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A Fully Coupled Model of Non-linear Wave in a Harbor

Daguo Wang1

Abstract: A 2-D time-domain numerical coupled model for non-linear wave forces
acting on a fixed ship is developed in the present study. The whole domain is di-
vided into the inner domain and the outer domain. The inner domain is the area
around the ship section and the flow is described by the Laplace equation. The
remaining area is the outer domain and the flow is defined by the higher-order
Boussinesq equations in order to consider the nonlinearity of the wave motions.
The matching conditions on the interfaces between the inner domain and the outer
domain are the continuation of volume flux and the equality of wave elevations.
The procedure of coupled solution, the length of common domain and the calcula-
tion region of the inner domain are discussed in detail. The physical experiment,
including the wave flume and the waves acting on a fixed ship, the boundary ele-
ment method in complex and the Boussinesq equations are conducted to validate
the present model, and it is shown that the numerical results of the present model
agree well with the experimental data and the other numerical results, but the com-
putational efficiency of the present model is much higher than that of the boundary
element method in complex, so the present model is efficient and accurate, which
can be used for the study on the effect of the nonlinear wave forces acting on a fixed
ship or other structures in a large harbor.

Keywords: Boussinesq equations, Laplace equation, coupled model, non-linear
wave forces

1 Introduction

There are two common approaches, namely potential theory and Navier-Stokes (N-
S) theory, to calculate nonlinear wave forces acting on a body. In the potential
theory, the Laplace equation for velocity potential under nonlinear boundary con-
ditions can be solved by the boundary element method (BEM) [Lin, Newman and

1 School of Environment and Resource, Southwest University of Science and Technology, Mianyang
621010, China.
Corresponding author. Email address: dan_wangguo@163.com



290 Copyright © 2013 Tech Science Press CMES, vol.91, no.4, pp.289-312, 2013

Yue (1984); Boo, Kim and Kim (1994); Celebl, Kim and Beck (1998)] or finite
element method [Wu and Eatock (1994); Turnbull, Borthwick and Eatock (2003);
Wang, Zou and Liu (2010)]. The N-S Equations are solved numerically with the
marker and cell method (MAC) [Park and Kim (1998)], the volume of fluid method
(VOF) [Hirt and Nichols (1981)] or the smoothed particle hydrodynamics (SPH)
[Moulinec, Issa, Marongiu and Violeau (2008)]. The above two approaches can
only be applied to small computational region because tremendous computation
time is needed. For harbor engineering, one has to compute the nonlinear wave
forces acting on ships moored in a harbor. For such a case, the wave motions for
the whole harbor have to be considered since the waves in the harbor will undergo
reflections from the harbor boundaries and refractions on the varying bottom of the
harbor. Since the nonlinearity of water waves is enhanced by the shallow water, the
nonlinear wave forces also become more complex compared to the open sea condi-
tion. The commonly used methods of ship motions in a harbor [Van Oortmerssen
(1976); Zou and Bowers (1993)] can not consider these requirements. Adopting
the depth-averaged simplification, Boussinesq equations [Peregrine (1967); Nwogu
(1993); Wei, Kirby, Grilli and Subramanya (1995); Madsen, Bingham and Liu
(2002); Hsu, Hsiao, Ou, Wang, Yang and Chou (2007)], which turn 3-D problems
into 2-D ones, are commonly used for the harbor waves because of their nonlinear
feature and efficiency for large computational domains. However, the 3-D charac-
teristics of fluid motions in the vicinity of the ship hull can not be taken into account
by this model. Therefore, coupled models have been developed to overcome these
shortcomings. Takagi, Naito and Hirota (1994) simulated the interaction between
ship and waves by a coupled model, in which the outer domain was governed by
the mild-slope equations and the inner domain was numerically solved by the 3-D
boundary element method. Jiang (1998) simulated ship waves in shallow water by
a coupled model. Boussinesq type equations were used both in the inner domain
beneath the ship and the outer domain. Bingham (2000) applied the Boussinesq
equations to calculate the waves in the harbor without considering the ship and
used this result as the incident waves for the moored-ship motion which was mod-
eled by the linear potential theory (source distribution method). Therefore, the
nonlinear interaction between ship and waves could not be fully taken into account
in the method. Qi, Wang and Zou (2000); Qi, Zou and Wang (2000) developed
a coupled model for numerical simulations of nonlinear waves. In the approach,
the outer domain was defined by the Boussinesq equations and the inner domain
was defined by the N-S equations. Wang and Zou (2007) simulated the nonlinear
wave forces acting on a fixed ship section against a vertical quay by developing a
coupled model, in which the outer domain was expressed by the Boussinesq equa-
tions and the inner domain was described by the Newton’s second law. Hamidou,
Molin, Kadri, Kimmoun and Tahakourt (2009) proposed a 2-D coupling method
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between extended Boussinesq equations and the integral equation method. In the
method, there was no common domain between the inner domain and the outer do-
main, and its matching conditions were relatively complex. Wang, Zou, Tham and
Liu (2010); Wang, Zou and Tham (2011) simulated wave forces on a fixed-boxed
ship by a coupled model, in which the flow in the outer domain was governed by the
Boussinesq equations and the flow in the inner domain was governed by the simpli-
fied linear Euler equations, but the model can not consider the 3-D characteristics
of fluid motions in the vicinity of the ship hull.

In the present paper, a 2-D nonlinear wave coupled model is developed. The phys-
ical experiment and the other numerical models are adopted to validate the present
model. In Section 2, the governing equations are illustrated. The matching con-
ditions and the solution procedure are discussed in Section 3-4 respectively. In
Section 5 and Section 6, the physical experiment is described and the calculation
region of the inner domain is discussed respectively. The computational results are
carried out in Section 7 and the computational efficiency of the present model is
reported in Section 8.

2 Governing equations

Figure 1: Schematic diagram of the coupled model (where h is the still water depth,
Γ1 is the left boundary of the inner domain Ω2, Γ2 is the right boundary of the outer
domain Ω1, Γ3 is the left boundary of the outer domain Ω3, Γ4 is the right boundary
of the inner domain Ω2, LC is the common length between the inner domain and the
outer domain, LB is the distance between the interfaces (Γ2 and Γ3) and the ship,
LS is the distance between the interfaces (Γ1 and Γ4) and the ship, and LI is the
calculation region in the x−direction of the inner domain)
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As shown in Fig.1, the origin of a Cartesian coordinate system is on the mean
surface with the x-axis pointing to the propagation direction of incoming waves
and the y-axis pointing to the opposite direction of gravity. The entire fluid domain
is divided into three domains: the inner domain Ω2and the outer domain Ω1 & Ω3
. The inner domain is the area around the ship section, where flow is expressed
by the Laplace equation. The remaining area is the outer domain, where flow is
expressed by the higher-order Boussinesq equations.

2.1 Governing equations of the outer domain

The governing equations in the outer domain Ω1 and Ω3 are given by the 1-D form
of the higher-order Boussinesq equations [Zou (1999)], that is

ζt +[(h+ζ )u]x = 0, (1)
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1
3
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where ζ is the wave elevation, g is the gravity acceleration, t is the time, u is the
depth-averaged horizontal velocity. B1 and B2 are two parameters and B1 +B2 =
1/15. Taking B2 = 2

/
59 will give the optimal shoaling property of the equations.

The accuracy of Eqs. (1) and (2) is third order, and the dispersion is accurate to the
0
(
µ4
)

and nonlinearity to the 0
(
εµ2

)
(µ = h

/
L0, ε = A

/
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wave length and A is a characteristic wave amplitude).

Eqs. (1) and (2) can be discretized on a rectangle space-staggered grid system with
the depth-averaged velocity u defined at the time level n and the wave elevation ζ at
time level n− 1

2 , and solved numerically by the Predictor-Corrector scheme using
the finite difference method [Zou and Xu (1998)].

2.2 Governing equation of the inner domain

The governing equation of the inner domain is

β (z, t) = φ (z, t)+ iψ (z, t) , (4)

where φ is the velocity potential and ψ is the stream function, which satisfy Laplace
equation respectively, and z = x+ iy is applicable for describing the fluid motion.
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On the instantaneous free surface, both the fully nonlinear kinematic and dynamic
boundary conditions must be satisfied
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Eq. (4) and (5) can be written in the following semi-Lagrangian form
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)
. Eq. (4) was solved by boundary element

method to successfully simulate the 2-D non-linear wave flume in [Lin, Newman,
and Yue (1984)]. Using the boundary element method (BEM), non-linear wave
forces acting on ship section were calculated in [Wang, Chen and Tang (2009)].
In the present paper, with the method, the inner domain of the coupled model is
simulated.

3 Matching conditions

As shown in Fig. 1, there are four interfaces between the inner domain and the outer
domain. The matching conditions on the interfaces Γ1 and Γ4 are the continuation
of volume flux

ψ j (i) =
∫ y j(i)

−h
u j (i)dy j = 1,4, (9)

where ψ j (i) is the stream function of each node on the matching interfaces Γ1 and
Γ4, which can be given by the solution of the inner domain Ω2. y j (i) is the vertical
coordinate of each node at the interfaces Γ1 and Γ4 along water depth, which can
be determined by the following equation

y(i) = ζ
∗− (h+ζ ∗)

(N−1)
(i−1) (i = 1,2, · · ·N) , (10)

where ζ ∗ is the wave elevations at the interfaces Γ1 and Γ4, which can be given by
the solution of the outer domain Ω1 and Ω3, and N is the number of nodes of the
inner domain at the interfaces Γ1 and Γ4. The u j (i) in Eq. (9) is the horizontal
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velocities at the interfaces Γ1 and Γ4 and it is obtained by the solution of the outer
domain Ω1 and Ω3. From Eqs. (1) and (2), the u j (i) is a fourth order polynomial
[Zou (1999)]

u(i) = u− 1
2

[
(h+ y(i))2− (h+ζ ∗)2

3

]
uxx

+ 1
24

[
(h+ y(i))4−2(h+ y(i))2 (h+ζ ∗)2 + 7

15 (h+ζ ∗)4
]

uxxxx
. (11)

The matching conditions on the interfaces Γ2 and Γ3 are the continuation of volume
flux

u j =
ψ j

(h+ y j)
j = 2,3, (12)

and the equality of wave elevations

ζ j = y j j = 2,3, (13)

where u j and ζ j are the depth-averaged horizontal velocities and wave elevations at
the interfaces Γ2 and Γ3, respectively, which are given by the solution of the outer
domain Ω1 and Ω3. ψ j and y j are the stream function and wave elevations at the
interfaces Γ2 and Γ3, respectively, which are determined by the solution of the inner
domain Ω2.

It should be pointed out that the matching conditions (9), (12) and (13) obey mass
conservation, which shows that the present coupled model is a fully coupled one.

4 Solution procedure

The solution procedure of the present model includes the following steps. The first
step: Firstly, the u2 and ζ2, which are the right boundary conditions of the outer
domain Ω1, can be obtained by Eq. (12) and (13). With the boundary conditions
and the incident boundary condition, the Boussinesq equations can be solved in
the outer domain Ω1. Then, the ψ1 (i) and ψ4 (i), which are the left and right
boundary conditions of the inner domain Ω2, can be given by Eq. (9). Using the
boundary conditions, Eq. (4) can be calculated in the inner domain Ω2. Lastly,
through Eq. (12) and (13), we can obtain the u3 and ζ3, which are the left incident
boundary conditions of the outer domain Ω3. With the boundary conditions and
open condition, the Boussinesq equations can be solved in the outer domain Ω3.

The second step: By compared the velocity in the inner domain with the velocity
in the outer domain at the same position in the common domain, the iteration is
finished and the next time step begins if the relative error between them is less than
1%, otherwise the computation procedure is repeated.



A Fully Coupled Model of Non-linear Wave in a Harbor 295

5 Physical experiment

The physical experiment was conducted in a wave flume of 46 m in length, 0.7m
in width and 1m in depth at the State Key Laboratory of Coastal and Offshore En-
gineering, Dalian University of Technology, China. Incident waves were generated
by a wave maker from one end of the wave flume. The ship model had a width
B = 0.6m and length L = 0.4m. The height was 0.45 m. It was placed 27.4m away
from the wave maker (see Fig. 2) and fixed by a support bar. As shown in Fig. 3,
two boxes of 0.147 m in width were placed at the two sides of the ship model with a
gap of 0.003 m between the boxes and the ship model in order to avoid the friction
between them.

Wave elevations were measured by wave gauges as shown in Fig. 2. Horizontal
and vertical wave forces acting on the ship model were measured by a force sensor,
which was placed in the centre of the ship top as shown in Figs. 2-4. Pressure
sensors were also installed on the surface of the ship model (see Fig. 4) and the
locations of these pressure sensors are given in Tab. 1.

Sine waves were generated by the wave maker and the motion of the wave maker
paddle is defined by

S = Sa sinwt (14)

where Sa and w is the stroke length and the frequency of wave maker paddle re-
spectively. Six cases were studied in the experiment (Shown in Tab. 2).

Figure 2: Experimental setup (where d is the draft of the ship model)
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Figure 3: Wave flume cross section (where δ is the gap width between the ship
bottom and the seabed)

Figure 4: Pressure sensor setup

Table 1: Positions of the pressure sensors

Number of pressure sensors 1 2 7 8
Distance from bottom /m 0.18 0.02 0.02 0.18
Number of pressure sensors 3 4 5 6
Distance from left /m 0.02 0.2 0.4 0.58
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Table 2: Incident wave characteristics (where H is the incident wave height and T
is the incident wave period)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Water depth h(m) 0.3 0.3 0.3 0.3 0.3 0.3

Wave height
H(m) 0.03 0.06 0.06 0.06 0.06 0.06
H
/

h 0.1 0.2 0.2 0.2 0.2 0.2

Wave period
T (s) 2 3 5 3 3 3

T
√

g
/

h 11.4 17.1 22.8 17.1 17.1 17.1

Draft
d (m) 0.27 0.24 0.24 0.27 0.18 0.21
d
/

h 0.9 0.8 0.8 0.9 0.6 0.7

6 Calculation region of the inner domain

6.1 Length of LC

The uxxxxin Eq. (11) is fourth derivative of depth-averaged horizontal velocity to
horizontal coordinate, which can be obtained from the following finite difference
method

uxxxx = (ui+2−4ui+1 +6ui−4ui−1 +ui−2)
/
(∆x)4 (15)

where ∆x is the space step length of the outer domain and ∆x = 0.1 in the present
model, and i is the nodal label of the outer domain (see Fig. 5). From Fig. 5, the
length of the common domain between the inner domain and the outer domain is

LC = (N−1)(∆x) (16)

where N is the nodal number of the outer domain in the common domain. Based
on Eq. (15) and Fig. 5, N is not less than 4. If N is greater than 4, the computation
cost will increase, so N = 4 and LC = 0.3m.

6.2 Length of LS

As shown in Fig. 1, the distance between the interfaces (Γ1 and Γ4) and the ship is

Ls = Lc +LB (17)

If LB is too shorter, the characteristics of fluid motions around the ship section
can’t be accurately given by Eq. (11). If LB is too longer, the computation cost
will increase. In the present model, taking LB as one width of the ship model gives
LB = 0.6m, so LS = 0.9m.
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Figure 5: Length of the common domain

6.3 Calculation region of the inner domain

As shown in Fig. 1, the calculation region in the x−direction of the inner domain
is

LI = 2LS +B = 2×0.9+0.6 = 2.4m (18)

7 Computational results

7.1 Computational results of wave flume

A wave flume, which is the same as that in the physical experiment (Fig. 2), is sim-
ulated by the present coupled model and the Boussinesq equations [Zou (1999)]. As
discussed in Section 6, the common length between the inner domain and the outer
domain LC is 0.3m. As shown in Fig. 6, the calculation region in the x−direction
of the inner domain is 2.4m, the calculation region of the outer domain Ω1 is 26.8m
and the calculation region of the outer domain Ω2 is 17.4m. The space step length
[Zou (1999)] in the outer domain is 0.1m, and the space step length of the inner
domain in the coupled model is 0.05m. The incident wave period is 3.0s and the
incident wave height is 0.06m.

Fig. 7 shows the wave profiles at the t = 10, t = 20 and t = 30s, and Fig. 8 shows
the time history of wave elevations at the x = 7.0, x = 13.0, x = 19.0, x = 25.2,
x= 27.2, x= 28.2and x= 30.2m. In Fig. 8, the computational results of the coupled
model at the x = 7.0, x = 13.0, x = 19.0, x = 25.2 and x = 30.2m are obtained
from the Boussinesq equations in the outer domain, and the computational results
of the coupled model at the x = 27.2, x = 28.2m are obtained from the boundary
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Figure 6: Wave flume

element method [Lin, Newman, and Yue (1984); Wang, Chen and Tang (2009)] in
the inner domain. It can be seen from the Figs. 7-8 that the computational results
of the coupled model, same as that of the Boussinesq equations, agree well with
the experimental data. There are some errors between the numerical results and the
experiment data in Fig. 8(g) after t = 38s and in Fig. 8(f) after t = 35s, which are
caused by the wave reflection in the experiment. Therefore, the coupled model can
be used to simulate accurately the propagation of nonlinear waves and it is very
successful.

7.2 Computational results of waves acting on a fixed ship

The computational region and input parameters for the numerical model are the
same as those in the physical experiment, which is shown in Fig. 2 and Tab. 2. The
computational results and experimental data are shown in Figs. 9-11.

Figs. 9(a)-9(c) show the time series of numerical and experimental wave elevations
for different wave periods. The wave period is T =2s in Fig. 9(a), T =3s in Fig.
9(b) and T =5s in Fig. 9(c). Fig. 9(b) and Figs. 9(d)-9(e) show the time series of
numerical and experimental wave elevations for different draft of the ship model.
The draft is d =0.24m in Fig. 9(b), d =0.27m in Fig. 9(d) and d =0.18m in Fig.
9(e).

Fig.10 shows the time series of numerical and experimental wave pressures on ship
section for Case 6. In the figure, Arabic numbers denotes the number of the pressure
sensors, pressure sensors 1-2 are placed on the left side of the ship model, 3-6 on
the bottom of the ship model, and 7-8 on the right side of the ship model, and ρ is
the water density.

Figs. 11 show the time series of numerical and experimental wave forces on the
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ship section for Case 1 to Case 5.

From the Figs. 9-11, it can be seen that the numerical results of the coupled model,

(a) Wave profile at t = 10s

(b) Wave profile at t = 20s

(c) Wave profile at t = 30s

Figure 7: Wave profiles at different instant (where dashed lines are the Boussinesq
equations [Zou (1999)] results and solid lines are the coupled mode results)
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Figure 8 : Time history of wave elevations at the different position (where x is
the position of the wave gauges away from the incident boundary, markers are
experimental data, dashed lines are the Boussinesq equations [Zou (1999)] results
and solid lines are the coupled mode results)
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which are the same as that of the boundary element method in complex [Lin, New-
man, and Yue (1984); Wang, Chen and Tang (2009)], agree well with the experi-
mental data.

8 Computational efficiency of two numerical models

For a comparison of the computational efficiencies between the present model and
the boundary element method in complex [Lin, Newman, and Yue (1984); Wang,
Chen and Tang (2009)], the fluid domain in Fig. 2 was calculated on a PIV-2.4GHZ
computer with 1G RAM by the two models. The incident wave period and wave
height were T = 2s, H = 0.03m, respectively. The computational times of the two
models are listed in Tab. 3.

Table 3: Computational time of the two models

BEM Coupled model
Space step length ∆x = 0.05m ∆x = 0.05m in inner domain;

∆x = 0.1m in outer domain
Total computational steps 1800 1800
Total computational time 567.09ks 9.40ks
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Figure 9 : Time history of wave elevations (where x is the horizontal coordinate of
wave gauges, markers are the experimental data, dashed lines are the BEM [Lin,
Newman, and Yue (1984); Wang, Chen and Tang (2009)] results and solid lines are
the coupled mode results)
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Figure 10 : Time history of wave pressures (where markers are experimental data,
dashed lines are the BEM [Lin, Newman, and Yue (1984); Wang, Chen and Tang
(2009)] results and solid lines are the coupled mode results)
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Figure 11 : Time history of horizontal (left) and vertical (right) wave forces (where
markers are the experimental data, dashed lines are the BEM [Lin, Newman, and
Yue (1984); Wang, Chen and Tang (2009)] results and solid lines are the coupled
mode results)

From Tab. 3, it can be seen that the computational time required by the present
coupled model is over 60.33 times less than that of the boundary element method.
Therefore, the present is more efficient.

9 Conclusions

A 2-D time-domain coupled model for nonlinear wave forces acting on a fixed ship
section in a harbor has been developed in the present study. The whole domain is
divided into the inner domain and the outer domain. The inner domain is the area
around the ship, where flow is expressed by the Laplace equation and numerically
solved by the boundary element method. The remaining area is the outer domain,
where flow is described by the higher-order Boussinesq equations and numerically
solved by the finite difference method. The matching conditions on the interfaces
between the inner domain and the outer domain are the continuation of volume flux
and the equality of wave elevations, which obeys mass conservation. The solution
procedure and the calculation region of the inner domain are also discussed in detail
in the paper.

The physical experiment, including the wave flume and the wave acting on a fixed
ship, the boundary element method in complex [Lin, Newman, and Yue (1984);
Wang, Chen and Tang (2009)] and the Boussinesq equations [Zou (1999)] are
adopted to verify the present coupled model, and it can be seen that the numeri-
cal results of the present mode agree well with the experimental data and the other
numerical results, but the computational efficiency of the present model is much
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higher than that of boundary element method, so the coupled model is accurate and
efficient, which can be used for the wave motions in a harbor with large area and
is especially useful for the study of the effects of harbor boundaries and bottom on
wave forces acting on a fixed ship in a harbor. Furthermore, based on the present
model and the linear theory of the motions of floating structures, nonlinear wave
forces acting on a ship moored in a harbor will be discussed in the future.

In addition, the present model can not only provide a reference for the coupled
calculation, but also be applied to the district computation of wave field.
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