

1
n +

N

∑
n=1

∂Ũyy(p,pn)

∂ px
β

1
n = 0, (48)

∂ ūy(p)
∂ py

=
N

∑
n=1

∂Ũyx(p,pn)

∂ py
α

1
n +

N

∑
n=1

∂Ũyy(p,pn)

∂ py
β

1
n = 0. (49)

We solve these equations for the corresponding α1
n and β 1

n . The second simple
solution is ūx(p) = 0, ūy(p) = py + cy, everywhere, and cy denotes a constant. It
follows from the second solution

∂ux(p)
∂ px

=
∂ux(p)

∂ py
=

∂uy(p)
∂ px

= 0,
∂uy(p)

∂ py
= 1. (50)
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It follows from Eq. (26) for the second solution

∂ ūx(p)
∂ px

=
N

∑
n=1

∂Ũxx(p,pn)

∂ px
α

2
n +

N

∑
n=1

∂Ũxy(p,pn)

∂ px
β

2
n = 0, (51)

∂ ūx(p)
∂ py

=
N

∑
n=1

∂Ũxx(p,pn)

∂ py
α

2
n +

N

∑
n=1

∂Ũxy(p,pn)

∂ py
β

2
n = 0. (52)

It follows from Eq. (27) for the second solution

∂ ūy(p)
∂ px

=
N

∑
n=1

∂Ũyx(p,pn)

∂ px
α

2
n +

N

∑
n=1

∂Ũyy(p,pn)

∂ px
β

2
n = 0, (53)

∂ ūy(p)
∂ py

=
N

∑
n=1

∂Ũyx(p,pn)

∂ py
α

2
n +

N

∑
n=1

∂Ũyy(p,pn)

∂ py
β

2
n = 1. (54)

We solve them for the corresponding α2
n and β 2

n . The unknown 8 values of the
derivatives of the fundamental solutions can respectively be calculated as follows.
The equations (46,51) are used to obtain:

∂Ũxx(pm,pm)

∂ px
=

1
α1

mβ 2
m−α2

mβ 1
m

[
β

2
m−

N

∑
n=1,n6=m

((
α

1
n β

2
m−α

2
n β

1
m
) ∂Ũxx(pm,pn)

∂ px

+
(
β

1
n β

2
m−β

2
n β

1
m
) ∂Ũxy(pm,pn)

∂ px

)]
,

(55)

∂Ũxy(pm,pm)

∂ px
=

1
α2

mβ 1
m−α1

mβ 2
m

[
α

2
m−

N

∑
n=1,n6=m

((
α

1
n α

2
m−α

2
n α

1
m
) ∂Ũxx(pm,pn)

∂ px

+
(
β

1
n α

2
m−β

2
n α

1
m
) ∂Ũxy(pm,pn)

∂ px

)]
,

(56)

The Eqs. (47, 52) are used to obtain:

∂Ũxx(pm,pm)

∂ py
=

1
α1

mβ 2
m−α2

mβ 1
m

[
−

N

∑
n=1,n6=m

((
α

1
n β

2
m−α

2
n β

1
m
) ∂Ũxx(pm,pn)

∂ py

+
(
β

1
n β

2
m−β

2
n β

1
m
) ∂Ũxy(pm,pn)

∂ py

)]
,

(57)
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∂Ũxy(pm,pm)

∂ py
=

1
α2

mβ 1
m−α1

mβ 2
m
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−

N

∑
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α

1
n α

2
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2
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1
m
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1
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2
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2
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)]
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(58)

The Eqs. (48, 53) are used to obtain:

∂Ũyx(pm,pm)

∂ px
=

1
α1
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mβ 1
m
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) ∂Ũyy(pm,pn)

∂ px

)]
,

(59)

∂Ũyy(pm,pm)
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1
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mβ 1
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) ∂Ũyy(pm,pn)

∂ px

)]
,

(60)

The equations (49, 54) are used to obtain:

∂Ũyx(pm,pm)

∂ py
=

1
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mβ 2
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mβ 1
m
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1
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(61)

∂Ũyy(pm,pm)

∂ py
=

1
α2

mβ 1
m−α1

mβ 2
m

[
−α

1
m−

N

∑
n=1,n6=m

((
α

1
n α

2
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2
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1
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∂ py

+
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β

1
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2
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∂ py

)]
,

(62)

The selection of the constants cx and cy in reference solutions need some care. They
should be selected in such a way that the denominators in the fractions on the right
hand side of equations (55-62) are non-zero. By knowing all the elements Ai j and bi

of the system (40), we can determine the values of xi. (i.e. αn and βn). Afterwards,
we can calculate the solution of the governing equation from

uς (p) =
N

∑
n=1

Ũςx(p,pn)αn +
N

∑
n=1

Ũςy(p,pn)βn, ς = x,y, (63)

where p is any point inside the domain or on the boundary.
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3.3 Discretisation for a bi-material

We generalize the previous discussion for a bi-material problem. Consider that the
domain Ω is split into two parts, ΩIand ΩII , bounded by boundaries ΓIand ΓII , and
a common interface boundary ΓI∩II , as shown in Fig. 3. The material properties in
both domains can be different in general. The governing equations are formally the
same as Eqs. (1, 2) with

ν =

{
ν I p ∈ΩI,
ν II p ∈ΩII,

uς =

{
uς

I p ∈ΩI,
uς

II p ∈ΩII,
ς = x,y, (64)

where indexes I and II denote material properties in the domains ΩIand ΩII , re-
spectively. The boundary conditions at the outer boundaries are given in the form,
given by the Eqs. (3, 4). The boundary conditions at the interface between two
materials ΓI∩IIare given in the form that represents the displacement continuity and
traction equilibrium [Braccini and Dupeux (2012)]:

uI
ς (p)−uII

ς (p) = 0, ς = x,y, p ∈ Γ
I∩II, (65)

tI
ς (p)+ tII

ς (p) = 0 , ς = x,y, p ∈ ΓI∩II . (66)

Figure 3: A bi-material with isotropic elastic, but in general different, material
properties in domains ΩI and ΩII
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The boundary ΓI ∪ ΓI∩IIis discretized in NI + NI∩II collocation points, and the
boundary ΓII ∪ ΓI−IIinto NII + NI∩II collocation points, where N = NI + NII +
NI∩II , and the number of collocation points on the interphase between two ma-
terials is NI∩II . The system (40) has in the bi-material problem a dimension of
2N +NI∩II , respectively.

4 Numerical Examples

4.1 Example 1

In the first example (see Fig. 4), we consider a square with the side length a = 2m
centered around px = 0m, py = 0m. Elastic media is defined by E = 1N/m2,ν =
0.3.

We consider a solution of the Navier’s equations in this square subject to the bound-
ary conditions ūx = 0m, ūy = 0m at point px = 0m, py = −1m, and t̄x = 0N/m2,
ūy = 0m on all other points of the south side of the square with py =−1m. On the
north side of the square with py = 1m, uniform traction is prescribed t̄x = 0N/m2,
t̄y = 1N/m2, and on the east px = 1m and west px = −1m sides t̄x = 0N/m2,
t̄y = 0N/m2 is set. Such a unit uniform normal (in-plane) load acting along a single
side of the square, was previously studied by Huang and Cruse (1994) when devel-
oping non-singular traction boundary integral equations in elasticity, and Panzeca,
Fujita Yashima and Salerno (2001) by developing symmetric boundary element
Galerkin method. The analytical solution is

ux =−0.39px, uy = 0.91(py +1) (67)

σx = 0, σy = 1, σxy = 0. (68)

A plot of the deformation, obtained with the analytical solution and the numerical
solutions with MFS and NMFS is shown in Fig. 5 for the case with 100 nodes.
The distance of the fictitious boundary from the true boundary for the MFS is set
RM = 5d, where d is the smallest distance between two nodes on the boundary.
The radius of the circular disk for the distributed area source covering each node is
set to R = d/5. The simple solution constants used in calculation of the diagonal
coefficients are defined as cx = cy = 4(see Fig. 16 in Appendix). When selecting
cx = cy = 0(see Fig. 17 in Appendix), we obtain for α1

mβ 2
m−α2

mβ 1
m a numerical

value -7.8413× 10−18 for point px = 0m, py = 1m (both solutions have ūx(p) =
0m in this point) and the solution obtained in this way is wrong (see Fig. 18,
Appendix). So the two reference solutions should be selected in such a way that
α1

mβ 2
m−α2

mβ 1
m 6= 0, α2

mβ 1
m−α1

mβ 2
m 6= 0; m = 1,2, ...,N.

The solution on boundary points are computed and compared with the analytical
solutions. The root mean square (RMS) errors of the numerical solution are defined
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Figure 4: Example 1. Scheme of square subect to a uniform normal load.

Figure 5: Example 1. The analytical solution and the numerical solution of MFS
and NMFS with N = 100, R = d/5, RM = 5d. (•: collocation points, ◦: source
points in MFS, +: analytical solution, ×: MFS solution, M:NMFS solution



Non-Singular Method of Fundamental Solutions 251

as

ς =

√
1
N

N

∑
n=1

(uςn−uςn)2, ς = x,y. (69)

where uςk and uςk,(ς = x,y) is the analytical and the numerical solution, respec-
tively. The number of boundary nodes used is from 100 to 1924 (Odd-number of
points should be used on the side in uniform discretization, since the middle point
is fixed at py =−1m).

Figure 6: Example 1. The relationship between the RMS errors and the number
of boundary nodes for different R, calculated by NMFS. (ex: • R = d/3, ◦ R =
d/4, M R = d/5, ♦ R = d/6; ey: × R = d/3, + R = d/4, ∗ R = d/5, � R =
d/6)

Figure 6 shows RMS errors of the results obtained using the NMFS with different
R. The errors are already less than 10−2 with N = 196 and the solution converges to
the analytical solution with the increasing number of the nodes. The ex and ey are
increasing with the decreasing R when R < d/5 (See Table 1). A comparison of the
NMFS results with the MFS results is shown in Table 2 for R = d/5. Here it should
be noted, that the MFS solution error is rather small, however the convergence is
not uniform. This fact is due to the choice of the artificial boundary position, that
was for all node arrangements RM = 5d, and thus most probably not optimally
varying.
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Table 1: Example 1. RMS errors of NMFS solution as a function of different R.

num. of R = d/3 R = d/4 R = d/5 R = d/6
boundary
nodes

ex

(×10−2)
ey

(×10−2)
ex

(×10−2)
ey

(×10−2)
ex

(×10−2)
ey

(×10−2)
ex

(×10−2)
ey

(×10−2)

100 0.4384 1.0959 0.3664 0.7791 0.3812 0.6467 0.4404 0.6466
196 0.2116 0.5453 0.1902 0.4175 0.2044 0.3672 0.2355 0.3681
292 0.1401 0.3620 0.1295 0.2873 0.1408 0.2595 0.1622 0.2616
388 0.1054 0.2707 0.0986 0.2197 0.1078 0.2017 0.1241 0.2042
484 0.0848 0.2162 0.0798 0.1782 0.0875 0.1654 0.1007 0.1681
580 0.0712 0.1799 0.0672 0.1500 0.0737 0.1405 0.0848 0.1431
676 0.0614 0.1541 0.0581 0.1297 0.0638 0.1222 0.0733 0.1247
772 0.0542 0.1347 0.0513 0.1142 0.0562 0.1082 0.0646 0.1107
868 0.0485 0.1197 0.0459 0.1021 0.0503 0.0972 0.0578 0.0995
964 0.0439 0.1077 0.0416 0.0924 0.0455 0.0882 0.0523 0.0905
1060 0.0402 0.0979 0.0380 0.0844 0.0416 0.0808 0.0477 0.0830
1156 0.0371 0.0897 0.0350 0.0776 0.0383 0.0746 0.0439 0.0767
1252 0.0344 0.0828 0.0325 0.0719 0.0355 0.0693 0.0407 0.0712
1348 0.0322 0.0769 0.0303 0.0670 0.0331 0.0647 0.0379 0.0666
1444 0.0302 0.0718 0.0284 0.0627 0.0310 0.0606 0.0355 0.0625
1540 0.0285 0.0673 0.0268 0.0589 0.0292 0.0571 0.0334 0.0589
1636 0.0269 0.0633 0.0253 0.0556 0.0275 0.0540 0.0315 0.0557
1732 0.0255 0.0598 0.0240 0.0526 0.0261 0.0512 0.0298 0.0528
1828 0.0243 0.0567 0.0228 0.0500 0.0248 0.0486 0.0283 0.0502
1924 0.0232 0.0538 0.0217 0.0476 0.0236 0.0464 0.0269 0.0479

4.2 Example 2

In the second numerical example, we use the same initial domain shape and the
same material constants E and ν as in the Example 1. The boundary conditions on
east, west, and south sides of the square are also the same as in the first example.
On the north side of the square with py = 1m, bending traction is prescribed t̄x =
0N/m2, t̄y = (px/1m)N/m2. Such a bending load, acting along a single side of the
plate, was previously studied (like the Example 1) by Huang and Cruse (1994) and
Panzeca, Fujita Yashima and Salerno (2001). The analytical solution is

ux =−0.195p2
x−0.445(py +1)2, uy = 0.91px(py +1). (70)

σx = 0, σy = px, σxy = 0 (71)

A plot of the deformation, obtained with the analytical solution and the numerical
solutions with MFS and NMFS is shown in Fig. 8 for the case with 100 nodes. RM,
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Table 2: Example 1. RMS errors of MFS and NMFS solutions with RM = 5d,
R = d/5.

Number of MFS NMFS
boundary
nodes (N)

ex(×10−2) ey(×10−2) ex(×10−2) ey(×10−2)

100 0.0001 0.0001 0.3812 0.6467
196 0.0000 0.0000 0.2044 0.3672
292 0.0000 0.0000 0.1408 0.2595
388 0.0067 0.0073 0.1078 0.2017
484 0.0086 0.0055 0.0875 0.1654
580 0.0001 0.0001 0.0737 0.1405
676 0.0000 0.0000 0.0638 0.1222
772 0.0005 0.0002 0.0562 0.1082
868 0.0007 0.0003 0.0503 0.0972
964 0.0181 0.0139 0.0455 0.0882
1060 0.0849 0.0556 0.0416 0.0808
1156 0.0002 0.0004 0.0383 0.0746
1252 0.0004 0.0005 0.0355 0.0693
1348 0.1234 0.0840 0.0331 0.0647
1444 0.0003 0.0003 0.0310 0.0606
1540 0.0003 0.0004 0.0292 0.0571
1636 0.0001 0.0002 0.0275 0.0540
1732 0.0000 0.0001 0.0261 0.0512
1828 0.0001 0.0001 0.0248 0.0486
1924 0.3393 0.2868 0.0236 0.0464

R, cx, cy, are set the same as in Example 1. The number of boundary nodes used is
from 100 to 1924 and the results are shown in Table 4.

Figure 9 shows RMS errors of the results obtained by using the NMFS for different
R. The solution converges to the analytical solution with the increasing number
of the nodes, except in case with R = d/3. The ex and ey are increasing with the
decreasing of R when R < d/5 (see Table 3). A comparison of the NMFS results
with the MFS results is shown in Table 4 for R = d/5. Here it should be noted, that
the MFS solution error is rather small, however the convergence is not uniform.
This fact it is due to the choice of the artificial boundary position, that was for all
node arrangement RM = 5d, and thus most probably not optimally varying.
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Figure 7: Example 2. A square plate subjected to a bending load.

Figure 8: Example 2. The analytical solution and the numerical solution of MFS
and NMFS with N = 100. R = d/5, RM = 5d. (•: collocation points, ◦: source
points in MFS, +: analytical solution, ×: MFS solution, M:NMFS solution
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Figure 9: Example 2. The relationship between the RMS and the number of bound-
ary nodes for different R, calculated by NMFS. (ex: • R = d/3, ◦ R = d/4,
R = d/5, ♦ R = d/6; ey: × R = d/3, + R = d/4, ∗ R = d/5, � R = d/6)

4.3 Example 3

We consider a square with the side length a = 2m in Example 3. We distinguish 3
sub-examples. In the first one, the whole square is occupied by one material, with
the material properties E = 1N/m2,ν = 0.3. In the second one, the square is split
into upper and lower parts with the same material properties as in the first example
E I = EII = 1N/m2,ν I = ν I = 0.3, and in the third one, the square is split as in the
second one, but with more rigid material on the top, i.e. E I = 5N/m2, E II = 1N/m2,
ν I = 0.3, ν II = 0.3. We consider the solution of the Navier’s equations in this
square subject to the boundary conditions ūx = 0m, ūy =−0.1m on the north side
with py = 1m, and ūx = 0m, ūy = 0.1m on the south side with py = −1m, and
t̄x = 0N/m2, t̄y = 0N/m2 on the east and west sides of the square with px = −1m
and px = 1m, respectively. A plot of the deformation, calculated with the defined
three sub-examples is shown in Figures 10, 11, and 12, respectively. The following
parameters have been used R = d/5, RI = dI/5,RII = dII/5, cx = cy = cI

x = cI
y =

cII
x = cII

y = 4. The distance of the fictitious boundary from the true boundary in case
of MFS is RM = 5d,RI

M = 5dI,RII
M = 5dII.
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Table 3: Example 2. RMS errors of NMFS solution as a function of different R.

num. of R = d/3 R = d/4 R = d/5 R = d/6
boundary
nodes

ex

(×10−2)
ey

(×10−2)
ex

(×10−2)
ey

(×10−2)
ex

(×10−2)
ey

(×10−2)
ex

(×10−2)
ey

(×10−2)

100 1.2966 1.8427 3.9306 1.0462 5.9593 0.7990 7.6367 1.0348
196 2.3923 0.8280 3.9301 0.4572 5.1065 0.4276 6.0761 0.6090
292 2.6117 0.5201 3.7094 0.2878 4.5558 0.3037 5.2546 0.4415
388 2.6686 0.3751 3.5290 0.2097 4.1962 0.2388 4.7481 0.3491
484 2.6797 0.2917 3.3904 0.1651 3.9439 0.1980 4.4024 0.2898
580 2.6751 0.2379 3.2824 0.1364 3.7568 0.1697 4.1503 0.2484
676 2.6649 0.2004 3.1961 0.1163 3.6121 0.1489 3.9575 0.2178
772 2.6528 0.1729 3.1257 0.1015 3.4967 0.1328 3.8049 0.1940
868 2.6406 0.1518 3.0672 0.0901 3.4023 0.1200 3.6810 0.1751
964 2.6287 0.1353 3.0176 0.0810 3.3236 0.1095 3.5781 0.1597
1060 2.6175 0.1219 2.9752 0.0737 3.2568 0.1008 3.4912 0.1469
1156 2.6071 0.1109 2.9384 0.0676 3.1994 0.0934 3.4168 0.1360
1252 2.5974 0.1016 2.9061 0.0624 3.1495 0.0871 3.3522 0.1266
1348 2.5885 0.0938 2.8776 0.0581 3.1057 0.0816 3.2957 0.1185
1444 2.5802 0.0870 2.8522 0.0543 3.0669 0.0768 3.2458 0.1115
1540 2.5725 0.0812 2.8294 0.0509 3.0323 0.0725 3.2013 0.1052
1636 2.5654 0.0760 2.8088 0.0480 3.0011 0.0687 3.1614 0.0996
1732 2.5588 0.0715 2.7902 0.0454 2.9730 0.0653 3.1254 0.0946
1828 2.5526 0.0675 2.7731 0.0431 2.9475 0.0623 3.0928 0.0901
1924 2.5468 0.0639 2.7575 0.0410 2.9241 0.0595 3.0630 0.0860

4.4 Example 4

Example 4 is from the geometrical, material properties, discretization, as well as
MFS and NMFS free parameters points of views equivalent to the Example 3. How-
ever, we consider the solution of the Navier’s equations subject to the boundary
conditions ūx = −0.1m, ūy = 0m on the north side with py = 1m, and ūx = 0.1m,
ūy = 0m on the south side with py =−1m; and t̄x = 0N/m2, t̄y = 0N/m2 on the east
and west sides of the square with px = −1m and px = 1m, respectively. A plot of
the deformation, calculated with the three sub-examples is shown in Figures 13, 14,
and 15, respectively.
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Table 4: Example 2. RMS errors of MFS and NMFS solutions with RM = 5d,
R = d/5.

Number of MFS NMFS
boundary
nodes (N)

ex(×10−2) ey(×10−2) ex(×10−2) ey(×10−2)

100 2.3656 0.0002 5.9593 0.7990
196 4.5717 5.3138 5.1065 0.4276
292 3.5939 1.4795 4.5558 0.3037
388 2.3657 0.0037 4.1962 0.2388
484 2.3710 0.0038 3.9439 0.1980
580 2.0706 1.1063 3.7568 0.1697
676 1.3096 1.1845 3.6121 0.1489
772 1.8889 2.4678 3.4967 0.1328
868 0.8536 0.4878 3.4023 0.1200
964 2.4082 0.0282 3.3236 0.1095
1060 2.3126 0.0347 3.2568 0.1008
1156 2.3640 0.0016 3.1994 0.0934
1252 2.3620 0.0196 3.1495 0.0871
1348 2.3589 0.0055 3.1057 0.0816
1444 2.3638 0.0016 3.0669 0.0768
1540 2.3654 0.0008 3.0323 0.0725
1636 2.4276 0.3268 3.0011 0.0687
1732 1.8726 2.3862 2.9730 0.0653
1828 1.6583 1.7767 2.9475 0.0623
1924 2.3374 0.0267 2.9241 0.0595

Table 5: Example 3. The results of MFS and NMFS for example from Fig. 12.

px py
MFS NMFS

ux(×10−2) uy(×10−2) ux(×10−2) uy(×10−2)

0 0.9000 0.0000 -9.7508 0.0006 -9.5376
0 0.7000 0.0000 -9.2060 0.0027 -9.0131
0 0.5000 0.0000 -8.5927 0.0056 -8.4228
0 0.3000 0.0000 -7.9061 0.0089 -7.7673
0 0.1000 0.0000 -7.1430 0.0125 -7.0381
0 -0.1000 0.0000 -5.0788 0.0142 -4.8667
0 -0.3000 0.0000 -1.6275 0.0119 -1.5403
0 -0.5000 0.0000 1.8972 0.0085 1.8589
0 -0.7000 0.0000 5.3340 0.0050 5.1709
0 -0.9000 0.0000 8.5295 0.0018 8.2406



258 Copyright © 2013 Tech Science Press CMES, vol.91, no.4, pp.235-266, 2013

Figure 10: Example 3. The deformation, calculated with MFS and NMFS, for a
one-domain case with E = 1N/m2,ν = 0.3 and N = 80. (•: collocation points, ◦:
source points, ×: MFS solution, M : NMFS solution)

Figure 11: Example 3. The deformation, calculated with MFS and NMFS, for
a bi-material case with material properties E I = 1N/m2, E II = 1N/m2, ν I =
0.3, ν II = 0.3, and N = 100, NI∩II = 20. (•: collocation points, ◦: source points,
×: MFS solution, M :NMFS solution)
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Figure 12: Example 3. The deformation, calculated with MFS and NMFS, for a bi-
material case with material properties E I = 5N/m2, E II = 1N/m2, ν I = 0.3, ν II =
0.3, and N = 100, NI∩II = 20. (•: collocation points, ◦: source points, ×: MFS
solution, M :NMFS solution)

Figure 13: Example 4. The deformation , calculated with MFS and NMFS, for a
one-domain case with material properties E = 1N/m2,ν = 0.3, and N = 80. (•:
collocation points, ◦: source points, ×: MFS solution, M : NMFS solution)
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Figure 14: Example 4. The deformation, calculated with MFS and NMFS, for a bi-
material case with material properties E I = 1N/m2, E II = 1N/m2, ν I = 0.3, ν II =
0.3, and N = 100, NI∩II = 20. (•: collocation points, ◦: source points, ×: MFS
solution, M :NMFS solution)

Figure 15: Example 4. The deformation, calculated with MFS and NMFS, for a bi-
material case with material properties E I = 5N/m2, E II = 1N/m2, ν I = 0.3, ν II =
0.3, and N = 100, NI∩II = 20. (•: collocation points, ◦: source points, ×: MFS
solution, M :NMFS solution)
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Table 6: Example 4. The results of MFS and NMFS for example from Fig. 15.

px py
MFS NMFS

ux(×10−2) uy(×10−2) ux(×10−2) uy(×10−2)

0 0.9000 -9.7338 0.0000 -9.7120 -0.0018
0 0.7000 -9.0963 0.0000 -9.0231 -0.0054
0 0.5000 -8.3310 0.0000 -8.2141 -0.0099
0 0.3000 -7.4769 0.0000 -7.3302 -0.0161
0 0.1000 -6.5940 0.0000 -6.4374 -0.0243
0 -0.1000 -4.4547 0.0000 -4.2997 -0.0277
0 -0.3000 -1.0468 0.0000 -0.8980 -0.0231
0 -0.5000 2.3213 0.0000 2.4442 -0.0170
0 -0.7000 5.5617 0.0000 5.6458 -0.0103
0 -0.9000 8.5810 0.0000 8.6164 -0.0036

5 Discussion

The numerical Examples 1 and 2 show good agreement of both NMFS and MFS
solutions with the analytical solution. The numerical Examples 3 and 4 show good
agreement between the solution for a one domain region and a solution recalcu-
lated with the two regions in ideal mechanical contact and with the same material
properties (compare Fig.10 with Fig. 11, and Fig. 13 with 14). The maximum
absolute difference in displacements between values in Fig. 10 and Fig. 11 at the
outer boundary are ux = 0.0011m, uy = 9.2544×10−4m, and between Fig.13 and
Fig. 14 ux = 4.3003×10−4m, uy = 0.0014m, respectively. The Examples 3 and 4
demonstrate the expected behavior of the solution when a bi-material with different
elasticity parameters is deformed (see Fig. 12 and Fig. 15).

6 Conclusions

A new NMFS (termed also BDSM by Liu (2010)), is extended in the present pa-
per to solve the two-dimensional linear elasticity problems. In this approach, the
singular values of fundamental solution are integrated over small circles, so that
the coefficients of the system of equations can be evaluated analytically in case
of displacement boundary conditions, leading to extremely simple computer im-
plementation of this method. In case of traction boundary conditions, two more
systems of equations with the same size as the original MFS problem have to be
solved to determine the respective desingularized derivatives. The NMFS essen-
tially gives the same results as the classical MFS. It has the advantage that the
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artificial boundary is not present, however on the expense of solving three times
the systems of algebraic equations in comparison with only one solution in MFS.
The results obtained using MFS and NMFS are compared to each other. Sensitivity
analyses of the influence of density of points are done and representative numeri-
cal examples for singe and bi-materials have been performed. The NMFS method
presented in this paper is very general and it can be adapted or extended to handle
many related problems, such as three dimensional elasticity, anisotropic elasticity,
and multi-body problems which all represent directions of our further investigation.
The advantage of not having to generate the artificial boundary is particularly wel-
come in these type of problems. The developed method most probably represents
a simplest know way how to numerically cope with these type of problems. The
method will be used in the future for calculation of multigrain deformation [Mura
(1987)] problems in metals, with realistic grain shapes, obtained from the micro-
scope images. It represents an alternative to the recent development direction of
T-Trefftz Voronoi cell finite elements [Dong and Atluri (2011a); Dong and Atluri
(2011b); Dong and Atluri (2013)] for macro- & micromechanics of inhomogenous
media with inclusions and cracks. The problems with arbitrarily shaped inhomo-
geneities in the form of elastic inclusions, rigid inclusions and voids, as discussed
in [Dong and Atluri, (2012)] will be numerically implemented next.
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Appendix

Figure 16: Example 1. The known two reference solutions of the governing equa-
tion (•: initial layout, +: ūx(p) = px +4, ūy(p) = 0,×:ūx(p) = 0, ūy(p) = py +4.),
used in calculation of the desingularized values of fundamental solution in traction
boundary condition poits, that give proper NMFS solution.
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Figure 17: Example 1. The known two reference solutions of the governing equa-
tion (•: initial layout, +: ūx(p) = px, ūy(p) = 0,×:ūx(p) = 0, ūy(p) = py.), used in
calculation of the desingularized values of fundamental solution in traction bound-
ary condition points, that give erroneous NMFS solution.

Figure 18: Example 1. The analytical solution, the numerical solution with MFS
and the erroneous numerical solution with NMFS with N = 100 and cx = cy = 0.
(•: collocation points, ◦: source points in MFS, +: analytical solution, ×:MFS
solution, M :NMFS solution)


